Hadron structure from Large Momentum Effective Theory

Wei Wang Shanghai Jiao Tong University

23.09. 2020 CCNU IOPP Forum

Outline

Parton Distribution Functions

> Quasi PDF and LaMET

Brief Results for quark PDFs

Recent Progress:

- 2-loop Perturbative Matching
- ✓ Gluon quasi PDF
- ✓ TMDWF

> Summary

Disclaimer: There are many excellent works, but can not covered in this talk.

Success of the Standard Model(SM)

Factorization: Parton Model & PDF

Factorization theorems:

$$d\sigma \sim \int dx_1 dx_2 * f(x_1) * f(x_2) * C(x_1, x_2, Q)$$

PDF: basic inputs for particle physics at hadron colliders.

Global Fit of Data

6

From Jun Gao

PDF From First Principle?

- Fitting Results rely on data
- First-principle calculation can cover regions where experiments cannot constrain so well

• The cost of improving calculations could be much lower than building large experiments.

Gluon PDF

prediction for top pair production

1705.04105v2

PDF at large x gives dominant errors: important to study heavy particles.

Lattice QCD(K.G.Wilson,1974)

- Numerical simulation in discretized Euclidean space-time
- Finite volume (L should be large)
- Finite lattice spacing (a should be small)

9

Tremendous successes in hadron spectroscopy, decay constants, strong coupling, form factors, etc.

PDF (or more general parton physics): Minkowski space, real time infinite momentum frame, on the light-cone

Lattice QCD:

Euclidean space, imaginary time (t=i*tau) Difficulty in time

$$x_E^{\mu} x_E^{\mu} = 0, x_E^{\mu} = (0,0,0,0)$$

10

Unable to distinguish local operator and light-cone operator Sign problem in simulating real-time dynamics. One can form local moments to get rid of the timedependence

- $\langle x^n \rangle = \int f(x) x^n dx$: matrix elements of local operators
- However, one can only calculate lowest few moments in practice.
- Higher moments quickly become noisy.

$$\int_{0}^{1} dx \ x^{n} q(x,\mu) dx = a_{n}(\mu) \propto \left\langle P \left| \overline{\psi}(0) \gamma^{+} \widetilde{i} \widetilde{D}^{+} \cdots \widetilde{i} \widetilde{D}^{+} \psi(0) \right| P \right\rangle$$

12

Quasi Parton Distribution Functions and Large Momentum Effective Theory (LaMET)

X. Ji, Phys. Rev. Lett. 110 (2013) 262002 X. Ji, Sci.China Phys.Mech.Astron. 57 (2014) 1407-1412

Quasi-PDFs

Quasi-PDFs

Lorentz boost

PDF: light-cone separation; Cannot be calculated on the lattice

Quasi-PDF : Equal-time correlation; Directly calculable on the lattice

$$\tilde{q}(x,\mu^2,P^z) = \int_{-1}^1 \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P^z}\right) q(y,\mu^2) + \mathcal{O}\left(\Lambda^2/(P^z)^2, M^2/(P^z)^2\right) \,,$$

- The distribution at a finite but large Pz shall be calculable in lattice QCD.
- Since it differs from the standard PDF by simply an infinite Pz limit, it shall have the same infrared (collinear) physics.
- It shall be related to the standard PDF by a matching factor $Z(\frac{\mu}{Pz})$ which is perturbatively calculable.

$$Z(x, \mu/P^z) = \delta(x-1) + \frac{\alpha_s}{2\pi} Z^{(1)}(x, \mu/P^z) + \dots$$

$$\tilde{q}(x,\mu^2,P^z) = \int_{-1}^1 \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P^z}\right) q(y,\mu^2) + \mathcal{O}\left(\Lambda^2/(P^z)^2, M^2/(P^z)^2\right) ,$$

- ✓ Formalism: factorization, renormalization, power corrections
- \checkmark Matching: perturbative corrections to Z
- ✓ Lattice QCD calculations

Lattice Collaboration working on quasi-PDFs:

Lattice Parton Physics Project (LP3) Collaboration

J.W. Chen, T. Ishikawa, L. Jin, R.-Z. Li, H.-W. Lin, Y.-S. Liu, A. Schaefer, Y.-B. Yang, J.-H. Zhang, R. Zhang, and Y. Zhao, et al

European Twisted Mass Collaboration (ETMC)

C. Alexandrou (U. Cyprus), M. Constantinou (Temple U.), K.Cichy (Adam Mickiewicz U.), K. Jansen (NIC, DESY), F. Steffens (Bonn U.), et al.

