

Recent results on hadron spectroscopy at LHCb

第五届"强子谱和强子结构研讨会" (Jan 23-25, 2021)

Contents

Introduction

- Normal and exotic hadrons in $B \to D^{(*)}\overline{D}^{(*)}h(h')$
- Tetraquarks in $J/\psi\phi$ [$c\bar{c}s\bar{s}$] systems
- Full charmed states
- Hidden-charm pentaquarks
- Summary and prospects

The LHC as a Beauty and Charm factory

Proton-Proton Collisions at $\sqrt{s} = 13$ TeV ~ 20 000 $b\bar{b}$ pairs per second, x 20 of $c\bar{c}$ pairs

LHCb-

Pro ante

CERN Prévessin

ATLAS

SPS_7 km

High B-baryon production fraction

 $B^+:B^0:B^0_s:\Lambda^0_b\ (u\overline{b})\ (d\overline{b})\ (s\overline{b})\ (udb)\ 4\ :\ 4\ :\ 1\ :\ 2\ Unique dataset$

LHC 27 km

iming Zhang

CMS

SUISSE

FRANCE

LHCb detector and performance

LHCb collected luminosity

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Signal: Run2 = 4× Run1

Such large samples, we are able to observe exotic states in fine structures, and see/observe exotics with strangeness

Introduction

Hardon size

- Hadron spectroscopy provides opportunities to study QCD in the non-perturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge of QCD
- Complex exotic hadrons can reveal new or hidden aspects of the dynamics of strong interactions
 - Predicted in quark model
 - Recent results show strong evidence for their existence

EXOTIC

^[1] H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639 (2016) 1-121. [2] A. Ali, J. Lange, S. Stone, Prog. Part. Nucl. Phys. 97 (2017) 123-198. [3] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, Rev. Mod. Phys. 90 (2018) 015004. [4] S. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90 (2018) 15003. [5] Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Prog. Part. Nucl. Phys. 107 (2019) 237-320. [6] F.-K. Guo, X.-H. Liu and S. Sakai, Prog. Part. Nucl. Phys. 112 (2020) 103757

^[7] X.-K Dong, F.-K. Guo, B.-S. Zou, arXiv:2101.01021

Normal and exotic hadrons in $B \rightarrow D^{(*)}\overline{D}^{(*)}h(h')$

Why $B \rightarrow D^{(*)}\overline{D}^{(*)}h(h')$ decays

PRD

9

- Wide range of spectroscopy studies
 - D_{sI}^+ spectroscopy, e.g. D^0K^+ ; $D^+K^+\pi^-$ [Fav]
 - Open charm exotics; $D^+K^-[cs\bar{u}\bar{d}]$ [Fav] 2.
 - Charmonium, e.g. $D^{(*)}\overline{D}^{(*)}$ [Sup] 3.
 - Charmonium exotics, e.g. $Z_c^+ \rightarrow D^{*+}\overline{D}^0$ [Sup] 4.

Sup=Color-Suppress Fav=Color-Favor

- Not yet well explored
 - □ B-factories used $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \overline{D}{}^0 D^0 K^+$ and determined the spin of $D_{s1}^*(2700)^+$

[Belle, PRL 100 (2008) 092001]

About 800 signals, huge background, purity is only 40%

$B^+ \rightarrow D^+ D^- K^+$ decays from LHCb

• $B^+ \rightarrow D^+ D^- K^+$ decay:

 $\Gamma_{197} \qquad \overline{D}^0 D^0 K^+$ $\Gamma_{201} \qquad D^- D^+ K^+$

 $(1.45 \pm 0.33) \times 10^{-3}$ $(2.2 \pm 0.7) \times 10^{-4}$

- Ideal channel to search for the open-charm tetraquark
- Contributions: no Fav D_{SI}^+ , Sup charmonium, Fav open-charm tetraquark(?)

- Model-independent study
 - Hypothesis with only D^+D^- resonances $(J_{\text{max}} = 2)$ is rejected by 3.9σ
 - Indicate the existence of exotic contributions

Observation of D^-K^+ ($\overline{c}\overline{s}ud$) structure

• Add two D^-K^+ states (BW) at ~2.9 GeV, J^P=0⁺, 1⁻

[PRD 102 (2020) 112003]

• Improve $2 \ln \mathcal{L}$ by >300 units

- Need more intricate theoretical studies
 - Very close to D^*K^* , D_1K thresholds. Rescattering ?

Candidates for the 1st open-charm tetraquarks (four different flavors)!

