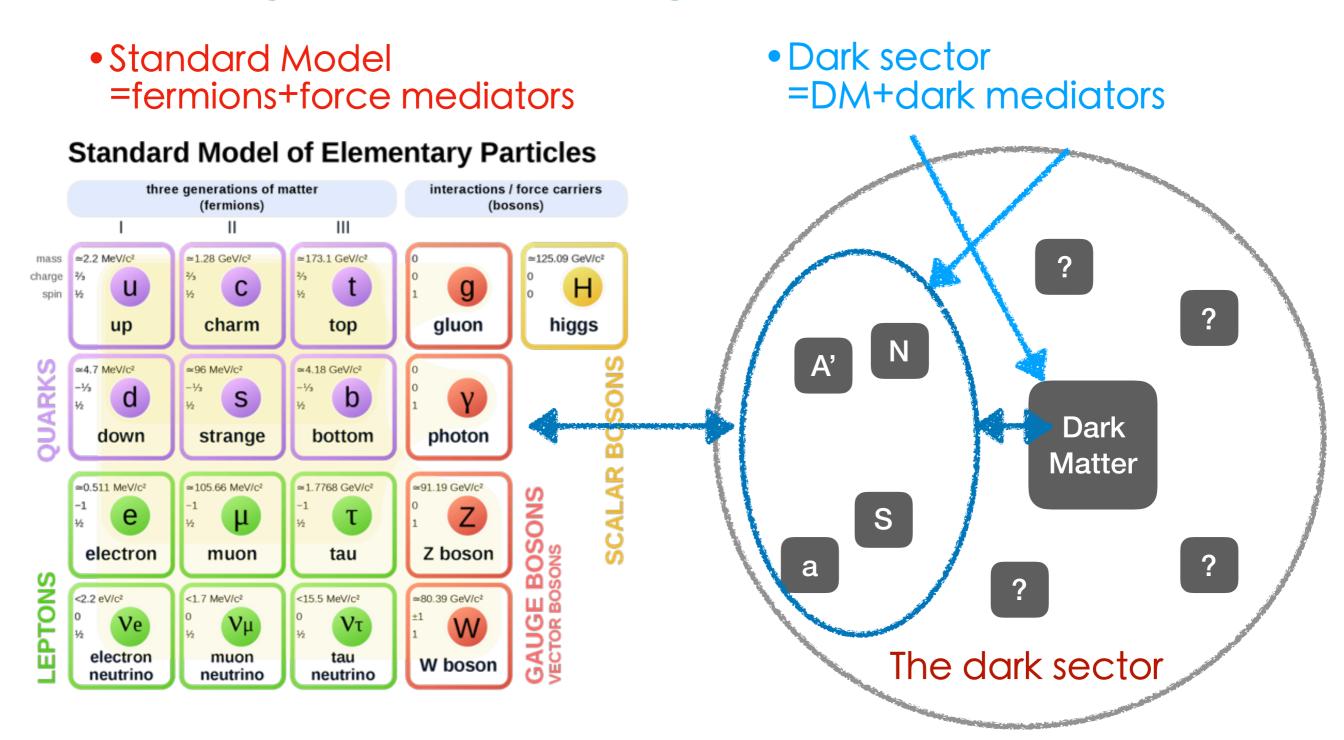
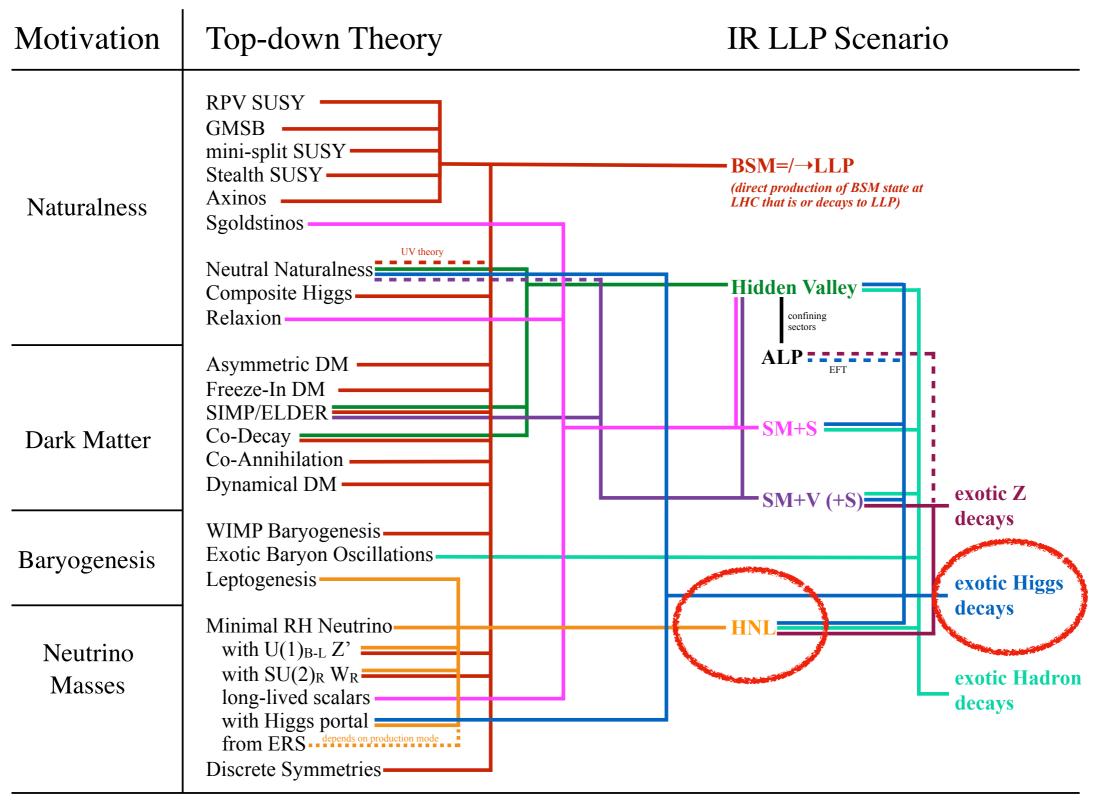

Long-lived particle Searches at LHC

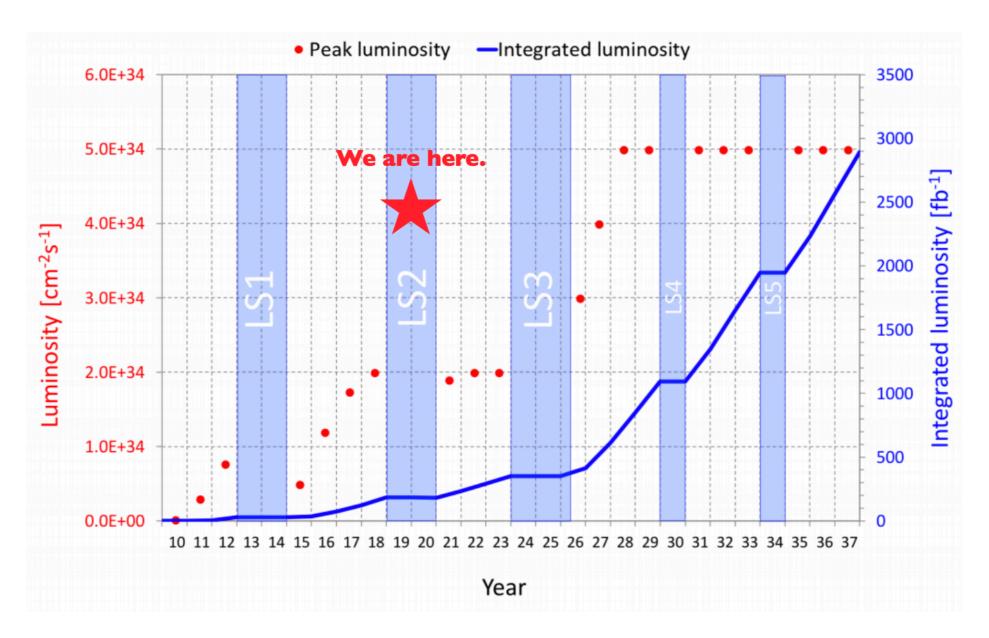

Xiao-ping Wang Argonne National Laboratory

Outline

- Long-lived particle introduction
- Long-lived sterile neutrino search
- General long-lived particle search at CMS HGCAL



• Not a surprise: dark sector particles have a wide spread in lifetime


Feeble couplings:

R-parity violating Supersymmetry, sterile neutrinos, portal models

- Suppression from heavy mass scale: muon/charged pion, gauge mediated spontaneous breaking Supersymmetry
- Near degenerate state: higgsino-like chargino/neutralino, or anomaly-mediated spontaneous breaking Supersymmetry
- Approximate symmetry:
 K_L to three pions (accidental PS suppression)

Why looking for long-lived particle at LHC?