> **DESY, Zeuthen** J. Green, et al.

Brookhaven group

T. Izubuchi, L. Jin, K. Kallidonis, N. Karthik, S. Mukherje, P. Petreczky, C. Schugert, S. Syritsyn.

MSU group

H.-W. Lin

Lattice Parton Collaboration (LPC)

X.Ji, P.Sun, A.Schafer, W.Wang, Y.Yang, J.Zhang, et al

≻ .

Lattice Progress on quasi PDF:quark

 $u(x) - d(x) - \bar{u}(-x) + \bar{d}(-x)$

ETMC:1803.02685

LP3: 1803.04393

Lattice Progress on quasi PDF:quark

19

$$u(x) - d(x) - \bar{u}(-x) + \bar{d}(-x)$$

LPC:1807.06566

ETMC:1803.02685

Progress on quasi-PDF

More Precision Calculations:
 Lattice QCD Simulations
 2-loop Perturbative Matching
 ...

- ✓ New Distributions:
 - ✓ Gluons PDFs
 - ✓ Transverse Momentum Dependent PDF
 ✓ ...

Many Progress has been made on quasi PDFs, see Reviews: Alexandrou et al., 1902.00587 Ji, et al. 2004.03543, Rev.Mod.Phy.

2-Loop Perturbative Corrections

$$\tilde{q}(x,\mu^2,P^z) = \int_{-1}^1 \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P^z}\right) q(y,\mu^2) + \mathcal{O}\left(\Lambda^2/(P^z)^2, M^2/(P^z)^2\right) ,$$

Higher-order corrections are important:

- ✓ If $\mu = 2GeV$, $\alpha s(\mu = 2GeV) \sim 0.3$, αs^2 -correction is needed for a precision prediction
- $\checkmark\,$ The factorization proof at NNLO is nontrivial

2005.13757, PRD RC Chen, WW, Zhu, 2006.10917, JHEP 2006.14825

See also Li,Ma,Qiu,2006.12370

2-Loop Perturbative Corrections

Higher order corrections bring about a large number (79+ at NNLO) of Feynman diagrams

Check Master Integrals using the numerical integration package FIESTA

23

Analytic:

$$I_{1,1,0,0,2,1,0}^{1} = \frac{-2.492900960}{\epsilon} + 0.4498613241 + \epsilon(-21.287203876),$$
FIESTA:

$$I_{1,1,0,0,2,1,0}^{1} = \frac{-2.49290 \pm 0.0000652}{\epsilon} + 0.449836 \pm 0.000847 + \epsilon(-21.2872 \pm 0.004169).$$

Divergences between quasi and lightcone PDFs cancel!

2-Loop Perturbative Corrections

using LPC data with z_{cut} = 10a, μ = 2*GeV* and in modified MS scheme; uncertainty is from lattice data

Université catholique de Louvain,

Chemin du Cyclotron 2, 1348 Louvain-La-Neuve, Belgium

^ePhysik-Institut, Universität Zürich, Winterthurerstrasse **25**0, 803 ^fNikhef, Science Park 105, NL-1098 XG Amsterdam, The Nether

Gluon quasi PDF:

ABSTRACT: We present the most precise value for the Higgs gluon-fusion production mode at the LHC. Our result is based of CT14 NNLO through N³LO in QCD, in an $\epsilon_{\rm off}$ vhere the **top** g(x.O)/5 finitely heavy, while all other Sti larks are mass e all finite qua with QCD corrections to the creations of the creations of the creations of the creation of the exactly through NLO. In additin corrections and at $\frac{\text{CI15}\left[1\right]^{a}}{\text{three}}$ loop inverse mass of the top-quark : 0.01 0.03 0.1 0.3 effects of threshold resum nations, beth in the traditional QCD SCET approach White a residence of π^2 contributions to all tainty of the gross-section zhu, 1904.00978, PRL ---QCD effects beyend N³L, Ma, and 180 known mixed QCD-electrow

giuon-iusion production mot **Gluon PDF** through $N^{3}LO$ in QCD, in finitely heavy, while all 26 othe with QCD corrections H to the **Higgs Production:** gluon-gluon fusion exactly through NLO. In ad inverse mass of the top-qua Cross sections are calculated by Zürich group at N³LO QCD and NLOEW accuracies [Anastasious 2016 dez] eshold resumma mĦ=125.09 GeV, √s=13 EET approach, which resur σtal 52 pbof the cross-section fr Total Uncertainty: B98 ff (Gaussian) on N³LO a DF: 1.9% of the sensitivity of α_s . 2.6%

quasi PDF for gluon: definition?

