Transverse polarization of \wedge hyperons in single－ inclusive leptonic annihilations

报告人：邵鼎暗

复旦大学

第五届＂强子谱和强子结构研讨会＂（online）Jan 25， 2021

The first TH prediction on transverse \wedge polarization

Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics

G. L. Kane

Physics Department, University of Michigan, Ann Arbor, Michigan 48109
and
J. Pumplin and W. Repko

Physics Department, Michigan State University, East Lansing, Michigan 48823 (Received 5 July 1978)

It is interesting to calculate the deviation from zero for $m_{q} \neq 0$, to order α_{s}. The explicit result for $e^{+} e^{-} \rightarrow q \bar{q}$ is, for arbitrary m_{q} and large Q^{2},

$$
P=\left(\frac{4 \alpha_{s}}{3}\right) \frac{m_{q}}{Q^{2}} \frac{\sin \theta \cos \theta}{1+\cos ^{2} \theta} .
$$

Whatever observable is used, the variation with Q^{2} and the c.m. scattering angle θ can be tested. P is the polarization transverse to the scattering plane, calculated through order α_{s} in QCD.

In this note we have pointed out that the asymmetry off a polarized target, and the transverse polarization of a produced quark in $e^{+} e^{-} \rightarrow q \bar{q}$, or in $q q \rightarrow q q$ at large p_{T}, or in leptoproduction, should all be calculable perturbatively in QCD. The result is zero for $m_{q}=0$ and is numerically small if we calculate m_{q} / \sqrt{s} corrections for light quarks. We discuss how to test the predictions. At least for the cases when P is small, tests should be available soon in large $-p_{T}$ production [where currently $P(\Lambda)=25 \%$ for $p_{T} \gtrsim 2 \mathrm{GeV} / c$], and $e^{+} e^{-}$reactions. While fragmentation effects could dilute polarizations, they cannot (by parity considerations) induce polarization. Consequently, observation of significant polarizations in the above reactions would contradict either QCD or its applicability.

EXP on transverse \wedge polarization

Bunce et.al. ‘ $76 p+B e \rightarrow \Lambda^{\uparrow}+X$

Erhan et.al. " $79 p \bar{p} \rightarrow \Lambda^{\uparrow} \bar{X}$

Atlas '15

NOMAD ‘20 $\quad \nu N \rightarrow \Lambda^{\dagger} X$

Ma, Schmidt, Soffer, Yang '01 Liang, Wang '06

Transverse \wedge polarization in electron positron collisions

In $\mathbf{N + N}$ or l+N collisions, it is not possible to disentangle initial-state effects, related to dynamics inside the colliding hadrons, and final-state effects, related to the fragmentation of the partons.

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow} h X
$$

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow} \text { (Thrust) } X
$$

$\mathbf{e}^{+} \mathrm{e}^{-}$cleanest way to access fragmentation functions

Transverse ^ polarization at the LEP

No significant transverse polarization is observed at the LEP

Transverse \wedge polarization at the future $\mathbf{e}^{+} \mathbf{e}^{-}$collider ??

Transverse \wedge polarization at the Belle

Belle '18 PRL

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow} h X
$$

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow}(\text { Thrust }) X
$$

Theory framework on transverse \wedge polarization

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow} h X
$$

$$
e^{+} e^{-} \rightarrow \Lambda^{\uparrow} \text { (Thrust) } X
$$???

TMD factorization two scale problem

$$
\Lambda_{Q C D} \lesssim j_{\perp} \ll Q
$$

Is it the same (polarizing) fragmentation function in these two measurements ???

