

Recent results on hadron physics at BESIII

Xiao-Rui Lyu (吕晓睿) University of Chinese Academy of Sciences (UCAS) (On behalf of the BESIII collaboration)

Outline

- Introduction to BEPCII/BESIII
- Recent selected results on hadron physics
 - charmonium- and strangenium-like states
 - form factors of baryons
 - charmed hadron
- Prospects for the future
- Summary

Disclaimer: personal overview, not comprehensive

SESE Beijing Electron Positron Collider (BEPCII)

beam energy: 1.0 – 2.3(2.45) GeV

2020: energy upgrade to 2.45 GeV 2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

Xiao-Rui LYU

BESIII

detector

第五届"强子谱和强子结构研讨会", P20121 1.0 x10³³/cm²(4/5/2016)

BEPCII upgrade

- AL CADENT OF THE
- Increase of beam energy 2.30→2.35(2018)→2.45 GeV(2020')
 - → 2.35 GeV in 2018 summer (done)
 - → 2.45 GeV in 2020 summer (done), change ISPB (Interaction region SePtum Bending) magnet
- Top-up injection (done)
 - Data taking efficiency increases by 20~30%

The BESIII detector

NIM A614, 345 (2010)

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Xiao-Rui LYU

BESIII data sample

Xiao-Rui LYU

BES

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

€SШ

Charmonium Spectrum

Overpopulated observed new charmonium-like states, i.e. "XYZ".

Hadron Landscape

At BESIII, two golden measures to study hadron spectroscopy, esp., to search for exotics

- Light hadrons: charmonium radiative decays (act as spin filter)
- Heavy hadrons: direct production, radiative and hadronic transitions

The Zc Family at BESIII

Which is the nature of these states? If exists, there should be SU(3) counter-part Zcs state with strangeness

Xiao-Rui LYU

- Data taking in 4.6-4.7 GeV in 2020
 - 3.7fb⁻¹ data was accumulated at 4.628, 4.641, 4.661, 4.681 and 4.698GeV in 2020.
 - Y(4630) & Y(4660)

Xiao-Rui LYU

ESI Observation of the $Z_{cs}(3985)^{\pm}$

- Data driven background description: wrong Sign (WS) combination of D_s^- and K^-
- Conventional charmed mesons can not describe the enhancement below 4.0 GeV/c² at 4.681 GeV

- Assume the structure as a $D_s^- D^{*0}/D_s^{*-} D^0$ resonance, denoting it as the $Z_{cs}(3985)^-$.
- A fit of J^P=1⁺ S-wave Breit-Wigner with mass dependent width returns:

$$m = 3985.2^{+2.1}_{-2.0} \pm 1.7 \text{ MeV/c}^2$$

$$\Gamma = 13.8^{+8.1}_{-5.2} \pm 4.9 \text{ MeV}$$

• Global significance: >5.3 σ

First candidate of the hidden-charm tetraquark with strangeness

Cross sections of the $Z_{cs}(3985)^{\pm}$ **production**

arXiv: 2011.07855

• Simultaneous fit to the five energy points

 Largest cross sections around 4.681 GeV

The Zcs $(3985)^{\pm}$ and Zc $(3885)^{\pm}$

	1643/pb data @4.681 GeV	525/pb data @4.26 GeV			
	$Z_{cs}(3985)^{\pm}$	$Z_{c}(3900)^{\pm}$	$Z_c(3885)^{\pm}$		
Mass (MeV/c^2)	$3985.2^{+2.1}_{-2.0} \pm 1.7$	3899.0 <u>+</u> 3.6 <u>+</u> 4.9	$3883.9 \pm 1.5 \pm 4.2$		
Width (MeV)	$13.8^{+8.1}_{-5.2} \pm 4.9$	$46 \pm 10 \pm 26$	$24.8 \pm 3.3 \pm 11.0$		
$\sigma^{Born}\cdot\mathfrak{B}\left(\mathrm{pb} ight)$	$4.4^{+0.9}_{-0.8} \pm 1.4$	$13.5 \pm 2.1 \pm 4.8$	83.5±6.6±22.0		