Definition of quasi and light-cone gluon distribution

$$f_{g/H}(x,\mu) = \int \frac{d\xi^{-}}{2\pi x P^{+}} e^{-ix\xi^{-}P^{+}} \langle P|F^{+}_{i}(\xi^{-})W(\xi^{-},0,L_{n^{+}})F^{i+}(0)|P\rangle$$
$$\tilde{f}_{g/H}(x,\mu) = \int \frac{dz}{2\pi x P^{z}} e^{-ixzP^{z}} \langle P|F^{z}_{i}(z)W(z,0,L_{n^{z}})F^{iz}(0)|P\rangle$$

≻ Field Strength Tensor: F

WW,Zhao,Zhu,1708.02458

 \succ i sums over transverse directions (i=1,2) or full directions

 \succ W(z₁,z₂, C) is a Wilson line along contour C.

Renormalization of gluon PDF: 28 Auxiliary Field Gervais and Neveu, 1980

Wilson line
$$W(z_1, z_2; C) = \langle \mathcal{Z}(\lambda_1) \overline{\mathcal{Z}}(\lambda_2) \rangle_z$$

Gauge invariant non-local operators pairs of gauge invariant composite local operators

$$F^{a}_{\mu\nu}(z_{1})W_{ab}(z_{1}, z_{2}; C)F^{b}_{\rho\sigma}(z_{2}) = \langle (F^{a}_{\mu\nu}(z_{1})\mathcal{Z}_{a}(\lambda_{1})) | \overline{(\mathcal{Z}_{b}(\lambda_{2})}F^{b}_{\rho\sigma}(z_{2}) \rangle \\ = \Omega^{(1)}_{\mu\nu}(z_{1})\overline{\Omega^{(1)}_{\rho\sigma}(z_{2})}$$

$$\Omega_{\mu\nu}^{(1)}(z_1) = F_{\mu\nu}^a(z_1)\mathcal{Z}_a(\lambda_1))$$

Renormalization of gluon quasi-PDF

Three operators with the same quantum number

$$\begin{aligned} \Omega_{\mu\nu}^{(1)} &= F_{\mu\nu}^{a} \mathcal{Z}_{a}, \\ \Omega_{\mu\nu}^{(2)} &= \Omega_{\mu\alpha}^{(1)} \frac{\dot{x}_{\alpha} \dot{x}_{\nu}}{\dot{x}^{2}} - \Omega_{\nu\alpha}^{(1)} \frac{\dot{x}_{\alpha} \dot{x}_{\mu}}{\dot{x}^{2}}, \\ \Omega_{\mu\nu}^{(3)} &= |\dot{x}|^{-2} (\dot{x}_{\mu} A_{\nu}^{a} - \dot{x}_{\nu} A_{\mu}^{a}) (D\mathcal{Z})_{a}, \end{aligned}$$

Different components are renormalized differently!

$$\begin{pmatrix} \Omega_{1,R}^{z\mu} \\ \Omega_{3,R}^{z\mu} \end{pmatrix} = \begin{pmatrix} Z_{22} & Z_{13} \\ 0 & Z_{33} \end{pmatrix} \begin{pmatrix} \Omega_{1}^{z\mu} \\ \Omega_{3}^{z\mu} \end{pmatrix};$$

29

 $\Omega_{1,R}^{ti} = Z_{11}\Omega_1^{ti}$

Renormalization of gluon PDF: Multiplicatively Renormalizable Operators

$$O^{(1)}(z_1, z_2) \equiv F^{ti}(z_1)L(z_1, z_2)F_i^{\ t}(z_2),$$

$$O^{(2)}(z_1, z_2) \equiv F^{zi}(z_1)L(z_1, z_2)F_i^{\ z}(z_2),$$

$$O^{(3)}(z_1, z_2) \equiv F^{ti}(z_1)L(z_1, z_2)F_i^{\ z}(z_2),$$

$$O^{(4)}(z_1, z_2) \equiv F^{z\mu}(z_1)L(z_1, z_2)F_\mu^{\ z}(z_2),$$

Four multiplicative Renormalizable operators can be used to define gluon quasi-PDfs

