第五届"强子谱和强子结构研讨会"(2021年1月23—25日,广州,中山大学)

Understanding the pentaquark states from an EFT perspective

Lisheng Geng (耿立升) @ Beihang U.

- Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis [1903.11560]
- □ Model independent determination of the spins of the Pc(4440) and Pc(4457) from the spectroscopy of the triply charmed dibaryons [1907.11220]
- □ Can discovery of hidden charm strange pentaquark states help determine the spins of Pc(4440) and Pc(4457) [2011.07935]

More on pentaquarks at this conf

- Sunday, 10:30-11:00, 陈华星
- Sunday, 11:00-11:30, 肖褚文
- Sunday, Session 3, 14:50-15:15, 杨智
- Sunday, Session 4, 16:00-16:20, 陈锐
- Sunday, Session 4, 16:20-16:40, 沈超玮
- Sunday, Session 4, 16:40-17:00, 旷仕卿
- Sunday, Session 4, 17:20-17:40, 谢亚平
- •

Contents

- □ Motivation: a new paradigm in studies of the strong interaction
- \Box The new pentaquark states as $\overline{D}\Sigma_c$ molecules
- **\square** From $\Xi_{cc}\Sigma_c$ dibaryon mass splitting to the pentaquark spins
- □ From Pcs to the pentaquark spins
- □ Summary and outlook

Contents

- Motivation: a new paradigm in studies of the strong interaction
- \Box The new pentaquark states as $\overline{D}\Sigma_c$ molecules
- **\square** From $\Xi_{cc}\Sigma_c$ dibaryon mass splitting to the pentaquark spins
- □ From Pcs to the pentaquark spins
- □ Summary and outlook

Why spectroscopy—Atomic

We need high precision

Why spectroscopy—Nuclear

We need more systematics

Maria Goeppert Mayer J. Hans D. Jensen

Aage Niels Bohr, Ben Roy Mottelson Leo James Rainwater

Why spectroscopy—particle/hadron

We need good theory/imagination

Murray Gell-Mann

Yuval Ne'eman.

V. E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964)

Naive QM: qqq & qqbar

Huge Success not well understood

More complicated structure allowed

In the naïve quark model

Tetraquark

Hadronic molecule

Pentaquark

Not much happened until 2003

 $\Lambda(1405), N^*(1535),...$ $f_0(500), f_0(980), a_0(980), ...$

Beginning of a new era: 2003

Exotic mesons or baryons Tetraquark states Pentaquark states *X*₀(2866) *X*₁(2904) $\mathcal{B}_{\text{Belle}}$ $D_{s1}(2460)$ HC ₩SI €SI BABAR X(4160) X(6900) Z_c(4100) *P_c*(4380) Y(4220) X(6900) Z_c(4020) Y(4660) **E(1620)** *P_c*(4450) **Y(4390)** *X*(7200) Y(4260) *D*_{s0}(2317) X(3915) X(4274) Z_c (3900) Y(4360) Ω(2012) *P_{cs}*(4459) 2003 2005 2007 2009 2011 2013 2014 2015 2016 2018 2019 2020 $P_c(4457) Z_{cs}(3985)$ Z_c(4200) *Z_c*(4430) X(4140) X(3872) $P_{c}(4440)$ X(5568) €SI Z(3930) $P_{c}(4312)$ $Z_{b}(10610)$ Λ_c(2940) $Z_{h}(10650)$ X(6900)

Highlights of the year

the research covered in Physics that really made waves in and beyond the physics community.

Four-Quark Matter/BESIII

Particle High Five/LHCb

The molecular picture for the pentaquark states

Molecules are all around us, then why not

Ouarks

United Nations Internat Educational, Scientific and of the P Cultural Organization of Chen

International Year
of the Periodic Table

Adapted from LHC the guide

Many (if not all) of them close to thresholds

Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, Bing-Song Zou. Rev.Mod.Phys. 90 (2018) 015004.