States	Mass/MeV	Width/MeV	Fraction/%
$X_0(2900)$	$2866 \pm 7 \pm 2$	$57 \pm 12 \pm 4$	$5.6 \pm 1.4 \pm 0.5$
$X_1(2900)$	$2904 \pm 5 \pm 1$	$110 \pm 11 \pm 4$	$30.6 \pm 2.4 \pm 2.1$

Quite large contribution!

Puzzles around 3930 MeV

Summary of current PDG			$D_s^+ D_s^-$ threshold: 3936.68 MeV			
		J ^{PC}	Mass(MeV)	Width(MeV)	Decays	
	X(3915)	0++/2++	3918.4 ± 1.9	20 ± 5	J/ψω,γγ	
	$\chi_{c2}(3930)$	2++	3922.2 ± 1.0	35.3 ± 2.8	$D\overline{D},\gamma\gamma$	

• LHCb prompt $D\overline{D}$ results

[JHEP 07 (2019) 035]

		$m_{\chi_{c2}(3930)} [\text{MeV}/c^2]$	$\Gamma_{\chi_{c2}(3930)}$ [MeV]
Belle BaBar This analysis	[17] [18]	$\begin{array}{rrr} 3929 & \pm 5 & \pm 2 \\ 3926.7 \pm 2.7 \pm 1.1 \\ 3921.9 \pm 0.6 \pm 0.2 \end{array}$	$\begin{array}{rrr} 29 & \pm 10 & \pm 2 \\ 21.3 \pm 6.8 \pm 3.6 \\ 36.6 \pm 1.9 \pm 0.9 \end{array}$

- LHCb measurements from inclusive DD channels show difference on the mass and width, 2σ lower mass and 2σ larger width
- Current PDG values driven by LHCb inclusive measurements

Inputs from $B^+ \rightarrow D^+ D^- K^+$

Summary of current PDG $D_s^+ D_s^-$ threshold: 3936.68 MeV			.68 MeV		
		J ^{PC}	Mass(MeV)	Width(MeV)	Decays
	X(3915)	0++/2++	3918.4 ± 1.9	20 ± 5	J/ψω,γγ
	$\chi_{c2}(3930)$	2++	3922.2 ± 1.0	35.3 <u>+</u> 2.8	$D\overline{D}$, $\gamma\gamma$

Interesting inputs

[PRD 102 (2020) 112003]

Resonance	Mass (GeV/c^2)	Width (MeV)
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$

- Two resonances seen in DD decays, with J=0 and J=2; lead to rethink of previous results
- It also puts the question whether this spin 0 particle = X(3915)?

A new D_s^+ state from $B^0 \rightarrow D^+ D^- K^+ \pi_{[arXiv:2011.09112]}^-$

- Big puzzle: $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$ have much smaller masses than the predictions
- Additional experimental input is helpful
- Use $B^0 \rightarrow D^+ D^- K^+ \pi^-$ decay
 - □ $m(K^+\pi^-) < 0.75$ GeV consistent with S-wave $K^+\pi^-$
- $D^+K^+\pi^-$ invariance mass shows a strong peak

Amplitude fit is performed

Tetraquarks in $J/\psi\phi \ [c\overline{c}s\overline{s}]$ systems

$X \to J/\psi\phi$ in $B^+ \to J/\psi\phi K^+$ decays

Provide rich exotic states

States	JPC	Mass/MeV	Width/MeV	Signi.	Experiment	Nearest thresholds	
	1++	$4143.4 \pm 3.0 \pm 0.6$	$15.3^{+10.4}_{-6.1}\pm2.5$	>5σ	CDF		*1
<i>X</i> (4140)		4148.0±2.4±6.3	${\bf 28^{+15}_{-11}\pm 19}$	>5σ	CMS	$D_s^+ D_s^{*-}$: 4080 60	60 Mer
		$4146.5\pm 4.5^{+4.6}_{-2.8}$	$83\pm21^{+21}_{-14}$	8.4σ	LHCb		
	1++	$4274.4^{+8.4}_{-6.7}\pm1.9$	$32.3^{+21.9}_{-15.3}\pm7.6$	3.1σ	CDF		
<i>X</i> (4274)		4313.8±5.3±7.3	${\bf 28^{+15}_{-11}\pm 19}$	>3σ	CMS	$D_s^+ D_{s0}^* (2317)^-: 4286$,
		$4273.3 \pm 8.3 ^{+17.2}_{-\ 3.6}$	$56.2 \pm 10.9 ^{+\ 8.4}_{-11.1}$	6.0σ	LHCb		
<i>X</i> (4500)	0++	$4506 \ \pm 11^{+12}_{-15}$	$92\pm21^{+21}_{-20}$	6.1σ	LHCb	$D_s^+ D_{s1}^* (2536)^-: 4503$	R
<i>X</i> (4700)	0++	$4704 \pm \ 10^{+14}_{-24}$	$120\pm 31^{+42}_{-33}$	5.6σ	LHCb	$D_s^{*+}D_{s2}^{*}(2573)^{-}$: 4681	