- LHC will accumulate more data
- Exp collaborations have broad physics programs: SUSY, composite H, extra Dim, etc.
- New directions?

Why looking for long-lived particle at LHC?

- Physics potential from a lot of new data
 - Very rare signal
 - E.g. dark sector, rare decays, ...
 - More data can help reducing systematics
 - Precision measurements


Why looking for long-lived particle at LHC?

- Physics potential from a lot of new data
 - Very rare signal
 - E.g. dark sector, rare decays, ...
 - More data can help ducing systematics
 - Precision measurements

An important example: Long-lived particles

How to search LLP?

Mostly related with displaced-vertex, less track-based

How to search LLP?

Mostly related with displaced-vertex, less track-based

Our difference from previous work: focus on track-based observables

Outline

- Long-lived particle introduction
- Long-lived sterile neutrino search
- General long-lived particle search at CMS HGCAL

Long-lived Sterile Neutrino Search

- ▶ Dec. 1930: W. Pauli hypothesizes the electron neutrino.
- ► Today: there are three active neutrinos that oscillate
- ⇒ Key question: Origin of neutrino masses?
- Heavy neutral leptons (HNL) naturally occur in Standard Model extensions toward neutrino masses.
- ▶ HNL with masses below m_W "easily" develop long lifetimes.

HNL are a well-motivated prototype LLP they have to be studied as thoroughly as possible!

Sterile neutrino models

Basic seesaw model

$$\Delta \mathcal{L}_{\nu} = -\lambda_{\nu} \bar{L} \tilde{H} N - \frac{m_N}{2} \bar{N}^c N + h.c.,$$

Masses

$$m_D = \lambda_{\nu} v / \sqrt{2}$$

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D & m_N \end{pmatrix} \qquad m_{\nu} \equiv m_1 \simeq \frac{m_D^2}{m_N}, \quad m_2 \simeq m_N + \frac{m_D^2}{m_N} \simeq m_N$$

Mixing

$$\sin^2 \theta \simeq \frac{m_{\nu}}{m_N} = 10^{-12} \left(\frac{m_{\nu}}{0.01 \text{ eV}} \right) \left(\frac{10 \text{ GeV}}{m_N} \right)$$

Problem: production of N is suppressed by very small mixing

Sterile neutrino models

Basic seesaw model

$$\Delta \mathcal{L}_{\nu} = -\lambda_{\nu} \bar{L} \tilde{H} N - \frac{m_N}{2} \bar{N}^c N + h.c.,$$

Masses

$$m_D = \lambda_{\nu} v / \sqrt{2}$$

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D & m_N \end{pmatrix} \qquad m_{\nu} \equiv m_1 \simeq \frac{m_D^2}{m_N}, \quad m_2 \simeq m_N + \frac{m_D^2}{m_N} \simeq m_N$$

Mixing

$$\sin^2 \theta \simeq \frac{m_{\nu}}{m_N} = 10^{-12} \left(\frac{m_{\nu}}{0.01 \text{ eV}} \right) \left(\frac{10 \text{ GeV}}{m_N} \right)$$

Inverse seesaw

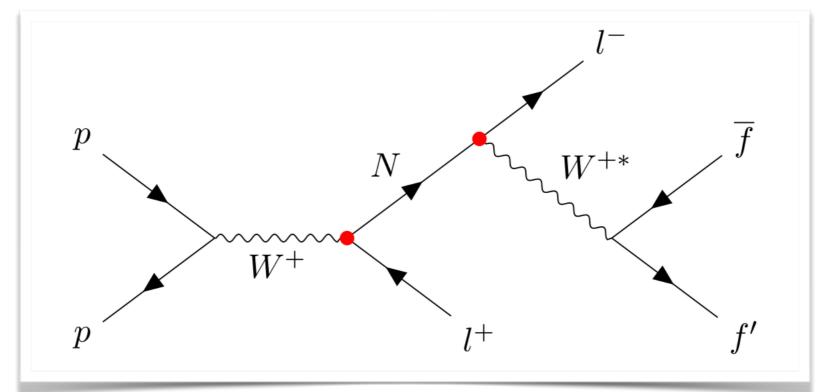
$$\sin^2 \theta = \frac{m_{\nu}}{\mu}$$
 $m_{\nu} = \mu \left(\frac{m_D}{m_N}\right)^2$ Separate neutrino mass from mixing, realizing large mixing

Linear seesaw $\sin \theta = \frac{m_{\nu}}{m_{\nu}}$

$$\sin\theta = \frac{m_{\nu}}{m_{\psi}}$$

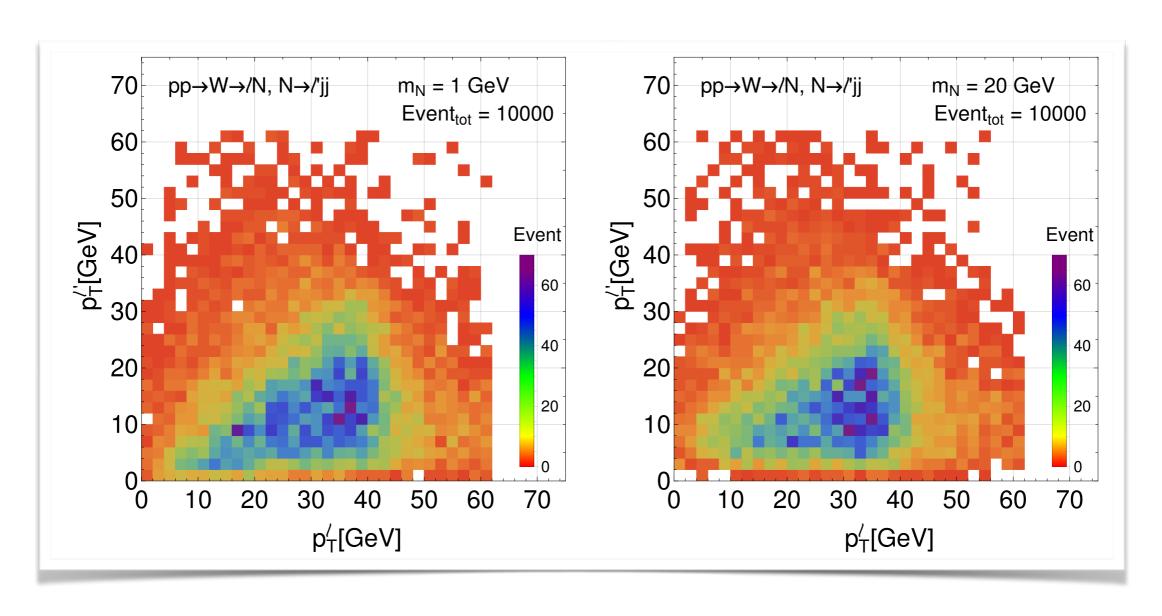
mixing, realizing large mixing angle.

Sterile neutrino signal


- Free parameters: m_N, sinθ
- Long life-time

$$c\tau \simeq 12 \text{ km} \times \left(\frac{10^{-12}}{\sin^2 \theta}\right) \left(\frac{10 \text{ GeV}}{m_N}\right)^5$$