Exotic mesons or baryons Tetraquark states Pentaquark states

Before the 2015 LHCb discovery

As of 2021.01.20

Wu, Molina, Oset, Zou, PRL105, 232001(2001)-- 289

- **U** Wang, Huang, Zhang, Zou, PRC84, 015203(2011)--120
- **Y**ang, Sun, He, Liu, Zhu, CPC36,6(2012)--166
- □ Wu, Lee, Zou, PRC85,044002(2012)-77
- □ Xiao, Nieves, Oset, PRD88,056012(2013)--143
- □ Karliner, Rosner, PRL115, 122001(2015)--193

TABLE II. Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.							
(I, S)	z_R (MeV)		g_a				
(1/2, 0)		$ar{D}\Sigma_c$	$ar{D}\Lambda_c^+$				
	4269	2.85	0				
(0, -1)		$D_s\Lambda_c^+$	$D \Xi_c$	$D\Xi_c'$			
	4213	1.37	3.25	0			
	4403	0	0	2.64			

TABLE III. Pole position and coupling constants for the bound
states from $VB \rightarrow VB$.(I, S) z_R (MeV) g_a

(I, S)	z_R (MeV)		g_a	
(1/2, 0)		$ar{D}^*\Sigma_c$	$ar{D}^*\Lambda_c^+$	
	4418	2.75	0	
(0, -1)		$D_s^*\Lambda_c^+$	$D^*\Xi_c$	$D^* \Xi_c'$
	4370	1.23	3.14	0
	4550	0	0	2.53

19

as of 2021.01.21

Fine structure-new era of exotic hadrons

The existence of 7 molecules —likely existence of a (first) complete multiplet

After the 2019 LHCb discovery

Molecular states

✓ ...

✓ ...

- ✓ Rui Chen et al., 1903.11013
- ✓ Mingzhu Liu et al., 1903.11560
- ✓ Jun He et al., 1903.11872
- ✓ Chuwen Xiao et al., 1904.01296
- ✓ Jun He et al., 1909.05681
- ✓ T.J. Burns et al., 1908.03528
- ✓ Yasuhiro Yamaguchi et al.,1907.04684
- ✓ Mingzhu Liu et al., 1907.06093
- ✓ Menglin Du et al., 1910.11846

Compact pentaguark states

- ✓ Ahmed Ali, 1904.00446
- ✓ Zhi-Gang Wang et al., 1905.0892
- ✓ Jian-Bo Chen et al., 1905.08605
- ✓ X. –Z. Weng et al., 1904.09891
- ✓ R. Zhu et al., 1904.10285

Dhadrocharmonium states

✓ Michael I. Eides et al., 1904.11616

□Virtual states -- Pc(4312)

✓ JPAC, 1904.10021

□Triangle singularities or cusp effects

Contents

- □ Motivation: a new paradigm in studies of the strong interaction
- \Box The new pentaquark states as $\overline{D}\Sigma_c$ molecules
- **\square** From $\Xi_{cc}\Sigma_c$ dibaryon mass splitting to the pentaquark spins
- □ From Pcs to the pentaquark spins
- □ Summary and outlook

Effective field theory

D Some prominent examples

- ✓ Chiral perturbation theory ($\pi\pi$, NN)
- ✓ Heavy quark effective field theory
- ✓ Non-relativistic QCD
- ✓ Soft collinear effective field theory

Three essential ingredients

- ✓ Effective degrees of freedom
- ✓ Relevant symmetries
- ✓ Power counting rules

Advantages

- Close relation with the underlying 'full' theory
- Systematically improvable/uncertainties quantifiable
- Self-consistent treatment of many-body interactions

Phenomenological Lagrangians

Steven Weinberg (Harvard U. & Harvard-Smithsonian Ctr. Astrophys.). Oct 1978. 14 pp. Published in Physica A96 (1979) no.1-2, 327-340 HUTP-78-A051A DOI: 10.1016/0378-4371(79)90223-1 Conference: <u>C78-02-18 Proceedings</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>Detailed record - Cited by 3282 records</u> 1000+

Steven Weinberg Nobel prize 1979

Heavy quark spin symmetry

 $m_Q \rightarrow \infty$ the strong interaction independent of the spin of heavy quark

$$J = J_l - \frac{1}{2}$$

$$J = J_l + \frac{1}{2}$$

HQSS is broken in charm and bottom sector

$$m_{D^*} - m_D = 142 MeV$$

 $m_{B^*} - m_B = 46 MeV$

$$m_{\Sigma_c^*} - m_{\Sigma_c} = 64 MeV$$

$$M_{\Sigma_b^*} - m_{\Sigma_b} = 21 MeV$$

$$J = J_l - \frac{1}{2}$$

$$J = J_l + \frac{1}{2}$$

OPE is perturbative in charm hadronic interactions—*Jun-Xu Lu et al., PRD99 (2019)* 074026 *M. Valderrama, 1907.05294*