Liming Zhang

Updated analysis with full LHCb data will be out next month

NERS/7

-1911-

New X(4740) structure

- $B_s^0 \rightarrow J/\psi \phi \pi^+ \pi^-$ decay is studied
- No clear X(4140) peak
- *X*(4740)?
 - Could be the X(4700) in $B^+ \to J/\psi \phi K^+$
 - Amplitude fit is needed to resolve, e.g. determining mass, width and J^P

1D fit using S-wave Breit-Wigner $m_{X(4740)} = 4741 \pm 6 \pm 6 \text{ MeV}$ $\Gamma_{X(4740)} = 53 \pm 15 \pm 11 \text{ MeV}$

Systematic uncertainties:

- Shape of underlying non-*X*
- Alternative P-wave or D-wave BW
- $\succ \text{ Inteference } \mathcal{F}_{\mathrm{S}}\left(m_{\mathrm{J/\psi}\varphi}\right) \propto \left|\mathcal{A}\left(m_{\mathrm{J/\psi}\varphi}\right) + b\left(m_{\mathrm{J/\psi}\varphi}\right)\mathrm{e}^{i\varphi}\right|^{2}$

[arXiv:2011.01867]

Full charmed states

$T_{cc\overline{c}\overline{c}}$ not new

- Many papers predicted many such states
- Predictions: Mass mostly below 7 GeV

				J^{PC}	$N[(S_{D}, S_{\bar{D}})S, L]J$
			-	0++	1[(1, 1)0, 0]0
				0++	2[(1, 1)0, 0]0
				0++	1[(1, 1)2, 2]0
				0++	3[(1, 1)0, 0]0
	IPC	$m_{\rm ev}({\rm GaV})$		0++	2[(1, 1)2, 2]0
	J 	$\frac{m_{X_c}(\Theta e v)}{(14.0 \pm 0.15)}$		0++	3[(1,1)2,2]0
	0.1	6.44 ± 0.15		1+-	1[(1,1)1,0]1
		6.59 ± 0.17		1+-	2[(1, 1)1, 0]1
		6.47 ± 0.16		1+-	1[(1, 1)1, 2]1
		6.46 ± 0.16		1+-	3[(1,1)1,0]1
		6.82 ± 0.18		1+-	2[(1, 1)1, 2]1
		0.02 ± 0.10		1+-	3[(1, 1)1, 2]1
	0^{-+}	6.84 ± 0.18		1	1[(1, 1)0, 1]1
		6.85 ± 0.18		1	1[(1, 1)2, 1]1
	0	6.94 ± 0.19		1	2[(1, 1)0, 1]1
1	0	0.84 ± 0.18		1	2[(1, 1)2, 1]1
L	1++	6.40 ± 0.19		1	3[(1, 1)0, 1]1
L		6.34 ± 0.19		1	3[(1, 1)2, 1]1
L		0.54 ± 0.17		0-+	1[(1, 1)1, 1]0
L	1+-	6.37 ± 0.18		0-+	2[(1, 1)1, 1]0
L		651 ± 0.15		0-+	3[(1, 1)1, 1]0
L		0.51 ± 0.15		1++	1[(1, 1)2, 2]1
L	1-+	6.84 ± 0.18		1++	2[(1, 1)2, 2]1
L		6.88 ± 0.18		1++	3[(1, 1)2, 2]1
L		0.00 ± 0.10		2++	1[(1, 1)2, 0]2
L	1	6.84 ± 0.18		2++	1[(1, 1)2, 2]2
L		6.83 ± 0.18		2++	1[(1, 1)0, 2]2
		0.00 - 0.10		2++	2[(1, 1)2, 0]2
	2^{++}	6.51 ± 0.15		2++	3[(1, 1)2, 0]2
		6.37 ± 0.19		2++	2[(1, 1)2, 2]2
				2++	2[(1, 1)0, 2]2
2h	ang			2**	3[(1, 1)2, 2]2
				2**	3[(1, 1)0, 2]2