Back-to-back $\Lambda+h$

$e^{-}(\ell)+e^{+}\left(\ell^{\prime}\right) \rightarrow \gamma^{*}(q) \rightarrow h\left(P_{h}\right)+\Lambda\left(P_{\Lambda}, \boldsymbol{S}_{\perp}\right)+X$

Spin-dependent cross section is factorized as:

TMD factorization theorems have been established for back-to-back $\Lambda+h$

$\times \int \frac{\mathrm{d}^{2-2 \epsilon} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2-2 \epsilon}} e^{-i \boldsymbol{q}_{h \mathrm{~T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{S}\left(b_{\mathrm{T}}\right) \tilde{D}_{1, H_{A} / f}\left(z_{A}, b_{\mathrm{T}}\right) \tilde{D}_{1, H_{B} / \bar{f}}\left(z_{B}, b_{\mathrm{T}}\right)$

+ polarized terms.
also see Hui Li's talk

$$
\frac{d \sigma\left(\boldsymbol{S}_{\perp}\right)}{d \mathcal{P S} d^{2} \boldsymbol{q}_{\perp}}=\sigma_{0}\left\{\mathcal{F}\left[D_{\Lambda / q} D_{h / \bar{q}}\right]+\left|\boldsymbol{S}_{\perp}\right| \sin \left(\phi_{S}-\phi_{\Lambda}\right) \frac{1}{z_{\Lambda} M_{\Lambda}} \mathcal{F}\left[\hat{\boldsymbol{P}}_{\Lambda T} \cdot \boldsymbol{p}_{\Lambda \perp} D_{1 T, \Lambda / q}^{\perp} D_{h / \bar{q}}\right]+\cdots\right\}
$$

Polarizing fragmentation function

Fitting of PFFs from $\Lambda+h$ data

Yang, Lu, Schmidt '17
D'Alesio, Murgia, Zaccheddu '20
Callos, Kang, Terry '20
Li, Wang, Yang, Lu'20

Spectator model: see Mao's talk
Light-front quantization: See Chandan, Lan, Xu, Zhao’s talk

TMD factorization for \wedge (thrust)

Wei, Chen, Song, Liang '14; Yang, Chen, Liang '17,......(Twist-4 FF, Parton model on the jet)

Parton (quark or gluon) fragmentation and hadronization High-energy partons lead to collimated bunches of hadrons

Jets are not the same as partons Jets inherit quantum property of partons

TMD factorization formula on the jet broadening

(Becher, Rahn, DYS '17 JHEP)

Definition of the broadening:

$$
b_{N}=\sum_{i \in \mathrm{jets}}\left|\vec{p}_{i}^{\perp}\right|
$$

Construction of the theory formalism $b_{N} \ll Q$

- Two scales in the problem
- Rely on effective field theory: SCET + Jet Effective Theory (Becher, Neubert, Rothen, DYS '16 PRL)

$$
\frac{d \sigma}{d b_{N}}=\sum_{f=q, \bar{q}, g} \int d b_{N}^{s} \int d^{d-2} p_{N}^{\perp} \mathcal{J}_{f}\left(b_{N}-b_{N}^{s}, p_{N}^{\perp}\right) \sum_{m=1}^{\infty}\left\langle\mathcal{H}_{m}^{f}(\{\underline{n}\}, Q) \otimes \mathcal{S}_{m}\left(\{\underline{n}\}, b_{N}^{s},-p_{N}^{\perp}\right)\right\rangle
$$

Rapidity divergence cancellation is verified at two-loop order !!!

Factorization on single hadron unpolarized TMDs

(Kang, DYS, Zhao '20 JHEP)

$$
\begin{array}{ll}
\text { hard: } & p_{h} \sim Q(1,1,1) \\
\text { collinear: } & p_{c} \sim Q\left(\lambda^{2}, 1, \lambda\right) \\
\text { soft: } & p_{s} \sim Q(\lambda, \lambda, \lambda)
\end{array}
$$

$$
\lambda=j_{T} / Q \ll 1
$$

TMD factorization formula:
TMDFFs

$$
\frac{d \sigma}{d z_{h} d^{2} \vec{j}_{T}}=\sum_{i=q, \bar{q}, g} \int \frac{d^{2} \vec{b}}{(2 \pi)^{2}} e^{i \vec{b} \cdot \vec{j}_{T} / z_{h}} \sum_{m=2}^{\infty} \frac{1}{N_{c}} \operatorname{Tr}_{c}\left[\mathcal{H}_{m}^{i}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_{m}(\{\underline{n}\}, b, \mu, \nu)\right] D_{h / i}\left(z_{h}, b, \mu, \zeta / \nu^{2}\right)
$$