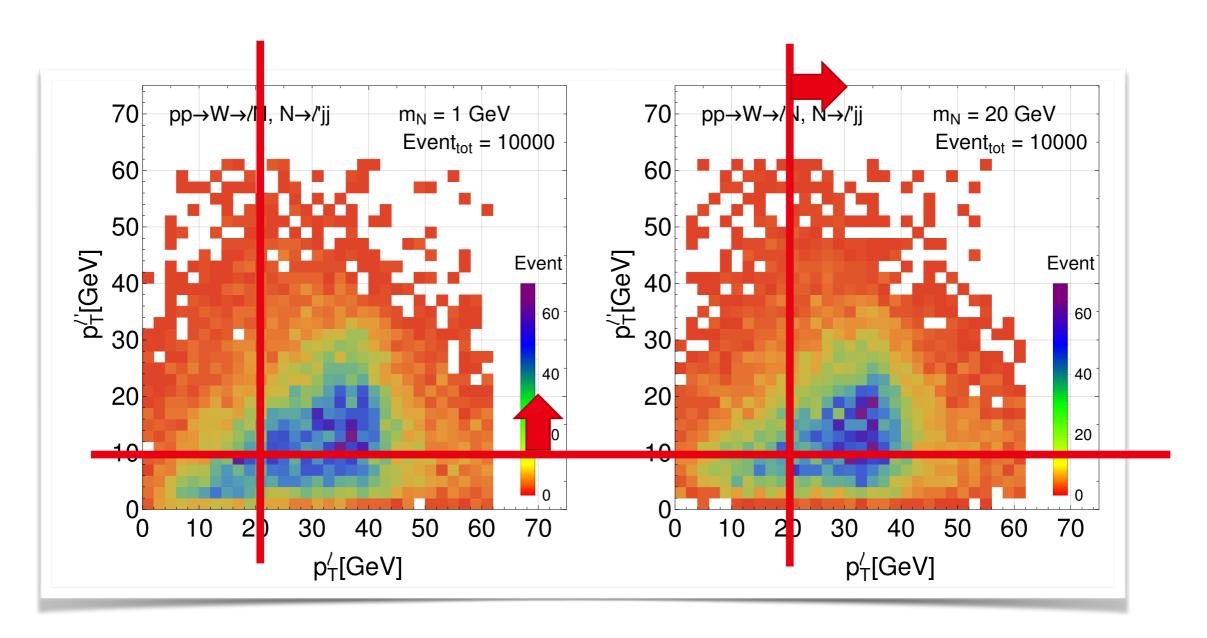
Event rate at HL-LHC


$$\mathcal{L} \times \sigma(pp \to W^{\pm}) \text{Br}(W^{\pm} \to \ell^{\pm} N) \simeq 1.8 \times 10^5 \left(\frac{\sin^2 \theta}{10^{-6}}\right)$$

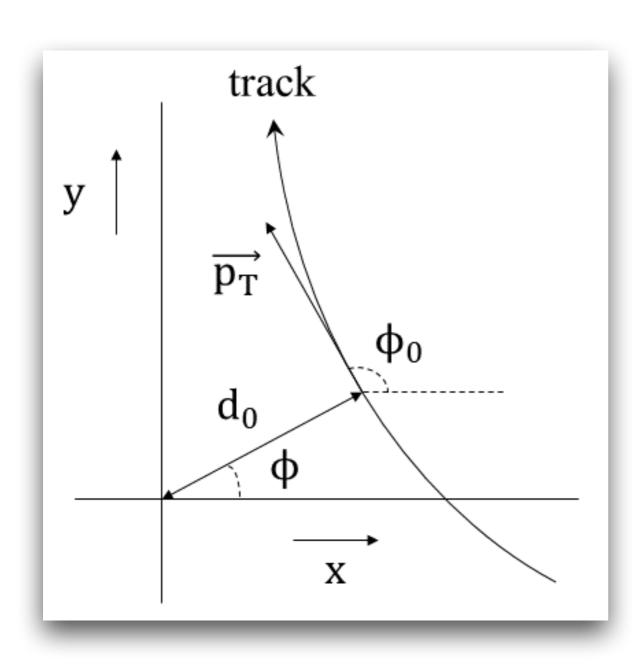
Signal topology

The lepton behaviors

- Prompt lepton hard-ish
- Displaced lepton soft-ish

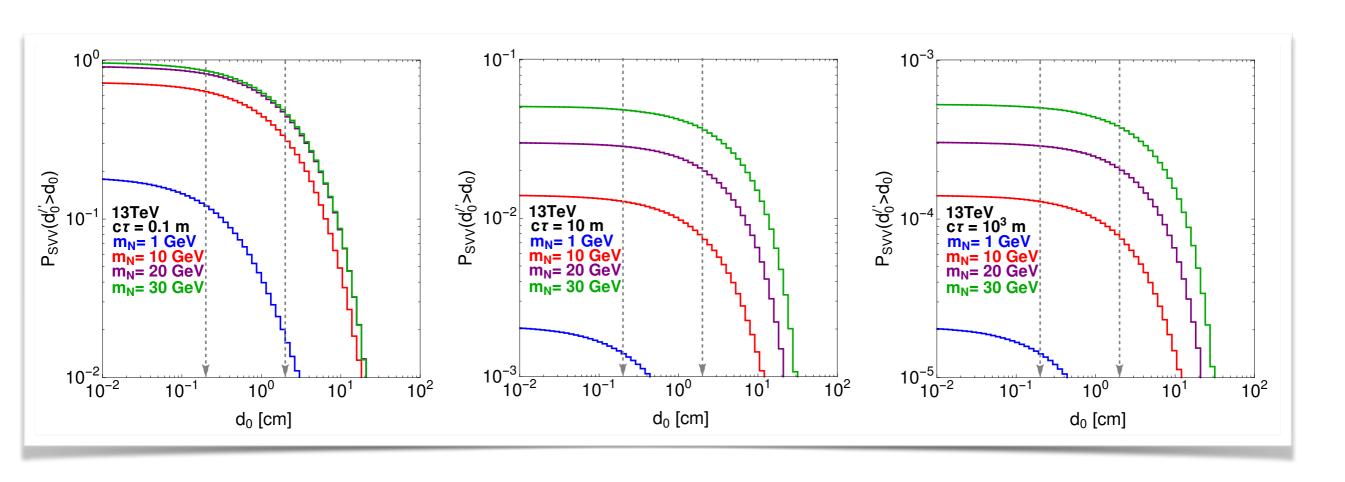


The lepton behaviors

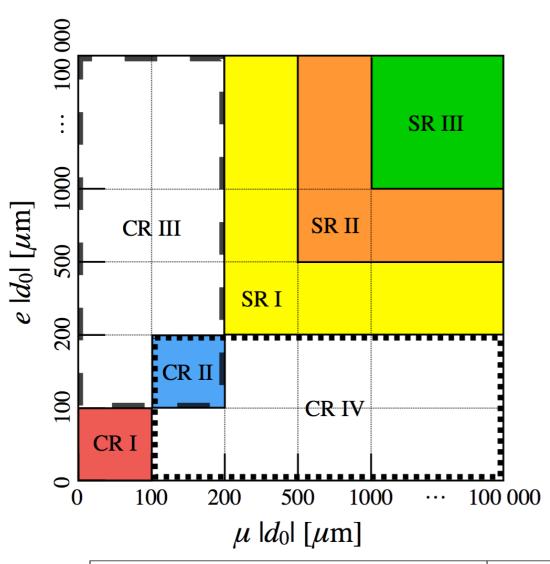

- Prompt lepton hard-ish
- •Displaced lepton soft-ish

$$p_T^l = \frac{m_W^2 - m_N^2}{2m_W} \qquad p_T^{l'} = \frac{m_W}{3}$$

$$p_T^{l'} = \frac{m_W}{3}$$



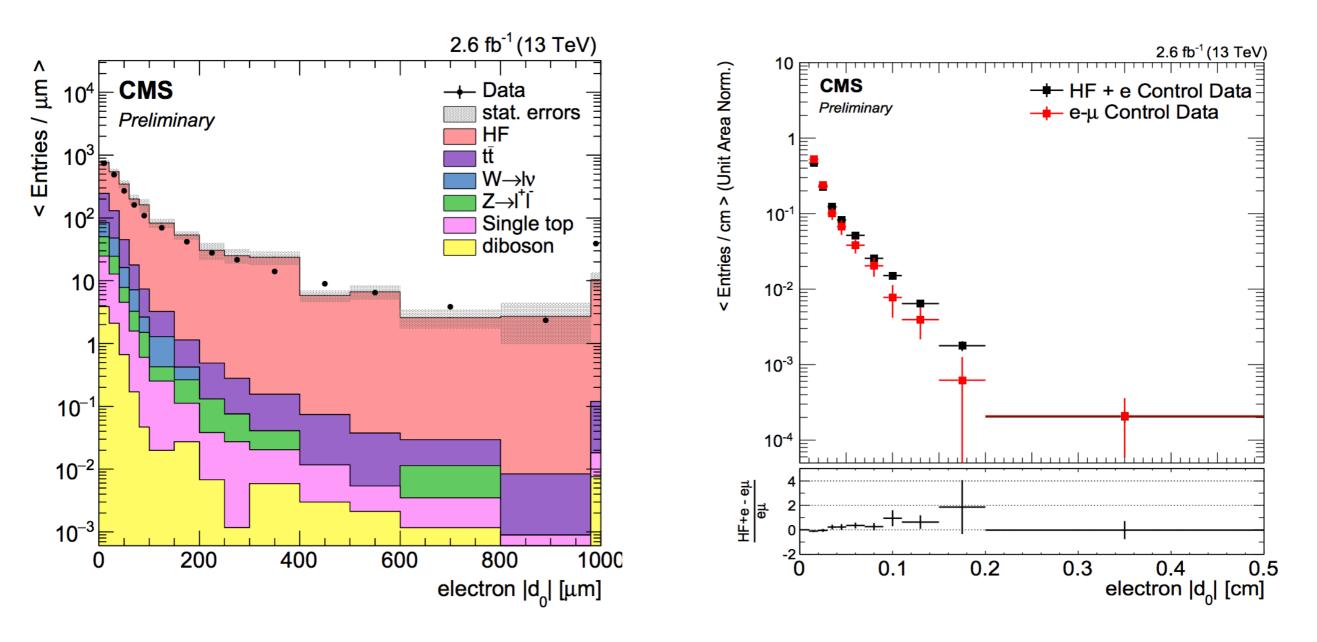
Impact parameter


$$d_0 = \sqrt{x^2 + y^2 - \frac{(xp_x + yp_y)^2}{p_x^2 + p_y^2}}$$

The lepton behaviors

- Large d₀ cut, smaller signal efficiency;
- For short lifetime, $m_N>10$ GeV sterile neutrinos behave similarly;
- For long lifetime, heavier sterile neutrinos are slower and hence higher decay probability within the tracker;
- For $m_N=1$ GeV, decay product too collimated, suffering low d_0 ;