Zhang, Ji, Schafer, WW, Zhao, 1808.10824 (PRL 2019)

First Lattice Simulation

Mpi=340MeV

2.0

2.5

3.0

PDF4LHC15 NLO

CT14 NNLO

P_z=0.46 GeV

▲ P_z=0.92 GeV

0.5

1.0

1.5

zP_z

0.2

0.1

0.0

Fan, Yang, Anthony, Lin, Liu, 1808.02077(PRL)

31

$$\begin{split} \tilde{H}_0(z,P_z) &= \langle P | \mathcal{O}_0(z) | P \rangle, \\ \mathcal{O}_0 &\equiv \frac{P_0 \left(\mathcal{O}(F_\mu^t,F^{\mu t};z) - \frac{1}{4}g^{tt} \mathcal{O}(F_\nu^\mu,F_\mu^\nu;z) \right)}{\frac{3}{4}P_0^2 + \frac{1}{4}P_z^2} \end{split}$$

In future:

- More precise
- Physical Pion
- Large Momentum
- Quark-gluon Mixing

32

核子内部结构

尽管人类对核子(质子)结构的研究取得了多次突破性进展,但核子结构的完整图像尚未建立,尤其是广泛研究的部分子分布函数[1969年诺贝尔奖]只描述了核子内部 夸克和胶子一维结构。

随着美国能源部刚批准的电子离子对撞机(EIC)和我国正在筹建的EicC的不断推进,人们将首次有可能从实验上深入到核子三维结构。

33

Х

0

xp

How to obtain TMDPDF from first-principle?

$$f^{\mathrm{TMD}}(x,\zeta,b_{\perp},\mu) = \frac{f(x,\tau,b_{\perp},\mu)}{\sqrt{S(\tau,\tau',b_{\perp},\mu)}}$$

Un-subtracted TMDPDF

Soft-factor

Ji, Liu, Liu, arXiv: 1910.11415, 1911.03840

35

A four-quark form-factor:

Ji, Liu, Liu, arXiv: 1910.11415, 1911.03840

Reduced Soft-factor can be calculated from form-factor and quasi-TMDWF:

$$S_{I}(b_{\perp}) = \frac{S(Y, Y', b_{\perp})}{S(Y, 0, b_{\perp})S(0, Y', b_{\perp})}$$
(20)
$$= \frac{\Pi(P, P', b_{\perp})}{\int dx dx' H(x, x', P, P')\widetilde{\phi}(x', P', b_{\perp})\widetilde{\phi}^{\dagger}(x, P, b_{\perp})}$$

格点量子色动力学模拟

$$f^{\mathrm{TMD}}(x,\zeta,b_{\perp},\mu) = \frac{f(x,\tau,b_{\perp},\mu)}{\sqrt{S(\tau,\tau',b_{\perp},\mu)}}$$

初步完成工作: 软函数(LPC: 2005.14572, submitted to PRL)

核子三维结构 EIC模拟图,非预言

Summary

38

LaMET: Parton physics demands new ideas to solve nonperturbative QCD.

Recent Progress:
✓ Precision:
✓ 2-loop Perturbative Matching
✓ New Distributions:
✓ Gluons PDFs
✓ Transverse Momentum Dependent PDF

In near future, we expect:

- ✓ Lattice calculation of quark PDFs with 2-loop: 10%
- ✓ New Distributions: gluon, TMDPDF, GPD, twist-3

Thank you very much!

BACKUP

TMD PDF

Ji, Liu, Liu, arXiv: 1910.11415, 1911.03840

40

TMDWF:

$$\tilde{\phi}(x,P,b_{\perp}) = \lim_{L \to \infty} \int \frac{P^z dz}{4\pi} e^{ixzP^z} \frac{\langle P | \bar{\psi}(0,z,\vec{b}_{\perp}) \tilde{\Gamma} \tilde{U} \psi(0) | 0 \rangle}{\sqrt{Z_E(0,2L,b_{\perp})}}$$

$$\widetilde{\phi}(x,P,b_{\perp}) = H_{\phi}(x,P^z) \frac{\phi(x,Y,P,b_{\perp})}{S(Y,\overline{Y},b_{\perp})} S(Y,0,b_{\perp})$$
 (