ESI Interpretation on the nature of $Z_{cs}(3985)^{\pm}$

- Various interpretations are possible for the structure
 - Tetraquark state
 - Molecule
 - D_{s2}^* (2573)⁺ D_s^{*-} threshold kinematic effects (Re-scattering, Reflection, Triangle singularity)
 - Mixture of molecular and tetraquark

PWA of the $Z_c(3900)^0$

PRD 102, 012009 (2020)

- Simultaneous PWA fit of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ to the four energy points
- The spin-parity of $Z_c(3900)^0$ is determined to be 1^+
- The nominal fit includes the intermediate process $\sigma J/\psi$, $f(980)J/\psi$, $f(1370)J/\psi$ and $\pi^0 Z_c(3900)^0$.
- Mass and width of $Z_c(3900)^0$ is measured:
 - $M(Z_c(3900)^0) =$ (3893.0±2.3±3.2) MeV/c²,
 - $\Gamma(Z_c(3900)^0) = (44.2 \pm 5.4 \pm 8.3) \text{ MeV}.$

Y(4260) → Y(4220) and new Y's

PRL 98, 212001 (2007)

arXiv:1211.6271 and CHARM 2012

PRD 86, 051102(R) (2012)

EXAMPLE 1 Cross section of $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$

PRD 102, 012009 (2020)

- Cross sections relative to those of the charged channel $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ follows isospin symmetry
- Fit to the $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ returns $M(Y4220))=(4220.4\pm2.4\pm2.3) \text{ MeV/c}^2$; $\Gamma(Y(4220))=(46.2\pm4.7\pm2.1) \text{ MeV}$
- Stat. significance of the Y(4320) (fixed to the charged channel) is 4.2σ
- The mass and width are consistent with those measured in the charged process

EVALUATE: Cross section of $e^+e^- \rightarrow \pi^0 Z_c(3900)^0$

PRD 102, 012009 (2020)

Parameters	Solution I	Solution II		
$p_0(c^2/{ m MeV})$	0.0 ± 11.3			
p_1	$(1.8 \pm 1.9) imes 10^{-2}$			
$M(R) ({ m MeV}/c^2)$	4231.9 ± 5.3			
$\Gamma_{\rm tot}(R)$ (MeV)	41.2 ± 16.0			
$\Gamma_{\mathrm{ee}}\mathcal{B}_{R \to \pi^0 Z_c(3900)^0}\left(\mathrm{eV}\right)$	0.53 ± 0.15	0.22 ± 0.25		
$\phi(R)$	$(-103.9 \pm 33.9)^{\circ}$	$(112.7 \pm 43.0)^{\circ}$		

- Zc(3900)⁰ resonance parameters are fixed to the results of the previous fourenergy-point fit
- The Born cross section of $e^+e^- \rightarrow \pi^0 Z_c(3900)^0 \rightarrow \pi^0 \pi^0 J/\psi$ is extracted.
- Clear structure around 4.2 GeV is observed
 - $M = (4231.9 \pm 5.3 \pm 4.9) \text{ MeV/c}^2,$
 - $\Gamma = (41.2 \pm 16.0 \pm 16.4)$ MeV.
- Compatible with the Y(4220) line shape
- Indication of correlation between the production of the Y(4220) and $Z_c(3900)$.

$\mathbf{H} \mathbf{Y}(4220) \text{ and } \mathbf{Y}(4360) \text{ in } e^+e^- \to \eta J/\psi$

PRD 102, 031101(R) (2020)

- Assuming the lowest lying structure is the $\psi(4040)$
- Consistent with those of the Y(4220) and Y(4360) from previous measurements of different final states

EXAMPLE 5 Cross section of $e^+e^- \rightarrow \eta' J/\psi$

- Enhanced cross section around 4.2 GeV
- A coherent sum of the states of ψ(4160) and Y(4260) provide a reasonable description of the data
- Seems no enhancement around 4.36 GeV as that of $e^+e^-
 ightarrow \eta J/\psi$

single fit of $\psi(4160)$ or Y(4260) (a) σ(e⁺e⁻→η'J/ψ) (pb) 4.3 4.2 4.4 4.5 4.6 sum fit of $\psi(4160)$ and Y(4260)(b) 5(e⁺e⁻→η'J/ψ) (pb)