Valuable knowledge from a SUSY search

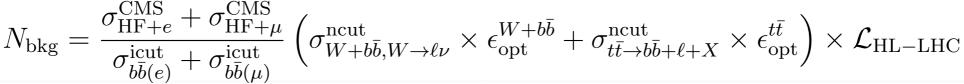

Prompt L+ displaced L

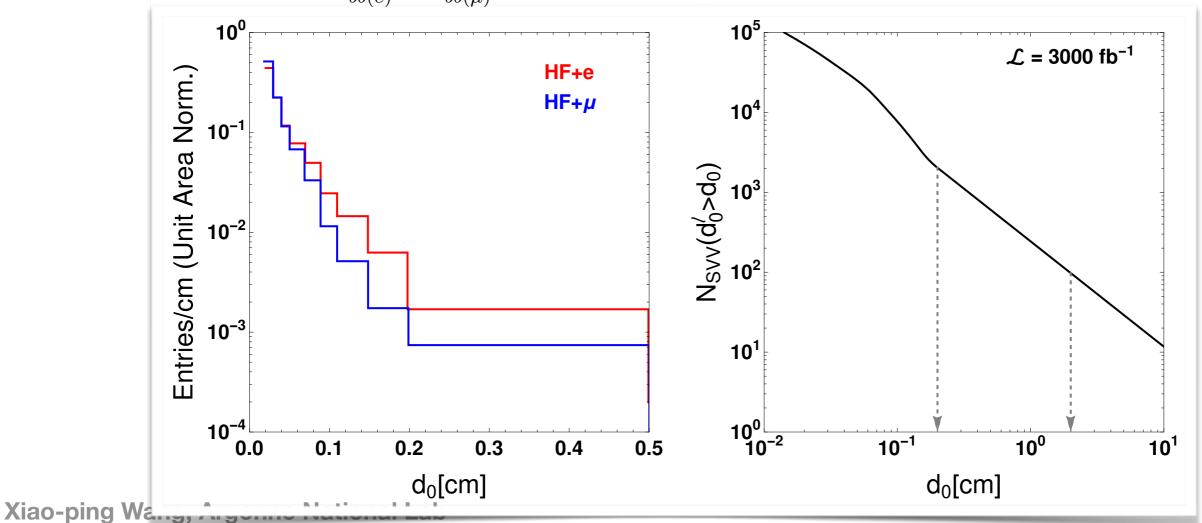
CR III: Heavy jet + displaced e

CR IV: Heavy jet + displaced muon

Displaced Electron Region (CR III)	Validation of HF Estimation	$ d_0 _e > 100 \mu \mathrm{m}$ $ d_0 _\mu < 200 \mu \mathrm{m}$
Displaced Muon Region (CR IV)	Validation of HF Estimation	$ d_0 _{\mu} > 100 \mu \mathrm{m}$ $ d_0 _e < 200 \mu \mathrm{m}$

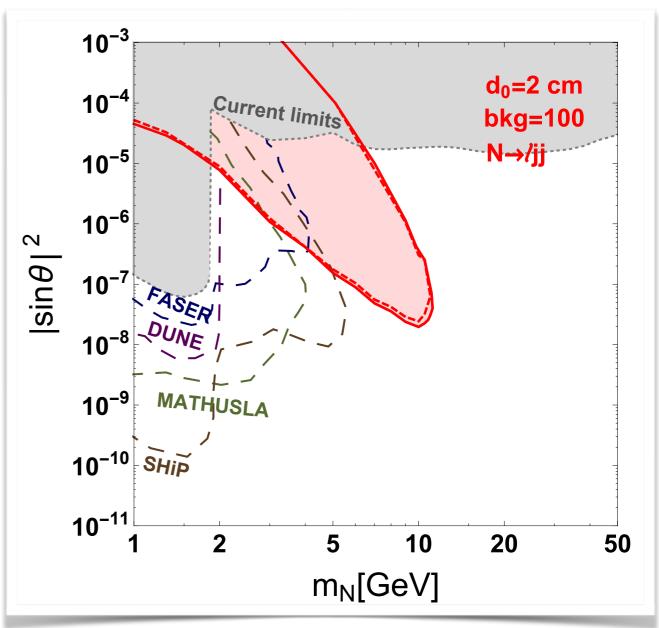
Valuable knowledge from a SUSY search


HF+I: one tagged b jet + one displaced lepton from the other heavy flavor quark Right plane: the agreement in the d₀ distribution between HF+I and e + μ data

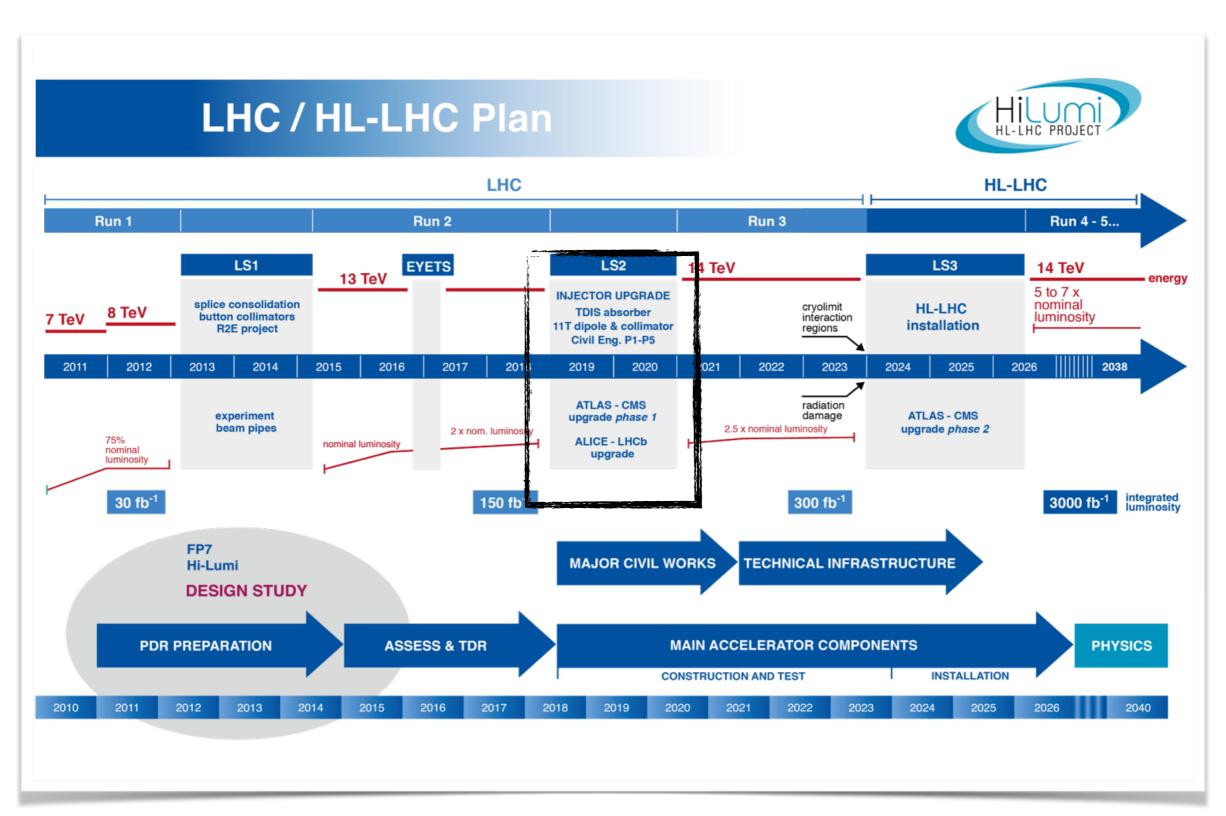

Valuable knowledge from a SUSY search

- Dominated by heavy flavor jets (b-jets) (data validated by using the "tag and probe");
- The subleading background is from ttbar, still heavy flavor;
- The transverse impact parameter distributions are the same for isolated and non-isolated leptons.
- Different choices of the muon and electron pT results in different background counting
- We reproduced the background behavior through simulation (simulation done via MG5NLO+Pythia8, signal sample jetmatched).


