

Transverse polarization of Λ hyperons in singleinclusive leptonic annihilations

第五届"强子谱和强子结构研讨会" (online) Jan 25, 2021

- 报告人: 邵鼎煜
 - 复旦大学

The first TH prediction on transverse Λ polarization

VOLUME 41, NUMBER 25

PHYSICAL REVIEW LETTERS

18 December 1978

Transverse Quark Polarization in Large- p_T Reactions, e^+e^- Jets, and Leptoproduction: A Test of Quantum Chromodynamics

G. L. Kane

Physics Department, University of Michigan, Ann Arbor, Michigan 48109

and

J. Pumplin and W. Repko

Physics Department, Michigan State University, East Lansing, Michigan 48823 (Received 5 July 1978)

It is interesting to calculate the deviation from zero for $m_q \neq 0$, to order α_s . The explicit result for $e^+e^- \rightarrow q\bar{q}$ is, for arbitrary m_q and large Q^2 ,

 $P = \left(\frac{4\alpha_s}{3}\right) \frac{m_q}{Q^2} \frac{\sin\theta\cos\theta}{1+\cos^2\theta} \,.$

Whatever observable is used, the variation with Q^2 and the c.m. scattering angle θ can be tested. *P* is the polarization transverse to the scattering plane, calculated through order α_s in QCD.

In this note we have pointed out that the asymmetry off a polarized target, and the transverse polarization of a produced quark in $e^+e^- \rightarrow q\overline{q}$, or in $qq \rightarrow qq$ at large p_{τ} , or in leptoproduction, should all be calculable perturbatively in QCD. The result is zero for $m_a = 0$ and is numerically small if we calculate m_q/\sqrt{s} corrections for light quarks. We discuss how to test the predictions. At least for the cases when *P* is small, tests should be available soon in large- p_{τ} production [where currently $P(\Lambda) = 25\%$ for $p_T \gtrsim 2 \text{ GeV}/c$], and e^+e^- reactions. While fragmentation effects could dilute polarizations, they cannot (by parity considerations) induce polarization. Consequently, observation of significant polarizations in the above reactions would contradict either QCD or its applicability.

.

II ali svelse

pulation a long motory

EXP on transverse A **polarization**

polarisation a long history Transverse

Bunce et.al. '76 $p + Be \rightarrow \Lambda^{\uparrow} + X$

Ma, Schmidt, Soffer, Yang '01 Liang, Wang '06

...

singesterse Applacization in electron positron collisions

e⁺e⁻ cleanest way to access fragmentation functions

In N+N or I+N collisions, it is not possible to disentangle initial-state effects, related to dynamics inside the colliding hadrons, and final-state effects, related to the fragmentation of the partons.

Transverse Λ polarization at the LEP Belle E

OPAL '97

No significant transverse polarization is observed at the LEP

Transverse Λ polarization at the future e⁺e⁻ collider ??

Transverse Λ polarization at the Belle

 $e^+e^- \to \Lambda^\uparrow h X$

 $e^+e^- \to \Lambda^{\uparrow}(\text{Thrust}) X$

Simplest and cleanest process Theory framework on transverse A polarization

$e^+e^- \to \Lambda^\uparrow h X$

Collins-Soper-Sterman, Ji-Ma-Yuan, Soft-Collinear Effective Theory.....

TMD factorization two scale problem

Is it the same (polarizing) fragmentation function in these two measurements ???

$e^+e^- \to \Lambda^{\uparrow}(\text{Thrust}) X$???

$\Lambda_{QCD} \leq j_{\perp} \ll Q$

Back-to-back A+h fragmentation TMD Factorization $e^{-}(\ell) + e^{+}(\ell') \to \gamma^{*}(q) \to h(P_{h}) + \Lambda(P_{\Lambda}, S_{\perp}) + X$

Spin-dependent cross section is factorized as:

$$\frac{d\sigma\left(\boldsymbol{S}_{\perp}\right)}{d\mathcal{P}\mathcal{S}d^{2}\boldsymbol{q}_{\perp}} = \sigma_{0}\left\{\mathcal{F}\left[D_{\Lambda/q}D_{h/\bar{q}}\right] + |\boldsymbol{S}_{\perp}|\sin\left(\phi_{S}-\phi_{\Lambda}\right)\frac{1}{z_{\Lambda}M_{\Lambda}}\mathcal{F}\left[\hat{\boldsymbol{P}}_{\Lambda T}\cdot\boldsymbol{p}_{\Lambda\perp}D_{1T,\Lambda/q}^{\perp}D_{h/\bar{q}}\right] + \cdots\right\}$$

see Xue's talk on Collins functions

TMD factorization theorems have been

established for back-to-back Λ +h

$$W^{\mu\nu} \stackrel{\text{prelim}}{=} \frac{8\pi^3 z_A z_B}{Q^2} \sum_f \operatorname{Tr} k_{A,\gamma}^+ \gamma^- H_f^\nu(Q) k_{B,\gamma}^- \gamma^+ \overline{H}_f^\mu(Q)$$