4.4

√s (GeV)

4.5

PRD 101, 012008 (2020)

4.2

4.3

4.6

Cross sections of open charm final states Partial reconstruction

- Some indications of enhanced cross sections of e⁺e⁻ → D⁺D₁(2420)⁻ and π⁺π⁻ψ(3770) between 4.36 and 4.42 GeV:
 → potential contributions form the Y(4360) and ψ(4415)?
- No obvious structure in the cross sections of $e^+e^- \rightarrow D_s^{(*)+}D_{s1}(2460)^-$

More decays of the X(3872)/ χ_{c1} (3872)

No evidence of $X(3872) \rightarrow \gamma \psi'$ •

•
$$R_{\gamma\psi} = \frac{B(X(3872) \to \gamma\psi')}{B(X(3872) \to \gamma J/\psi)} < 0.59 \ (90\% \text{ C.L.})$$

Consistent with Belle, while disagree with LHCb and BaBar's results: LHCb: 2.46±0.64±0.29 BaBar: 3.4±1.4

PRL124.242001(2020)

TABLE II. Relative branching ratios and UL on branching ratios compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$.

mode	$\gamma J/\psi$	$\gamma\psi'$	$\gamma D^0 \bar{D^0}$	$\pi^0 D^0 \bar{D^0}$	$D^{*0}\bar{D^0} + c.c.$	γD^+D^-	$\omega J/\psi$	$\pi^0 \chi_{c1}$
ratio	0.79 ± 0.28	-0.03 ± 0.22	0.54 ± 0.48	-0.13 ± 0.47	11.77 ± 3.09	$0.00^{+0.48}_{-0.00}$	$1.6^{+0.4}_{-0.3} \pm 0.2$ [18]	$0.88^{+0.33}_{-0.27} \pm 0.10$ [35]
UL	-	< 0.42	< 1.58	< 1.16	-	< 0.99	-	-

Xiao-Rui LYU

Studies on the $\phi(2170)/Y(2175)$

• A strangenium-like state: Y-particle with strange quark

Further studies on the $\phi(2170)/Y(2175)$

Xiao-Rui LYU

第五届"强子谱和强子结构研讨会", 2021

26

$\mathbf{H}_{artial wave analysis of } \psi(3686) \to K^+ K^- \eta$

PRD101, 032008 (2020)

- Dip around 1.75 GeV requires another 1^{--} resonance X(1750) to introduce interference with $\phi(1680)$: could be $\rho(1700)$ or X(1750) (photoproduction at FOCUS)
- Broad structure around 2.2 GeV: contributions from 1^{--} and/or 3^{--} resonances
- More statistics and couple channel analysis will be useful

Xiao-Rui LYU

Form factors of baryons

In the time-like region, access to the Electromagnetic Form Factors (EFF) of the baryons, which characterize the internal structure of the baryon

Threshold production of the nucleon

$$\frac{d\sigma_{p\bar{p}}(s)}{d\Omega} = \frac{\alpha^2 \beta C}{4s} \left[|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{4m_p^2}{s} |G_E(s)|^2 \sin^2 \theta \right]$$

BESIII 2020 energy scan: PRL124, 042001 (2020) BESIII untagged ISR: PRD99, 092002 (2019) BESIII 2015 energy scan: PRD91, 112004(2015)

Xiao-Rui LYU

Threshold production of $e^+e^- \rightarrow n\bar{n}$

- Very challenging measurement due to pure neutron final states
- BESIII takes three approaches and provide validations among each other

- XS measured in a wide range with unprecedented precision (~10%): confirming threshold enhancement
- EFF ratio R_{em} and G_M determined for the firs time
- XS ratio between proton and neutron: do not support the FENICE conjecture, but are within the theoretical predictions
- Oscillation of EFF observed in neutron data: simultaneous fit of proton and neutron data gives shared frequency (5.55±0.28) GeV⁻¹ with almost orthogonal phase difference of (125±12)^O

Form factors of hyperons

- Through the weak decay of hyperons, we could probe its polarization. Hence more information of the EFF can be studied
- $\Delta \phi$ is the phase angle difference of G_E and G_M : can be explored via angular analysis of the spin-coherent hyperon-pair weak decays