		*	
ccēē			
$N[(S_D, S_{\bar{D}})S, L]J$	E^{th} [MeV]		
1[(1, 1)0, 0]0	5883		
2[(1, 1)0, 0]0	6573		
1[(1, 1)2, 2]0	6835		
3[(1, 1)0, 0]0	6948		
2[(1, 1)2, 2]0	7133		
3[(1,1)2,2]0	7387		
1[(1,1)1,0]1	6120	1	
2[(1, 1)1, 0]1	6669		
1[(1, 1)1, 2]1	6829		
3[(1,1)1,0]1	7016		
2[(1, 1)1, 2]1	7128		
3[(1,1)1,2]1	7382		
1[(1, 1)0, 1]1	6580	1	
1[(1, 1)2, 1]1	6584		
2[(1, 1)0, 1]1	6940		
2[(1, 1)2, 1]1	6943		
3[(1, 1)0, 1]1	7226		
3[(1, 1)2, 1]1	7229		
1[(1, 1)1, 1]0	6596		2
2[(1, 1)1, 1]0	6953		
3[(1,1)1,1]0	7236		15
1[(1, 1)2, 2]1	6832		
2[(1, 1)2, 2]1	7130		19
3[(1, 1)2, 2]1	7384		
1[(1,1)2,0]2	6246		18
1[(1, 1)2, 2]2	6827		196
1[(1, 1)0, 2]2	6827		Č
2[(1,1)2,0]2	6739		
3[(1,1)2,0]2	7071		
2[(1,1)2,2]2	7125		
2[(1, 1)0, 2]2	7126		
3[(1, 1)2, 2]2	7380		

7380

J. Wu et al., Heavy-flavored tetraquark states with the $QQ\bar{Q}\bar{Q}$ configuration, Phys. Rev. **D97** (2018) 094015, arXiv:1605.01134.

M.-S. Liu, Q.-F. L, X.-H. Zhong, and Q. Zhao, *All-heavy tetraquarks*, Phys. Rev. **D100** (2019) 016006, arXiv:1901.02564.

G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fully-heavy tetraquark state $QQ\bar{Q'Q'}$, Phys. Rev. D **100** (2019) 096013, arXiv:1907.05177.

M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, arXiv:1911.00960.

X. Chen, Fully-charm tetraquarks: ccccc, arXiv:2001.06755.

...

Some can decay to double- J/ψ

Directly or via feed-down

J^{PC}	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$
0^{-+}	$\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$	$J/\psi J/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	_	$\frac{J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P)}{\eta_c(1S)\chi_{c0}(1P)}$
1+-	$J/\psi\eta_c(1S)$	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_c(1S)h_c(1P)$
1-+	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P)$	$\eta_c(1S)\chi_{c1}(1P)\frac{J/\psi J/\psi}{}$
1	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P),$	$J/\psi\eta_c(1S)$
	$\eta_c(1S)h_c(1P)$	

PLB 773 (2017) 247

X(6900) in di- J/ψ system \bigcirc

- Search for di- J/ψ structure using full data
 - DPS + NRSPS cannot well describe data
 - A di- J/ψ resonance X(6900) significantly improves the fit
 - Two fit models: both has $> 5\sigma$ significance of *X*(6900)
 - A first candidate for the $T_{c\bar{c}c\bar{c}}$ tetraquark state

Model 1: No interference between NRSPS and BW

 $M(6900) = 6905 \pm 11 \pm 7 \text{ MeV}$

 $\Gamma(6900) = 80 \pm 19 \pm 33 \text{ MeV}$

Model 2: Interference between NRSPS and a broad BW

 $M(6900) = 6886 \pm 11 \pm 11 \text{ MeV}$

 $\Gamma(6900) = 168 \pm 33 \pm 69 \text{ MeV}$

Hidden-charm pentaquarks

Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

- Pentaquarks was first observed in 2015 by LHCb in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays
- New pentaquark and fine structure was discovered in 2019 with x10 signals
 - □ Three narrow pentaquarks just below $\Sigma_c^+ D^{(*)0}$ thresholds, favours molecular picture
- A lot of open questions:
 - \Box J^P , mode decay modes,...?
 - SU(3) partners, hidden-bottom pentaquarks?