Background Estimation


Efficiency	σ^{ncut} (pb)	$N_b^{30} = 0$	$N_j^{20} < 2$	$N_j^{50} = 0$	$H_T^{ m vis} < 100 { m GeV}$	$p_T^{\ell_1} > 19 \text{GeV}$	$p_T^{\ell_2} > 10.5 \text{GeV}$	$\epsilon_{ m opt}$
$t\bar{t} \to b\bar{b} + \ell + X$	136	0.25	0.08	0.62	0.43	0.055	0.42	1.2×10^{-4}
$W + b\bar{b}, W \to \ell\nu$	3.8	0.40	0.60	0.76	0.40	0.27	0.29	5.7×10^{-3}

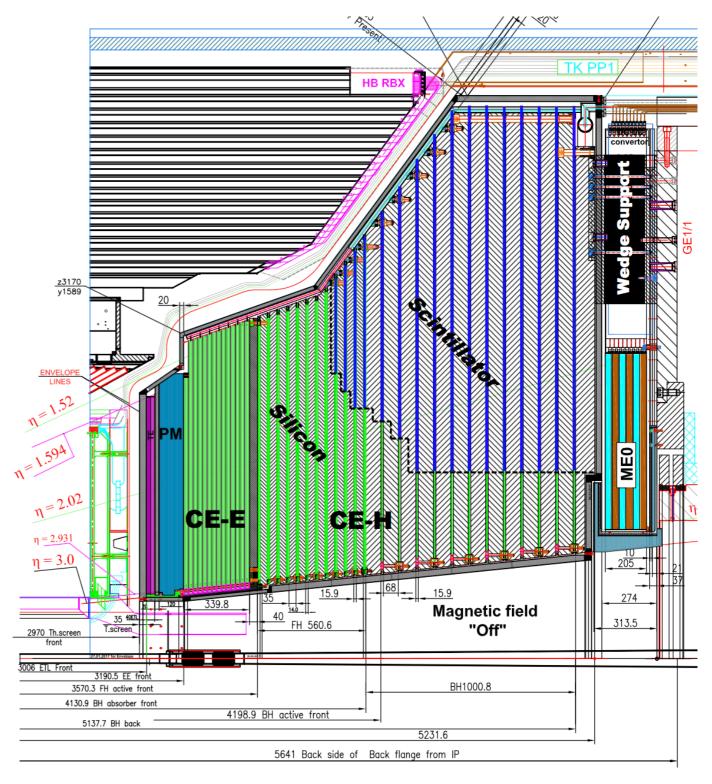
Results



Outline


- Long-lived particle introduction
- Long-lived sterile neutrino search
- General long-lived particle search at CMS HGCAL

LHC Timeline

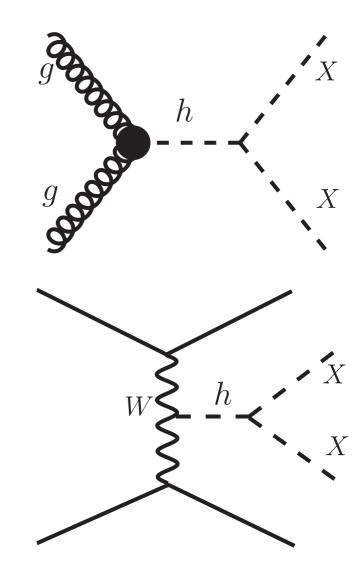

CMS High Granularity Calorimeter

- Motivation
 - Upgrade for radiation tolerance and pile-up
 - Tracker, calorimeter and timing integrated in one detector
 - Will provide much more information than any previous calorimeters

LLP motivation @ HGCAL

- Own triggers
- Tracker with silicon cell 0.5~1 cm² for EM and most HA calos
- Angular resolution of 5x10⁻³ rad stand-alone from high granularity (improvement by combining with ID trackers)
- Timing resolution ~ 25 ps from silicon sensor
- Semi-central coverage good for forward LLP Collinear enhancement Pt PS suppression

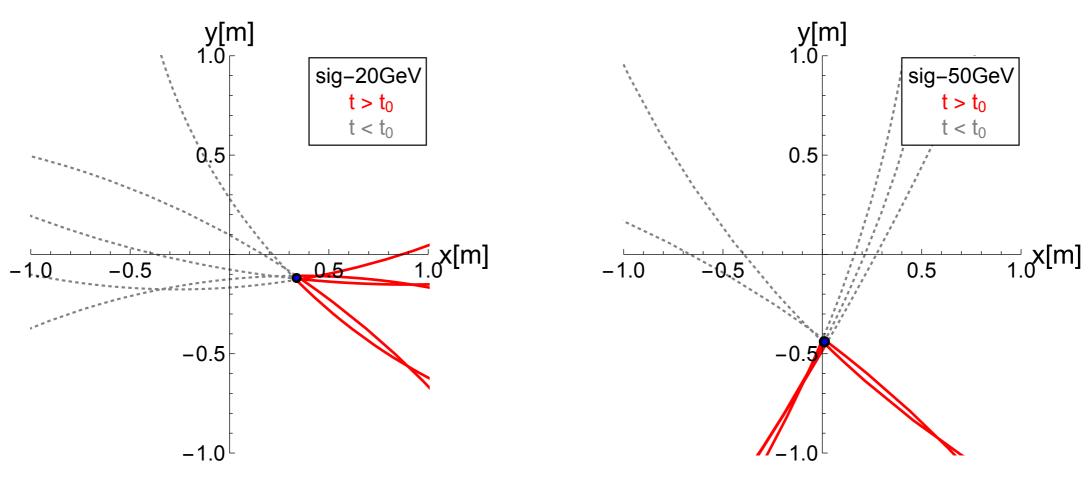
What is the HGCAL sensitivity for LLP?


LLP model

Higgs portal LLP: a very small mixing

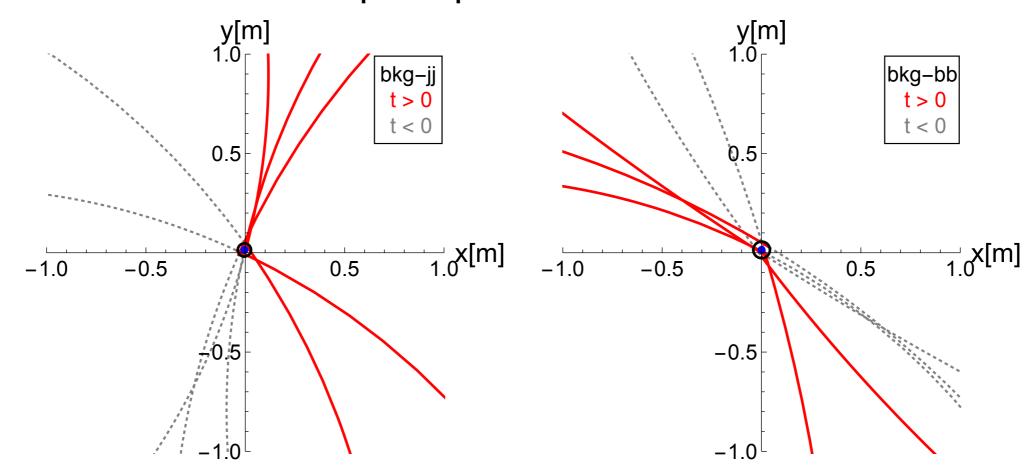
$$\mathcal{L} \supset \lambda X^2 H^{\dagger} H$$

- LLP production from Higgs decay
 - Gluon fusion
 - Vector boson fusion
 - LLP decay


$$X \rightarrow \bar{b}b$$

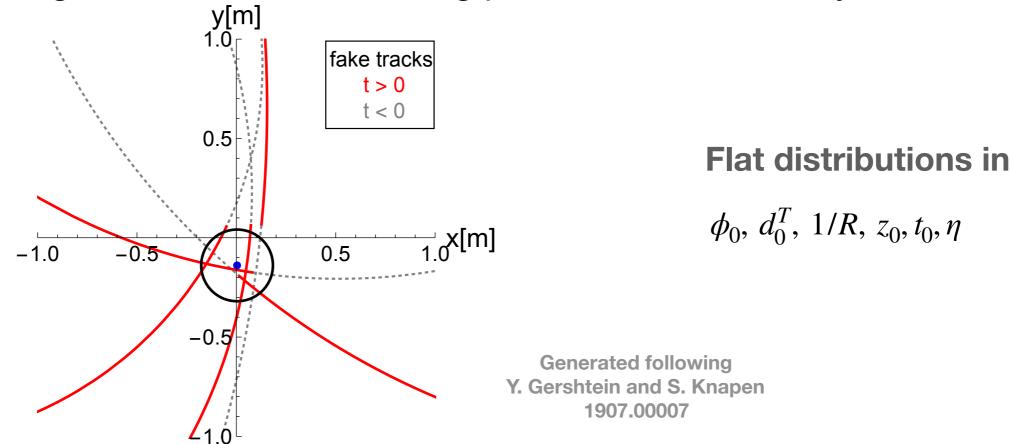
 Trigger: displaced track trigger with/without large H_T requirement, and traditional VBF trigger