第五届"强子谱和强子结构研讨会", 2021

Λ_{c} decay asymmetries

single tag method

- PRD100, 072004 (2019) 4(6)-fold angular analysis of the cascade decays of
- $\Lambda_c \rightarrow pK_s, \Lambda \pi^+, \Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$ based on 567/pb data

- Best precisions on the hadronic weak decay asymmetries
- The transverse polarization is firstly studied and found to be non-zero with 2.1 σ

Xiao-Rui LYU

€SШ

Spin determination of the Λ_c

single tag method

- No experimental measurement of the spin of any charmed baryons
- Analysis of the decays of $\Lambda_c^+ \to pK_s$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$ based on 567/pb data

$$\mathcal{W}^{J=\frac{1}{2}}(\theta_{0},\theta_{1},\phi_{1}) \propto 1 + \alpha \cos^{2} \theta_{0} + \mathcal{P}_{\mathcal{T}} \sin \theta_{1} \sin \phi_{1},$$
with $\mathcal{P}_{\mathcal{T}} = \alpha_{[pK_{S}^{0}]} \sqrt{1 - \alpha^{2}} \cos \theta_{0} \sin \theta_{0} \sin \xi$

$$\mathcal{W}^{J=\frac{3}{2}}(\theta_{0},\theta_{1},\phi_{1}) \propto 40r_{0}^{0} - 10\sqrt{3}r_{0}^{2}(3\cos 2\theta_{1} + 1)$$

$$-60 \left[r_{1}^{2} \sin 2\theta_{1} \cos \phi_{1} + r_{2}^{2} \sin^{2} \theta_{1} \cos 2\phi_{1}\right]$$

$$+ \sin \theta_{1} \alpha_{[pK_{S}^{0}]} \left[8\sqrt{15}r_{-1}^{1} \sin \phi_{1} + 90r_{-2}^{3} \sin 2\theta_{1} \sin 2\phi_{1}\right]$$

$$-9\sqrt{10}r_{-1}^3(5\cos 2\theta_1+3)\sin \phi_1\big],$$

- Multidimensional likelihood fit to data under hypothesis of J=1/2 or J=3/2
- Data favors 1/2 over 3/2 with significance larger than 7.8 σ , consistent with the expectation of the naive quark model.

Spin properties of the Ω^-

single tag method

- The process $e^+e^- \rightarrow \psi(3686) \rightarrow \Omega^-\overline{\Omega}^+, \Omega^- \rightarrow \Lambda K^-$ for the spin 3/2 Ω^- is described by four form factors/helicity amplitudes
- The measurement confirms the spin 3/2 for the first time
- Helicity amplitudes are determined
- Decay asymmetry $\alpha_{\Omega} = -0.04 \pm 0.03$
- Degree of polarization

$$d(\rho_{3/2}) = \sqrt{\sum_{\mu=1}^{15} \left(\frac{r_{\mu}}{r_0}\right)^2} = 0.71 \pm 0.04$$

arXiv: 2007.03679

Xiao-Rui LYU

Charm hadron decays

2.93/fb at ψ (3770)

0.567/fb at 4.6 GeV

Xiao-Rui LYU

Decay constant $f_{D(s)}$

Inputs:

PDG2018 from CKM unitarity: $|V_{cd}| = 0.22438 \pm 0.00044$

Inputs:

PDG2018 from CKM unitarity: $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