21

Evidence of $J/\psi \Lambda$ resonance: data sample

■ SU(3) partner P_{cs} is predicted, and suggested to search for in $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ [JJ Wu PRL 105 (2010) 232001; HX Chen PRC 93(2016) 064203]

Evidence of $J/\psi \Lambda$ resonance: amplitude fit

THOMS

- Modelled by one P_{cs}^0
 - Adding a P_{cs} improves 2 ln L by 43 units, statistical significance of 4.3σ evaluated by toy experiments
 - Including various syst. uncertainty, the smallest significance is >3.1σ
 - Look-elsewhere effect is included in both cases
- Statistics not enough for J^P determination

Zooms in to P_{cs} signal region. Visible improvement.

- Molecular states built from $\Xi_c D, \Xi_c' D, \Xi_c D, \Xi_c D^*, \Xi_c' D^*, \Xi_c^* D^* \dots$
 - Isospin-isospin interactions, vanish for $\overline{D}\Lambda_c^+$, $\overline{D}_s^*\Lambda_c^+$, $D_s^{*-}\Sigma_c^+$...

[Bo Wang, Lu Meng, Shi-Lin Zhu, PRD 101 (2020) 034018]

- $P_{cs}(4459)^0$ mass close to $\Xi_c \overline{D}^*$ threshold two I = 0 states with $\frac{1}{2}^{-1}$ or $\frac{3}{2}^{-1}$ More data needed to resolve
- Confirmation by other states, decays

1st observation of $\Lambda_b^0 \rightarrow \eta_c p K^-$

[PRD 102 (2020) 112012]

- Same quark contents as $\Lambda_b^0 \to J/\psi p K^-$. Provide unique environment for P_c studies
- If $P_c(4312)^+$ is $\Sigma_c \overline{D}$ molecule, predicted

[PRD 100 (2019) 034020, 100 (2019) 074007, 102 (2020) 036012]

- LHCb run2 data (5.5 fb⁻¹)
 - η_c reconstructed using $\eta_c \rightarrow p\bar{p}$
- Fit 2D mass spectrum to confirm the existence

 $\frac{\mathcal{B}(P_c(4312)^+ \to \eta_c p)}{\mathcal{B}(P_c(4312)^+ \to J/\psi p)} \sim 3$

Search for P_c^+ in $\eta_c p$ system

- Check background-subtracted $\eta_c p$ mass spectrum
 - sPlot technique. 2D mass as discriminating variable.

No significant $P_c(4312)^+$ contribution (~2 σ)

Relative P_c^+ production rates

 $R(P_c(4312)^+) < 0.24 @ 95\%$ C.L.

(Uncertainty is too large to give any conclusion yet)

• The $\Lambda_b^0 \to \eta_c p K^-$ branching fraction measured

 $\frac{\mathcal{B}(\Lambda_b^0 \to \eta_c p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p K^-)} = 0.333 \pm 0.050 \,\,(\text{stat.}) \pm 0.019 \,\,(\text{syst.}) \pm 0.032 \,\,(\mathcal{B})$

Prospects

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2023
 - Could have another 6x increase from Upgrade II

 $\chi_{c1}(3872)$ lineshape from multi-channels

 Z_c (4430), also explore $B \to D_{(s)}^{(*)} \overline{D}_{(s)} K^-$? Doubly-charmed tetraquark $\mathcal{T}_{cc}^+ \to D_s^+ D^0$

More information for pentaquarks

[*] updated according to the latest result

Summary

- LHC is a heavy-quark hadron factory, with LHCb detector dedicated for flavour physics, we can also
 - Explore meson and baryon excitation spectra
 - Study exotic hadron spectroscopy

Many interesting results

- Observations of first candidates for open-charm tetraquark $X_{0,1}(2900)$, full charmed tetraquark X(6900)
- Evidence of first candidate for hidden-charm pentaquark with strangeness $P_{cs}(4459)^0$

Backup

X(6900) in di-*J*/ ψ system

[Science Bulletin 65 (2020) 032]

X(3872) lineshape

- X(3872) nature is still uncertain, although many studies are performed since 2003
 - □ J^{PC} = 1⁺⁺ [Phys. Rev. D92 (2015) 011102(R)]
 - Mass = 3871.69 ± 0.17 MeV
 - □ Width < 1.2 MeV @90% CL

 $\delta E = (m_{D^{*0}} + m_{D^0}) - m_{X(3872)} = 0.01 \pm 0.20 \text{ MeV}$ [PDG 2020]