"Multi-Wilson-line structure" Becher, Neubert, Rothen, DYS '16 PRL,...
A similar structure is also mentioned in Boglione \& Simonelli '20 within the CSS framework

All-order resummation formula:

$$
\frac{d \sigma}{d z_{h} d^{2} \vec{j}_{T}}=\sigma_{0} \sum_{i=q, \bar{q}} e_{i}^{2} \int_{0}^{\infty} \frac{b d b}{2 \pi} J_{0}\left(b j_{T} / z_{h}\right) e^{-S_{\mathrm{pert}}\left(\mu_{b *}, \mu_{h}\right)-S_{\mathrm{NP}}\left(b, Q_{0}, Q\right)} \frac{1}{z_{h}^{2}} D_{h / i}\left(z_{h}, \mu_{b *}\right) U_{\mathrm{NG}}\left(\mu_{b *}, \mu_{h}\right)
$$

QCD evolution between Q and j_{T}

$$
\text { Linear part: } \quad S_{\text {pert }}\left(\mu_{b}, \mu_{h}\right)=\int_{\mu_{b}}^{\mu_{h}} \frac{d \mu}{\mu}\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \left(\frac{Q^{2}}{\mu^{2}}\right)-2 \gamma^{D_{q}}\left(\alpha_{s}\right)-\gamma^{S}\left(\alpha_{s}\right)\right]
$$

$$
\text { Non-linear part: } \quad U_{\mathrm{NG}}\left(\mu_{b *}, \mu_{h}\right)=\exp \left[-C_{A} C_{F} \frac{\pi^{2}}{3} u^{\frac{2}{2}} \frac{1+(a u)^{2}}{1+(b u)^{c}}\right]
$$

Dasgupta, Salam '01
Non-perturbative corrections: $\quad j_{T} \sim \Lambda_{\mathrm{QCD}}$

$$
S_{\mathrm{NP}}\left(b, Q_{0}, Q\right)=\frac{g_{2}}{2} \ln \left(\frac{b}{b_{*}}\right) \ln \left(\frac{Q}{Q_{0}}\right)+\frac{g_{h}}{z_{h}^{2}} b^{2}
$$

Sun,Isaacson,Yuan,Yuan '14 also see Yibo Yang's talk on LQCD predictions

Non-perturbative collinear FFs $D_{h / i}\left(z_{h}, \mu_{b *}\right) \quad$ (DSS2014)

Numerical results

- Our TMD resummation formula gives a good description of the shape of j_{T} distribution as $\mathrm{z}_{\mathrm{h}}<$ 0.65
- As $z_{h}>0.65$, one needs to also include threshold resummation effects

Joint threshold and TMD factorization

$$
\text { Joint factorization: } \quad z_{h} \rightarrow 1 \quad \& \quad j_{T} \ll Q
$$

Resummation formula:

$$
\frac{d \sigma}{d z_{h} d^{2} \overrightarrow{j_{T}}}=\sigma_{0} \sum_{i=q, \bar{q}} \int_{0}^{\infty} \frac{b d b}{2 \pi} J_{0}\left(b j_{T} / z_{h}\right) \frac{1}{z_{h}^{2}} \int_{z_{h}}^{1} \frac{d z}{z} e^{-\hat{S}_{\operatorname{pert}}\left(\mu_{b *}, \mu_{h}\right)-\hat{S}_{\mathrm{NP}}\left(b, Q_{0}, Q\right)} \frac{e^{-2 \gamma_{E} \eta}}{\Gamma(2 \eta)} \frac{1}{1-z} D_{h / i}\left(z_{h} / z, \mu_{h}\right) U_{\mathrm{NG}}\left(\mu_{b *}, \mu_{h}\right)
$$