The signature of the signal


 Multiple tracks with large impact parameters from the same displaced origin

B=3.8T X decay |Z|<1.5m Tracks arrive at |Z|=3.2m

The SM backgrounds


- QCD backgrounds
 - Most of them are prompt

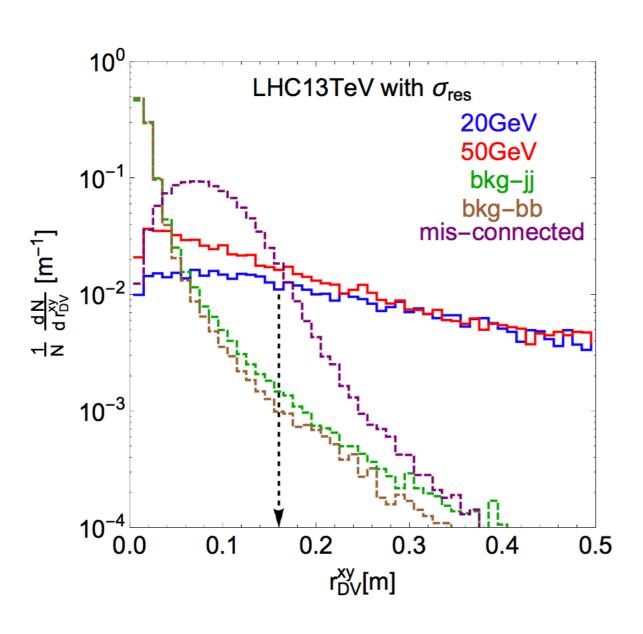
- Large impact parameter dominantly from K_S (cτ ~ 2.7 cm)
 - B (cτ ~ 0.045 m) and D meson (cτ ~ 0.03 m) too small

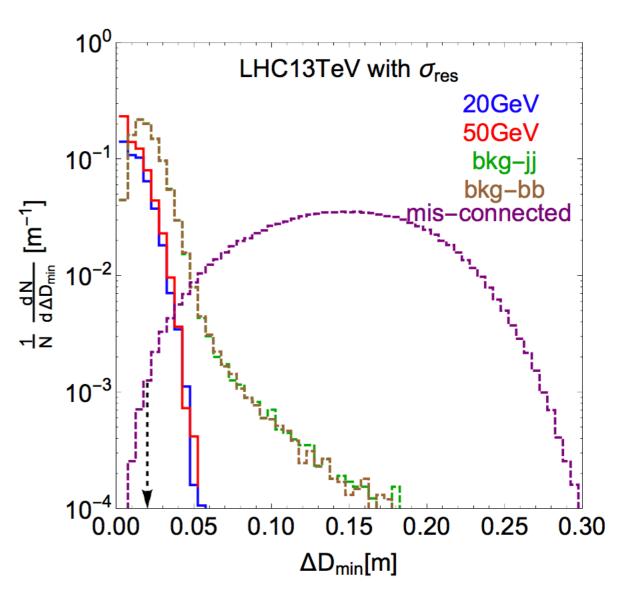
The SM backgrounds

- Fake track backgrounds
 - wrong connection of the hitting points in the tracker system

- Very distinct features comparing with QCD backgrounds
 - Easy to have large impact parameter
 - Poorly fit to the same origin

The search strategy

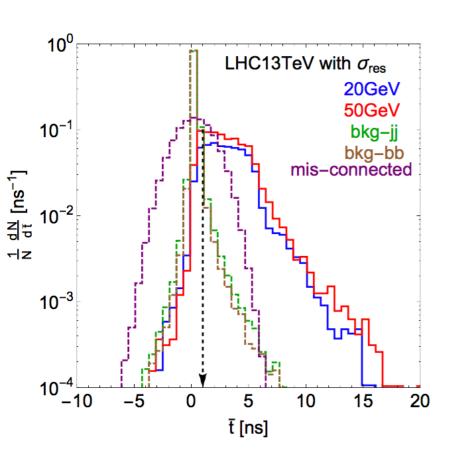

- Choose the leading 5 tracks (Pythia, p_T, hitting HGCAL) and calculate the 4D trajectories (including angular resolution effect)
- Perform a 2D track bundle vertex finder by minimizing the quantity

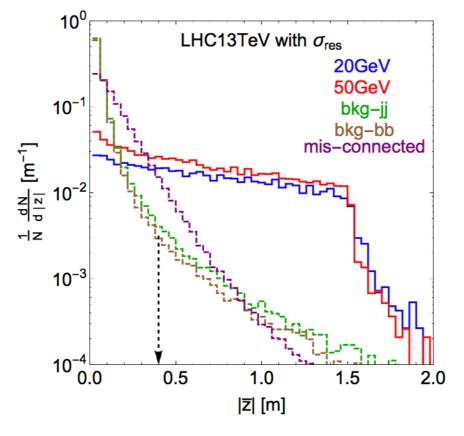

$$\Delta \mathrm{D} \equiv \sqrt{\sum_{i=1}^{5} \left(\sqrt{(x-x_i^{\mathrm{cen}})^2+(y-y_i^{\mathrm{cen}})^2}-R_i
ight)^2}$$

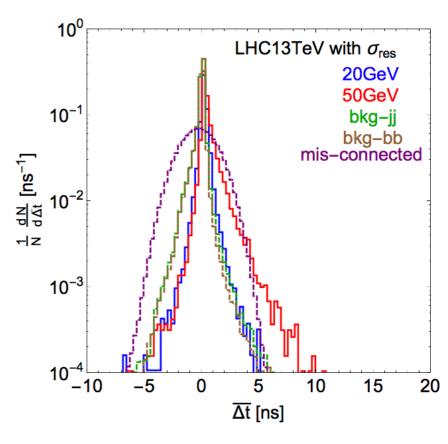
- R_i is the curvature of the ith track, {x^{cen}, y^{cen}} are the center of the track
- We obtain the fitted DV {x, y}, and define $r_{\rm DV} = \sqrt{x^2 + y^2}$
- The goodness of fit ΔD_{min}
- With the angular velocity of the track, we can determine the referencing point to DV for each track {x_i, y_i, z_i, t_i}
- A time delay quantity can be defined $\Delta t_i = t_i \sqrt{x_i^2 + y_i^2 + z_i^2}$

Check the kinematic distribution for

$$r_{DV}$$
, ΔD_{min} , \bar{t} , \bar{z} , Δt , SD_t , SD_z , $SD_{\Delta t}$.

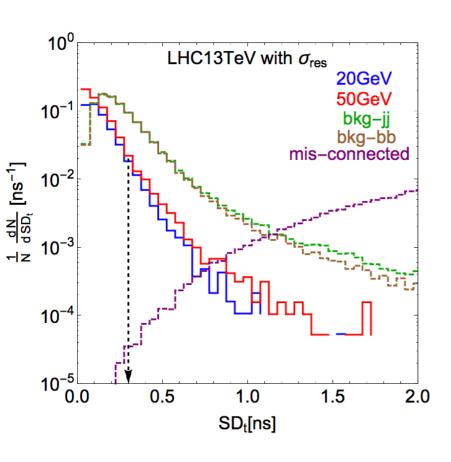


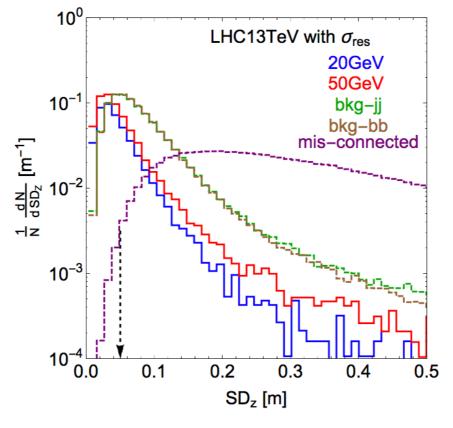


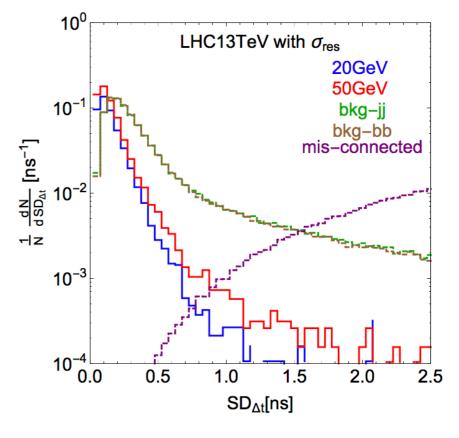

Check the kinematic distribution for

$$r_{DV}$$
, ΔD_{min} , \bar{t} , \bar{z} , Δt , SD_t , SD_z , $SD_{\Delta t}$.