$$\times \int \frac{d^{2-2\epsilon} b_{\mathrm{T}}}{(2\pi)^{2-2\epsilon}} e^{-iq_{h\mathrm{T}} \cdot b_{\mathrm{T}}} \widetilde{S}(b_{\mathrm{T}}) \widetilde{D}_{1, H_A/f}(z_A, b_{\mathrm{T}}) \widetilde{D}_{1, H_A}$$

$$+ \text{ polarized terms.}$$
also see Hui Li's

Polarizing fragmentation function

Fitting of PFFs from Λ+h data

Yang, Lu, Schmidt '17 D'Alesio, Murgia, Zaccheddu '20 Callos, Kang, Terry '20 Li, Wang, Yang, Lu '20

•••

....

Spectator model: see Mao's talk Light-front quantization: See Chandan, Lan, Xu, Zhao's talk

Want to test Universality Belle BeS BaBar + EIC **TMD factorization for Λ(thrust)**

Wei, Chen, Song, Liang '14; Yang, Chen, Liang '17,.....(Twist-4 FF, Parton model on the jet)

Parton (quark or gluon) fragmentation and hadronization High-energy partons lead to collimated bunches of hadrons

Jets are not the same as partons Jets inherit quantum property of partons

TMD factorization formula on the jet broadening

(Becher, Rahn, DYS '17 JHEP)

Definition of the broadening:

$$b_N = \sum_{i \in jets} \left| \vec{p}_i^{\perp} \right|$$

Construction of the theory formalism $b_N \ll Q$

- Two scales in the problem
- Rely on effective field theory: SCET + Jet Effective Theory (Becher, Neubert, Rothen, DYS '16 PRL)

$$\frac{d\sigma}{db_N} = \sum_{f=q,\bar{q},g} \int db_N^s \int d^{d-2} p_N^{\perp} \mathcal{J}_f \left(b_N - b_N^s, p_N^{\perp} \right) \sum_{m=1}^{\infty} \left\langle \mathcal{H}_m^f(\{\underline{n}\}, Q) \otimes \mathcal{S}_m \left(\{\underline{n}\}, b_N^s, -p_N^{\perp} \right) \right\rangle$$

Rapidity divergence cancellation is verified at two-loop order !!!

Factorization on single hadron unpolarized TMDs (Kang, DYS, Zhao '20 JHEP)

TMD factorization formula:

$$\frac{d\sigma}{dz_h d^2 \vec{j}_T} = \sum_{i=q,\bar{q},g} \int \frac{d^2 \vec{b}}{(2\pi)^2} e^{i \vec{b} \cdot \vec{j}_T / z_h} \left[\sum_{m=2}^{\infty} \frac{1}{N_c} \operatorname{Tr}_c \left[\mathcal{H}_m^i(\{\underline{n}\},Q,\mu) \otimes \mathcal{S}_m(\{\underline{n}\},b,\mu,\nu) \right] \mathcal{D}_{h/i}(z_h,b,\mu,\zeta/\nu^2) \right]$$

"Multi-Wilson-line structure" Becher, Neubert, Rothen, DYS '16 PRL,... A similar structure is also mentioned in Boglione & Simonelli '20 within the CSS framework

hard: $p_h \sim Q(1, 1, 1)$ **collinear**: $p_c \sim Q(\lambda^2, 1, \lambda)$ **soft**: $p_s \sim Q(\lambda, \lambda, \lambda)$

$$\lambda = j_T / Q \ll 1$$

TMDFFs

$$= -\sum_{l=2}^{m} \mathcal{H}_{l}(\{\underline{n}\}, Q, \mu) \Gamma_{lm}^{H}(\{\underline{n}\}, Q, \mu)$$
(15)

$$S_{NP}(b,Q_{0},Q) \frac{1}{m^{2}h} D_{h/i}(z_{h}, \mu_{b*}) U_{NG}(\mu_{b*}, \mu_{h})$$

$$\mu) = -\sum_{l=2} \mathcal{H}_{l}(Q, \mu) \Gamma_{lm}^{H}(Q, \mu)$$

$$p(\alpha_{s}) \ln \left(\frac{Q^{2}}{\mu^{2}}\right) - 2\gamma^{D_{q}}(\alpha_{s}) - \gamma^{S}(\alpha_{s})]$$

$$\mu^{2} \frac{1 + (au)^{2}}{1 + (bu)^{c}}]$$

Dasgupta, Salam '01

$$florian, et.al. '15$$

Numerical results

- Our TMD resummation formula gives a good description of the shape of j_T distribution as $z_h < 0.65$
- As z_h > 0.65, one needs to also include threshold resummation effects

Joint threshold and TMD factorization

Joint factorization: $z_h \rightarrow 1$ & $j_T \ll Q$

Resummation formula:

 The Gaussian width of the j_T distribution given by the TMD formalism freeze to a certain value.