- Molecular interpretation requires δE > 0, the knowledge is limited by the mass precision of X(3872)
- Current precision is dominated by CDF results 10 years ago

$\chi_{c1}(3872)$ MASS FROM $J/\psi X$ MODE

VALUE (MeV)	EVTS		DOCUMENT ID		TECN
3871.69 ± 0.17	OUR AVERAGE				
3871.9 ±0.7 ±0.2	20 ±5		ABLIKIM	2014	BES3
3871.95 <u>+</u> 0.48 <u>+</u> 0.12	0.6k		AAIJ	2012H	LHCB
3871.85 ±0.27 ±0.19	~ 170	1	CHOI	2011	BELL
$3873 \stackrel{+1.8}{_{-1.6}} \pm 1.3$	27 ±8	2	DEL-AMO- SANCH	2010B	BABR
3871.61 ±0.16 ±0.19	6k	3, 2	AALTONEN	2009AU	CDF2
$3871.4 \pm 0.6 \pm 0.1$	93.4		AUBERT	2008Y	BABR
$3868.7 \pm 1.5 \pm 0.4$	9.4		AUBERT	2008Y	BABR
3871.8 ±3.1 ±3.0	522	4, 2	ABAZOV	2004F	D0

LHCb results with Breit-Wigner fit

- Two measurements using $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ related to $\psi(2S)$
 - □ Inclusive $b \rightarrow X(3872)$ + anything
 - □ Exclusive $B^+ \to X(3872)K^+$
- Mass resolution is 2-3 MeV

Meas.	Yield	$M_{ m BW}$ (MeV)	$\Gamma_{\! m BW}$ (MeV)
Inclusive [arXiv:2005.13419]	~15.6k (more bkg)	$\begin{array}{c} 3871.695\pm 0.067\\ \pm 0.068\pm 0.010 \end{array}$	$1.39 \pm 0.24 \pm 0.10$
Exclusive [arXiv:2005.13422]	~4.2k (less bkg)	$\begin{array}{c} 3871.59\pm0.06\\ \pm0.03\pm0.010 \end{array}$	$0.96^{+0.19}_{-0.18}\pm0.21$

LHCb average

 $M_{BW} = 3871.64 \pm 0.06 \pm 0.01 \text{ MeV}; \Gamma_{BW} = 1.19 \pm 0.19 \text{ MeV}$ $\delta E = M(D^0) + M(\overline{D}^{*0}) - M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \text{ MeV}$

Flatté function also investigated, precision is limited by mass resolution

Breit-Wigner mass and width

[arXiv: 2005.13422]

A SAME A

➤World average

✓ Before: $M_{\rm BW} = 3871.68 \pm 0.17 \text{ MeV}/c^2$; $\Gamma_{\rm BW} < 1.2 \text{ MeV}/c^2$ at 90% C.L. ✓ After: $M_{\rm BW} = 3871.64 \pm 0.06 \text{ MeV}/c^2$; $\Gamma_{\rm BW} = 1.19 \pm 0.19 \text{ MeV}/c^2$

≻LHCb average

 $\checkmark M_{\rm BW} = 3871.64 \pm 0.06 \pm 0.01 \,\,{\rm MeV}/c^2; \,\Gamma_{\rm BW} = 1.19 \pm 0.19 \,\,{\rm MeV}/c^2$ $\checkmark \delta E = M(D^0) + M(\overline{D}^{*0}) - M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \,\,{\rm MeV}/c^2$

*Small statistical overlap between the two samples is considered

≻Opening up of $D^0\overline{D}^{*0}$ threshold distorts the lineshape from Breit-Wigner ⇒

Search for pentaquark in $\Lambda_c^+ K^+$ system

- Potential open-charm pentaquark $[c\bar{s}uud]$ decay to $\Lambda_c^+K^+$
- Run1 data (3 fb⁻¹)
 - $\Box \quad \Lambda_c^+ \text{ reconstructed using } \Lambda_c^+ \to p K^- \pi^+$
 - $\Lambda_b^0 \to \Lambda_c^+ D_s^-$ used for normalization channel
- 1st observation of $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$

 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = (9.26 \pm 0.29 \pm 0.46 \pm 0.26) \times 10^{-2},$ $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-) = (1.02 \pm 0.03 \pm 0.05 \pm 0.10) \times 10^{-3}$

- No excess observed in $m(\Lambda_c^+K^+)$ spectrum
- Will search with more data and can also look for pentaquark [$c\bar{s}udd$] in $\Lambda_c^+K^+\pi^-$ system