Average of the tracks quantities (DV info from track based info)





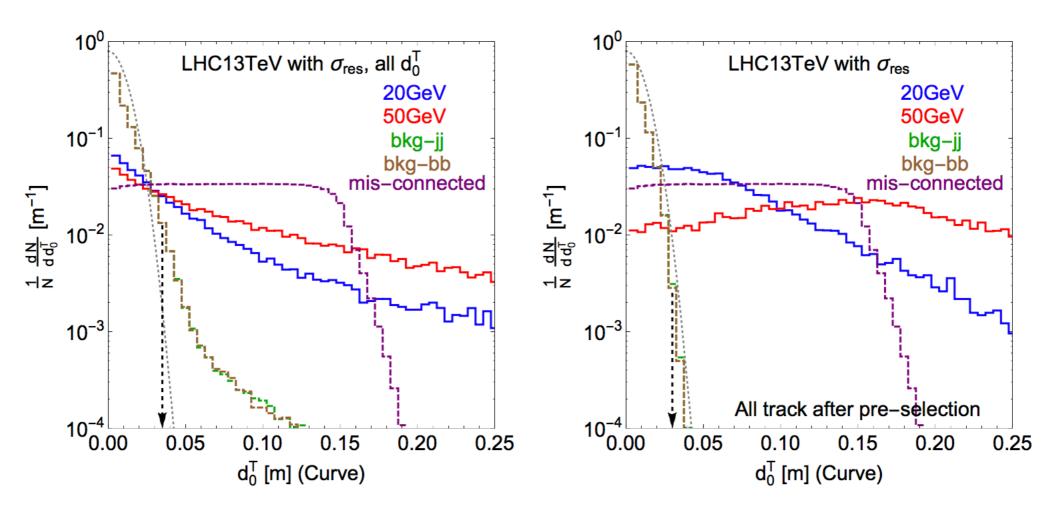

Check the kinematic distribution for

$$r_{DV}$$
, ΔD_{min} , \bar{t} , \bar{z} , Δt , SD_t , SD_z , $SD_{\Delta t}$.

Standard Deviation of the tracks quantities

The cut flow table

- QCD bkg: p_T>20GeV with jet matching
- Fake track bkg: five displaced tracks and H_T>100GeV
 L1 trigger rate of 10 kHz (same as Yuri and Simon), HL-LHC 108 sec


type of bkg	$N_{ m ini}$	5 tracks	$r_{\rm DV}^{\rm xy}>0.16\rm m$	$\Delta D_{\rm min} < 0.02 {\rm m}$	$\bar{t} > 1 \text{ ns}$	$\mathrm{SD_{t}} < 0.3~\mathrm{ns}$	$\bar{z} > 0.4 \text{ m}$	$\mathrm{SD_z} < 0.05~\mathrm{m}$	$\epsilon_{ m pre}$	$(d_0^T > 0.03 \text{m})^5$	$N_{ m fin}$
jj dijet	5.1×10^{14}	9.4×10^{-1}	$1.0 \times 10^{-2} *$	8.7×10^{-1}	$3.0 \times 10^{-2} *$	7.3×10^{-1}	3.4×10^{-2} *	4.9×10^{-1}	3.0×10^{-1}	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$bar{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} *$	9.2×10^{-1}	2.4×10^{-2} *	7.4×10^{-1}	2.7×10^{-2} *	4.9×10^{-1}	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
mis-connected	1×10^{12}	5.6×10^{-1}	4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}	5.9×10^{-2}	5.4×10^{-3}	5.8×10^{-13}	3.4×10^{-1}	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36 \times 3.1 \times 10^{-1}$	5.3×10^{-1}	8.6×10^{-1}	9.9×10^{-1}	9.6×10^{-1}	9.8×10^{-1}	8.6×10^{-1}	1.2×10^{-1}	2.9×10^{-1}	$4.3 \times 10^6 \times \mathrm{BR}$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8 \times 3.5 \times 10^{-1}$	3.5×10^{-1}	8.8×10^{-1}	9.8×10^{-1}	9.5×10^{-1}	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	8.0×10^{-1}	$9.5 \times 10^6 \times BR$

Pre-cuts for DV fitting

type of bkg	$N_{ m ini}$	5 tracks	$r_{DV}^{xy} > 0.16 m$	$\Delta D_{\rm min} < 0.02 {\rm m}$	$\bar{t} > 1 \text{ ns}$	$\overline{\mathrm{SD_{t}}} < 0.3 \mathrm{\ ns}$	$\bar{z} > 0.4 \text{ m}$	$\overline{\mathrm{SD_z} < 0.05}$ m	$\epsilon_{ m pre}$	$(d_0^T > 0.03 \text{m})^5$	$N_{ m fin}$
jj dijet	5.1×10^{14}	9.4×10^{-1}	$1.0 \times 10^{-2} *$	8.7×10^{-1}	$3.0 \times 10^{-2} *$	7.3×10^{-1}	3.4×10^{-2} *	4.9×10^{-1}	3.0×10^{-1}	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$b\bar{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} *$	9.2×10^{-1}	2.4×10^{-2} *	7.4×10^{-1}	2.7×10^{-2} *	4.9×10^{-1}	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
mis-connected	1×10^{12}	5.6×10^{-1}	4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}	5.9×10^{-2}	5.4×10^{-3}	5.8×10^{-13}	3.4×10^{-1}	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36 \times 3.1 \times 10^{-1}$	5.3×10^{-1}	8.6×10^{-1}	9.9×10^{-1}	9.6×10^{-1}	9.8×10^{-1}	8.6×10^{-1}	1.2×10^{-1}	2.9×10^{-1}	$4.3 \times 10^6 \times BR$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8 \times 3.5 \times 10^{-1}$	3.5×10^{-1}	8.8×10^{-1}	9.8×10^{-1}	9.5×10^{-1}	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	8.0×10^{-1}	$9.5 \times 10^6 \times BR$
		1				MANAGARAN AND AND AND AND AND AND AND AND AND A		, , , , , , , , , , , , , , , , , , ,	1		

• Fake track bkg suppressed because its random origin

Transverse impact parameters

- QCD bkg has a good Gaussian shape because pre-cuts excludes Ks meson decays
- Gaussian width comes from angular resolution
 3 m x 5x10⁻³ rad = 0.015 m

Transverse impact parameter cuts

- QCD bkg: impact parameter cuts
 - displacement comes from angular resolution

4									/	ARMEDIA PROPERTY AND A PROPERTY AND	
type of bkg	$N_{ m ini}$	5 tracks	$ m r_{DV}^{xy} > 0.16 m$	$\Delta D_{\rm min} < 0.02 {\rm m}$	$\bar{t} > 1 \text{ ns}$	$\overline{\mathrm{SD_{t}} < 0.3 \; \mathrm{ns}}$	$\bar{z} > 0.4 \text{ m}$	$\mathrm{SD_z} < 0.05 \mathrm{\ m}$	$\epsilon_{ m pre}$	$(d_0^T > 0.03 \text{m})^5$	$N_{ m fin}$
jj dijet	5.1×10^{14}	9.4×10^{-1}	1.0×10^{-2} *	8.7×10^{-1}	3.0×10^{-2} *	7.3×10^{-1}	3.4×10^{-2} *	4.9×10^{-1}	3.0×10^{-1}	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$bar{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} *$	9.2×10^{-1}	2.4×10^{-2} *	7.4×10^{-1}	2.7×10^{-2} *	4.9×10^{-1}	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
mis-connected	1×10^{12}	5.6×10^{-1}	4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}	5.9×10^{-2}	5.4×10^{-3}	5.8×10^{-13}	3.4×10^{-1}	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36 \times 3.1 \times 10^{-1}$	5.3×10^{-1}	8.6×10^{-1}	9.9×10^{-1}	9.6×10^{-1}	9.8×10^{-1}	8.6×10^{-1}	1.2×10^{-1}	2.9×10^{-1}	$4.3 \times 10^6 \times BR$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8 \times 3.5 \times 10^{-1}$	3.5×10^{-1}	8.8×10^{-1}	9.8×10^{-1}	9.5×10^{-1}	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	8.0×10^{-1}	$9.5 \times 10^6 \times BR$
4			•		-			•		7	