							1 1 1			
		1			FNAL/MILC	PRD98,074512	'	249.9±0.4	•	
FNAL/MILC	PRD98,074512	212.7±0.6			RBC/UKQCD	JHEP1712,008		246.4±1.3 ^{+1.3}	•	
					RBC/UKQCD	PRD92,034517		254.0±2.0±4.0	–	-
RBC/UKQCD	JHEP1712,008	208.7±2.8 ^{+2.1}			ЕТМ	PRD91,054057		247.2±4.7	 _	
		-1.0			FNAL/MILC	PRD90,074509		249.0±0.3+1.1	0	
ЕТМ	PRD91,054507	207.4±3.8			FNAL/MILC	PRD85,114506		260.1±10.8		-0
					HPQCD	PRD82,114504		248.0±2.5	••	
FNAL/MILC	PRD90,074509	212.6±0.4 ^{+1.0}		-	CLEO	PRD79,052002 , τ	ν. V	252.8±11.2±5.5	•	
					CLEO	PRD80,112004 , τ	τ _{ov} V	258.0±13.3±5.2		
HPQCD	PRD86,054510	208.3±3.4			CLEO	PRD79,052001 , τ	τ_ν	278.3±17.6±4.4		
					BaBar	PRD82,091103 , τ	c _{evv, μvv} V	244.6±9.1±14.2		
FNAL/MILC	PRD85,114506	218.9±11.3			Belle	JHEP1309,139 , τ	ν. μνν. πν	262.2±4.8±7.4		
	DDD79 052002				BESIII	PRD94,072004, µ	ιν, τ_ν	241.0±16.3±6.6		_
CLEO	ΡΠΟ/0,052003, μν, τ ν πν	206.8±8.7±2.5			CLEO	PRD79,052001, µ	IV	257.6±10.3±4.3		
DECIN	DDD00.051104	000.015.014.0			BaBar	PRD82,091103, µ	ιv	265.9±8.4±7.7		
BESIII	ΡΗΔ89,051104, μν	203.8±5.2±1.8			Belle	JHEP1309,139, µ	ιv	249.8±6.6±5.0		-
DECIII	Expected (20fb ⁻¹)	202 942 041 5			BESIII	PRL122,071802,	μν	252.9±3.7±3.6		-
DESII	Expected (2010), $\mu\nu$	203.012.011.5			BESIII	Expected (6fb ⁻¹).	μν	252.9±2.7±3.0		-
140	160	180	200	220	10	10 1	50	200	25	n
140	100		200				. ,		20	
	f _{∩⁺}	⊦(MeV)					T _D ((IVIEV)		
	D	` '					s	-		

- Precisions of LQCD results are superior to experimental ones
- Hint of slight tension between exp. & LQCD results

Form factors $f_+^{D \to h}$

Precisions better than those of LQCD results

[*arxiv:2010.08483*], the relevant systematics are reduced to ~1 degree.

Xiao-Rui LYU

$\texttt{HSII}Observation of the DCS decay <math>D^+ \to K^+ \pi^+ \pi^- \pi^0$

- $\mathcal{B}^*_{D^+ \to K^+ \pi \pi \pi^0} = (1.13 \pm 0.08 \pm 0.03) \times 10^{-3}$ subtracting the η , ω and ϕ
- $A_{CP} = (-0.04 \pm 0.06 \pm 0.01)$
- $\mathcal{B}_{D^+ \to K^+ \pi \pi \pi^0}^* / \mathcal{B}_{D^+ \to K^- \pi \pi \pi^0} = (6.28 \pm 0.52) \tan^4 \theta_C (\sim 0.29\%)$, significantly larger than (0.21-0.58)% from other DCS decays
- Possible sizeable isospin symmetry violation effects

BESIII Physics

Chinese Physics C Vol. 44, No. 4 (2020)

Int. J. Mod. Phys. A 24, S1-794 (2009) [arXiv:0809.1869 [hep-ex]].

Future Physics Programme of BESIII*

Abstract: There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X1(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.

DOI: 10.1088/1674-1137/44/4/040001

Chin. Phys. C 44, 040001 (2020) doi:10.1088/1674-1137/44/4/040001 [arXiv:1912.05983 [hep-ex]].