- The Gaussian width of the j_{T} distribution given by the TMD formalism freeze to a certain value.
- After including joint threshold and TMD resummation effects, the theoretical predictions are consistent with the data

Factorization on transverse polarized Λ hyperon production with the thrust axis

Gamberg, Kang, DYS, Terry, Zhao 2101.XXXXX

$$
P_{\perp}^{\Lambda}\left(z_{\Lambda}, j_{\perp}\right)=\frac{d \Delta \sigma}{d z_{\Lambda} d^{2} \boldsymbol{j}_{\perp}} / \frac{d \sigma}{d z_{\Lambda} d^{2} \boldsymbol{j}_{\perp}}
$$

Theory predictions are consistent with Belle data
Theory formula including QCD evolution

$$
\begin{aligned}
\frac{d \Delta \sigma}{d z_{\Lambda} d^{2} j_{\perp}} & =\frac{d \sigma\left(\boldsymbol{S}_{\perp}\right)}{d z_{\Lambda} d^{2} \boldsymbol{j}_{\perp}}-\frac{d \sigma\left(-\boldsymbol{S}_{\perp}\right)}{d z_{\Lambda} d^{2} \boldsymbol{j}_{\perp}} \\
& =\sigma_{0} \sin \left(\phi_{s}-\phi_{j}\right) \sum_{q} e_{q}^{2} \int_{0}^{\infty} \frac{b^{2} d b}{2 \pi} J_{1}\left(\frac{b j_{\perp}}{z_{\Lambda}}\right) \\
& \times \frac{M_{\Lambda}}{z_{\Lambda}^{2}} D_{1 T, \Lambda / q}^{\perp(1)}\left(z_{\Lambda}, \mu_{b_{*}}\right) e^{-S_{\mathrm{NP} p}^{\perp}\left(b, z_{\Lambda}, Q_{0}^{\prime}, Q\right)-S_{\text {pert }}\left(\mu_{b_{*}}, Q\right)} \\
& \times U_{\mathrm{NG}}\left(\mu_{b_{*}}, Q\right)
\end{aligned}
$$

Flavor separation of PFFs

Belle '18 PRL

Jets inherit quantum property of partons !!!

Jet substructure

Why spectroscopy—Atomic

We need high precision

Flavor separation and the jet electric charge

Jet Charge: A Flavor Prism for Spin Asymmetries at the Electron-Ion Collider

Zhong-Bo Kang $\oplus \oplus^{1,2,3, *}$ Xiaohui Liu $\odot,^{4,5, \dagger}$ Sonny Mantry $\oplus^{6,{ }^{6, \ddagger}}$ and Ding Yu Shao $\oplus^{1,2,3,8}$
${ }^{1}$ Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
${ }^{2}$ Mani L. Bhaumik Institute for Theoretical Physics, University of California, Los Angeles, California 90095, USA
${ }^{3}$ Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, New York 11794, USA
${ }^{4}$ Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
${ }^{5}$ Center for High Energy Physics, Peking University, Beijing 100871, China
${ }^{6}$ Department of Physics and Astronomy, University of North Georgia, Dahlonega, Georgia 30597, USA
(1) (Received 13 August 2020; revised 29 September 2020; accepted 5 November 2020; published 8 December 2020)

Summary and Outlook

- We develop the theory framework to study transverse polarization effects for Λ (thrust) production in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
- EFT approach, model independent
- TMD factorization formula, rapidity divergence is cancelled at two loop
- Include QCD evolution (both linear and non-linear) from \mathbf{Q} to $j_{\mathrm{T}} \gtrsim \Lambda_{\mathrm{QcD}}$
- Our predictions are consistent with Belle data
- Verify the universality of polarizing fragmentation function
- We propose to use jet charge to separate different flavors of PFFs at the Belle
- Jets and jet substructures can be calculated in pQCD, which offer new opportunity to understand hadron structures

Thank you

Welcome to Fudan!!!

dingyu.shao@cern.ch

Backup

Lots of data off resonance, easy to remove resonance background