Independence check is necessary

- QCD bkg: impact parameter cuts are independent?
 - Should be, because they are from angular resolution smearing

										ANGERS AREAS AND A STREET AND A STREET	<u> </u>
type of bkg	$N_{ m ini}$	5 tracks	$ r_{\mathrm{DV}}^{\mathrm{xy}}>0.16\mathrm{m}$	$\Delta D_{\rm min} < 0.02 m$	$\bar{t} > 1 \text{ ns}$	$\mathrm{SD_{t}} < 0.3 \; \mathrm{ns}$	$\bar{z} > 0.4 \text{ m}$	$\mathrm{SD_z} < 0.05 \mathrm{\ m}$	$\epsilon_{ m pre}$	$(d_0^T > 0.03 \text{m})^5$	$N_{ m fin}$
jj dijet	5.1×10^{14}	9.4×10^{-1}	$1.0 \times 10^{-2} *$	8.7×10^{-1}	$3.0 \times 10^{-2} *$	7.3×10^{-1}	$3.4 \times 10^{-2} *$	4.9×10^{-1}	3.0×10^{-1}	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$bar{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} *$	9.2×10^{-1}	2.4×10^{-2} *	7.4×10^{-1}	$2.7 \times 10^{-2} *$	4.9×10^{-1}	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
mis-connected	1×10^{12}	5.6×10^{-1}	4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}	5.9×10^{-2}	5.4×10^{-3}	5.8×10^{-13}	3.4×10^{-1}	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36 \times 3.1 \times 10^{-1}$	5.3×10^{-1}	8.6×10^{-1}	9.9×10^{-1}	9.6×10^{-1}	9.8×10^{-1}	8.6×10^{-1}	1.2×10^{-1}	2.9×10^{-1}	$4.3 \times 10^6 \times BR$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8 \times 3.5 \times 10^{-1}$	3.5×10^{-1}	8.8×10^{-1}	9.8×10^{-1}	9.5×10^{-1}	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	8.0×10^{-1}	$9.5 \times 10^6 \times BR$
											3

Independence check

$$IDd_n \equiv \frac{\epsilon^n (1 \operatorname{track} d_0^T > 0.03 \mathrm{m})}{\epsilon (n \operatorname{tracks} d_0^T > 0.03 \mathrm{m})}$$

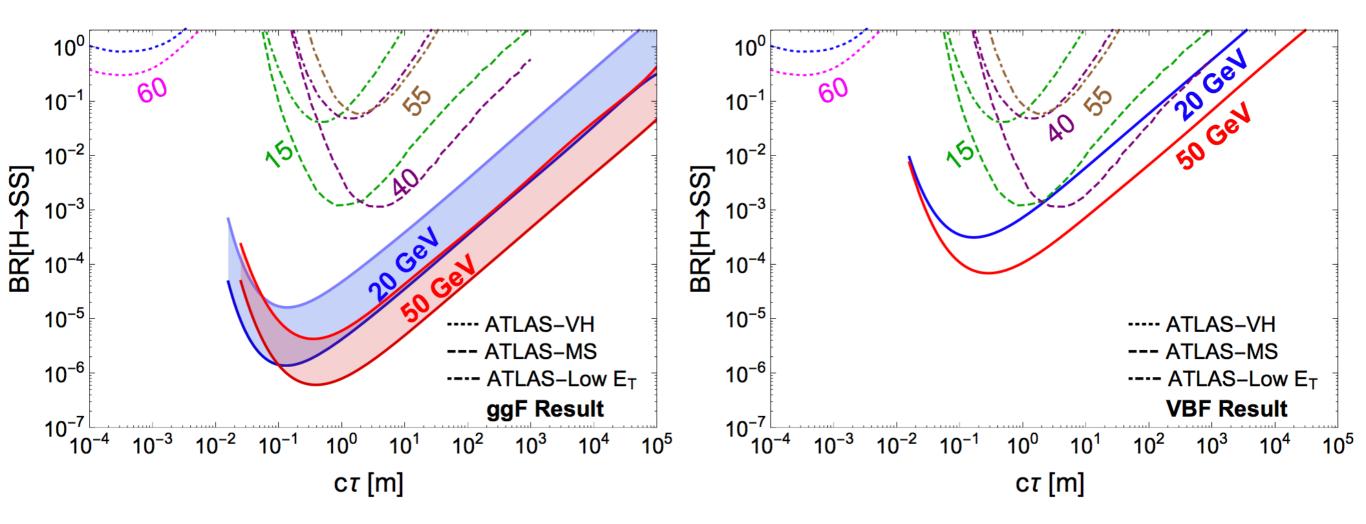
- ~1 independent, >1 conservative
- In summary, ≥ 1 is conservative for bkg estimation

Independence check

- QCD bkg: impact parameter for tracks are independent
 - angular resolution smearing is independent for each track

jj dijets	$d_0^T > 0.01 \text{ m}$	$d_0^T > 0.015 \text{ m}$	$d_0^T > 0.02 \text{ m}$	$d_0^T > 0.025 \text{ m}$	$d_0^T > 0.03 \text{ m}$
IDd_1	0.96	0.95	1.0	1.1	1.3
IDd_2	1.0	1.1	0.87	-	-
IDd_3	1.2	0.95	-	-	-
IDd_4	1.1	-	-	-	-
IDd_5	0.9	-	-	-	-
$\bar{b}b$ dijets	$d_0^T > 0.01 \text{ m}$	$d_0^T > 0.015 \text{ m}$	$d_0^T>0.02~\mathrm{m}$	$d_0^T > 0.025 \text{ m}$	$\left d_0^T>0.03~\mathrm{m}\right $
IDd_1	0.96	0.95	0.98	1.12	1.8
IDd_2	1.1	1.2	1.1	-	-
IDd_3	1.3	0.90	-	-	_
IDd_4	1.2	1.1	-	-	-
IDd_5	1.1	-	-	-	_

Independence check


Fake track bkg: pre-cuts are independent with each other

$$ID_{A,B} \equiv \frac{\epsilon(A)\epsilon(B)}{\epsilon(A\&B)}$$

mis-connected	$r_{\mathrm{DV}}^{\mathrm{xy}} > 0.16 \mathrm{\ m}$	$\Delta D_{min} < 0.02 \text{ m}$	$\bar{t} > 1 \text{ ns}$	$\mathrm{SD_{t}} < 0.3 \; \mathrm{ns}$	$ \bar{z} > 0.4 \text{ m}$	$\mathrm{SD}_{ \mathbf{z} } < 0.05 \mathrm{\ m}$
$r_{\mathrm{DV}}^{\mathrm{xy}} > 0.16 \mathrm{\ m}$	-	0.56	0.86	1.1	0.15	-
$\Delta D_{\rm min} < 0.02~{\rm m}$	*	-	0.99	-	0.64	1.6
$\bar{t} > 1 \text{ ns}$	*	*	-	0.88	0.81	1.0
$\mathrm{SD_{t}} < 0.3 \; \mathrm{ns}$	*	*	*	-	1.48	-
$ \bar{z} > 0.4 \text{ m}$	*	*	*	*	-	21
$\mathrm{SD}_{ \mathbf{z} } < 0.05 \mathrm{\ m}$	*	*	*	*	*	-

mis-connected	$r_{\mathrm{DV}}^{\mathrm{xy}} > 0.16 \mathrm{\ m}$	$\Delta D_{\min} < 0.02 \text{ m}$	$\bar{t} > 1 \text{ ns}$	$\mathrm{SD_{t}} < 0.3 \mathrm{\ ns}$	$ \bar{z} > 0.4 \text{ m}$	$ m SD_{ z } < 0.05 \ m$
$(d_0^T > 0.01 \text{m})^1$	0.97	1.0	1.0	1.0	0.98	1.0
$(d_0^T > 0.03 \text{m})^1$	0.91	1.1	1.0	1.1	0.95	1.1
$(d_0^T > 0.05 \text{m})^1$	0.85	1.1	1.0	0.99	0.91	1.1
$(d_0^T > 0.03 \text{m})^5$	0.65	1.0	0.99	1.4	0.79	1.2

The preliminary results for HL-LHC

- ggF result: with/without high H_T trigger requirement
- VBF result: standard VBF trigger

Summary

- Long-lived particle is well-motivated and is new direction of future LHC
- Track-based study is powerful
 - A sterile neutrino example
 - Increase the sensitivity by 10²~10³
- CMS HGCAL is a promising new calorimeter
 - Higgs portal LLP
 - Increase the sensitivity by 10²~10³