Received 25 December 2019, Published online 26 March 2020

[•] Supported in part by National Key Basic Research Porgram of China (2015CB85700); National Natural Science Foundation of China (NSFC) (1133500); 1142523, 1163530, 1173610, 1173206, 1173206, 1173206, 1173019); the Chinase Academy of Science (CAS) Large-Seale Scientifie Facility Porgam, the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Facility Funds of the NSFC and CAS (USS 2015, USS 2015, USS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributions of this work must maintain attribution to the autoho(s) and the title of the work, journal caticians and DOL Antrifac fanded by SCOAPS and published under licence by Chinese Physical Society and the institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publiabing Lud

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current ($T_{\rm C}$) or upgraded ($T_{\rm U}$) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$
1.8 - $2.0~{\rm GeV}$	R values	N/A	$0.1 { m ~fb^{-1}}$	60/50 days
	Nucleon cross-sections		(fine scan)	
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days
	Cross-sections	(20 energy points)	(additional points)	
J/ψ peak	Light hadron & Glueball	$3.2 {\rm ~fb^{-1}}$	$3.2 {\rm ~fb^{-1}}$	N/A
	J/ψ decays	(10 billion)	(10 billion)	
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 { m ~fb^{-1}}$	$4.5 { m ~fb^{-1}}$	150/90 days
	Charmonium decays	(0.45 billion)	(3.0 billion)	
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb}^{-1}$	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A
	XYZ/Open charm	(105 energy points)		
$4.180 { m ~GeV}$	D_s decay	$3.2 { m ~fb^{-1}}$	$6 {\rm fb}^{-1}$	140/50 days
	XYZ/Open charm			
	XYZ/Open charm			
4.0 - $4.6~{\rm GeV}$	Higher charmonia	$16.0 { m ~fb^{-1}}$	$30 { m ~fb^{-1}}$	$770/310 \mathrm{~days}$
	cross-sections	at different \sqrt{s}	at different \sqrt{s}	
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 { m ~fb^{-1}}$	$15 { m fb}^{-1}$	1490/600 days
	cross-sections	at $4.6 \mathrm{GeV}$	at different \sqrt{s}	
$4.74 {\rm GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	100/40 days
$4.91 {\rm GeV}$	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	120/50 days
$4.95 {\rm GeV}$	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days

ESI Data taking plan of 2021-2022

- Study XYZ & charmed baryons [89 days]
 - 500 pb⁻¹ per point at Ecm=4.74, 4.78, 4.84 GeV. [21+24+29 days]
 - 200 pb⁻¹ at Ecm=4.90 GeV [15 days].
- Take 2.55B ψ' events & 10% lum. continuum data [62 days] \rightarrow 3B in total
- Take ψ(3770) data in reminder 2020-21 running year + full 2021-22 running year
 [(200-89-62)+200 = 249 days; ~16/fb]

May try to get 15 more days for another 1/fb ψ (3770) data. \Rightarrow 20/fb in total

✓ So until 2022, we shall have 10B J/ψ , 3B ψ (2S) and 20 /fb ψ (3770) data

Proposal of the BEPCIII

• Following up with the beam energy and top-up upgrade, we are planning the next generation of BEPCIII (200 million CNY), to be implemented around 2022: the optimized energy is 2.35 GeV with luminosity 3 times higher than BEPCII.

	BEPCII	BEPCIII
Lum. [10 ³³ cm ⁻² s ⁻¹] @2.35GeV	0.35	1.2
$eta_{\mathcal{Y}}^*$ [cm]	1.5	1.35
Bunch current	7.1 mA	7.5 mA
Bunch number	56	120
SR Power [kW]	110	250
$\xi_{y,\mathrm{lum}}$	0.029	0.039
Emittance [nmrad]	138	120
Coupling [%]	0.53	0.40
Bucket Height	0.0069	0.091
$\sigma_{z,0}$ [cm]	1.54	1.24
σ_{z} [cm]	1.69	1.39
RF voltage	1.6MV	3.5MV

Major modification -

- RF region
- Vacuum chamber
- Beam parameters

Summary

- BESIII is successfully operating since 2008, and will continue to run for 5–10 years

 – collected large data samples in the τ-charm mass region
- Many exciting results have been published covering many aspects:
 - $\checkmark\,$ XYZ states and light hadron spectroscopy
 - $\checkmark\,$ Form factors of the nucleon and hyperons
 - $\checkmark\,$ Charmed mesons and baryons
 - $\checkmark\,$ Rare decays and new physics search
 - ✓ …
- Future goals:

50M $D^0,$ 50M $D^+,$ 15M Ds, 2M $\Lambda_{\rm c}$, high-lumi. fine scan up to 4.94 GeV

Thank you! 谢谢!