 After including joint threshold and TMD resummation effects, the theoretical predictions are consistent with the data

 $_{*},\mu_{h})-\hat{S}_{NP}(b,Q_{0},Q)\frac{e^{-2\gamma_{E}\eta}}{\Gamma(2\eta)}\frac{1}{1-z}D_{h/i}(z_{h}/z,\mu_{h})U_{NG}(\mu_{b*},\mu_{h})$

Factorization on transverse polarized A hyperon production with the thrust axis Gamberg, Kang, DYS, Terry, Zhao 2101.XXXXX

Theory formula including QCD evolution

$$\begin{aligned} \frac{d\Delta\sigma}{dz_{\Lambda}d^{2}j_{\perp}} &= \frac{d\sigma\left(\boldsymbol{S}_{\perp}\right)}{dz_{\Lambda}d^{2}\boldsymbol{j}_{\perp}} - \frac{d\sigma\left(-\boldsymbol{S}_{\perp}\right)}{dz_{\Lambda}d^{2}\boldsymbol{j}_{\perp}} \\ &= \sigma_{0}\sin\left(\phi_{s}-\phi_{j}\right)\sum_{q}e_{q}^{2}\int_{0}^{\infty}\frac{b^{2}db}{2\pi}J_{1}\left(\frac{bj_{\perp}}{z_{\Lambda}}\right) \\ &\times \frac{M_{\Lambda}}{z_{\Lambda}^{2}}D_{1T,\Lambda/q}^{\perp\left(1\right)}\left(z_{\Lambda},\mu_{b_{*}}\right)e^{-S_{\mathrm{NP}}^{\perp}\left(b,z_{\Lambda},Q_{0}',Q\right)-S_{\mathrm{pert}}\left(\mu_{b_{*}},Q\right)} \\ &\times U_{\mathrm{NG}}\left(\mu_{b_{*}},Q\right) \end{aligned}$$

$$P_{\perp}^{\Lambda}(z_{\Lambda}, j_{\perp}) = \left. \frac{d\Delta\sigma}{dz_{\Lambda}d^{2}\boldsymbol{j}_{\perp}} \right/ \left. \frac{d\sigma}{dz_{\Lambda}d^{2}\boldsymbol{j}_{\perp}} \right.$$

Theory predictions are consistent with Belle data

Flavor separation of PFFs

Jets inherit quantum property of partons !!!

02

02	02

02

Why spectroscopy—Atomic

$$rac{1}{\lambda_{ ext{vac}}} = R\left(rac{1}{n_1^2} - rac{1}{n_2^2}
ight)$$

Johannes Rydberg

Rydberg formula

Niels Henrik David Bohr

We need high precision

Hyperfine structure

Fine structure

Edward W. Morley

Arnold Sommerfeld

Albert Abraham Michelson

Wolfgang Pauli

Flavor separation and the jet electric charge

A PARAMETRIZATION OF THE PROPERTIES OF QUARK JETS *

R.D. FIELD and R.P. FEYNMAN

California Institute of Technology, Pasadena, California 91125, USA

Received 11 October 1977

Definition:

PHYSICAL REVIEW LETTERS 125, 242003 (2020)

Jet Charge: A Flavor Prism for Spin Asymmetries at the Electron-Ion Collider

Zhong-Bo Kang⁰,^{1,2,3,*} Xiaohui Liu⁰,^{4,5,†} Sonny Mantry⁰,^{6,‡} and Ding Yu Shao^{1,2,3,§} ¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA ²Mani L. Bhaumik Institute for Theoretical Physics, University of California, Los Angeles, California 90095, USA ³Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, New York 11794, USA ⁴Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China ⁵Center for High Energy Physics, Peking University, Beijing 100871, China ⁶Department of Physics and Astronomy, University of North Georgia, Dahlonega, Georgia 30597, USA (Received 13 August 2020; revised 29 September 2020; accepted 5 November 2020; published 8 December 2020)

Summary and Outlook

- We develop the theory framework to study transverse polarization effects for Λ(thrust) production in e⁺e⁻ collisions
 - EFT approach, model independent
 - TMD factorization formula, rapidity divergence is cancelled at two loop
 - Include QCD evolution (both linear and non-linear) from Q to $j_T \gtrsim \Lambda_{QCD}$
 - Our predictions are consistent with Belle data
 - Verify the universality of polarizing fragmentation function
 - We propose to use jet charge to separate different flavors of PFFs at the Belle
- Jets and jet substructures can be calculated in pQCD, which offer new opportunity to understand hadron structures

Thank you

Backup

Lots of data off resonance, easy to remove resonance background

- small B contribution (<1%) in high thrust sample
- >75% of X-section continuum under
- Υ (4S) resonance
- ~100 fb⁻¹ → ~1000 fb⁻¹