□ Next to leading order—pion full

Lu Meng et al., PRD100 (2019) 014031; Bo Wang et al., 1909.13054

Leading order Lagrangian satisfying HQS

$$L = C_a Tr[H_c^{\dagger}H_c]\vec{S}_c \cdot \vec{S}_c^{\dagger} + C_b \sum_{i=1}^3 Tr[H_c^{\dagger}\sigma_iH_c]\vec{S}_c \cdot (J_i\vec{S}_c^{\dagger})$$

$$H_c = \frac{1}{\sqrt{2}} \left(D + \vec{D}^* \vec{\sigma} \right) \qquad \vec{S}_c = \frac{1}{\sqrt{3}} \left(\Sigma_c \vec{\sigma} + \vec{\Sigma}^*_c \right)$$

Spin 1 matrices

 \bar{D} \bar{D} \bar{D} \bar{D} \bar{D} Σ_c

0

 \overline{D}

64 MeV

142 MeV

 $J_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$

 $J_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad J_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$

208 MeV

Threshold

Leading order potentials

$$V(\frac{1}{2}, \Sigma_{\rm c}\overline{D}) = C_a$$

 $V(\frac{3}{2}^{-}, \Sigma_c^*\overline{D}) = C_a$

$$V(1/2^{-}, \Sigma_{c}\overline{D}^{*}) = C_{a} - \frac{4}{3} C_{b}$$

 $V(3/2^{-}, \Sigma_{c}\overline{D}^{*}) = C_{a} + \frac{2}{3} C_{b}$

$$V(1/2^{-}, \Sigma_c^* \overline{D}^*) = C_a - \frac{5}{3} C_b$$
$$V(3/2^{-}, \Sigma_c^* \overline{D}^*) = C_a - \frac{2}{3} C_b$$
$$V(5/2^{-}, \Sigma_c^* \overline{D}^*) = C_a + C_b$$

- C_a:responsible for overall interaction
 C_b: responsible for spin splitting
- Without experimental inputs, there is no (not much) predictive power
- Two inputs are needed to fix the two LECs, LHCb provides three

Δ Ambiguity: two $\overline{D^*} \Sigma_c$ bound states **Pc(4440)/Pc(4457)**

Search for bound states

Lippmann-Schwinger Equation

$$\left\langle \vec{k}' | T | \vec{k} \right\rangle = \left\langle \vec{k}' | T | \vec{k} \right\rangle + \int \frac{d^3 \vec{q}}{(2\pi)^3} \left\langle \vec{k}' | V | \vec{q} \right\rangle \frac{1}{E - \frac{\vec{q}^2}{2\mu}} \left\langle \vec{q} | T | \vec{k} \right\rangle$$

D Separable potential $\langle \vec{k} | V | \vec{q} \rangle = C(\Lambda) f(\Lambda, |\vec{k}|) f(\Lambda, |\vec{q}|)$

$$1 + \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{C(\Lambda)f^2(\Lambda, |\vec{q}|)}{B + \frac{\vec{q}^2}{2\mu}} = 0$$

Fit to the LHCb data: two scenarios

$$V(1/2^{-}, \Sigma_{c}\overline{D}) = C_{a}$$

$$V(3/2^{-}, \Sigma_{c}^{*}\overline{D}) = C_{a}$$

$$V(1/2^{-}, \Sigma_{c}\overline{D}^{*}) = C_{a} - \frac{4}{3} C_{b}$$

$$V(3/2^{-}, \Sigma_{c}\overline{D}^{*}) = C_{a} + \frac{2}{3} C_{b}$$

$$V(1/2^{-}, \Sigma_{c}^{*}\overline{D}^{*}) = C_{a} - \frac{5}{3} C_{b}$$

$$V(3/2^{-}, \Sigma_{c}^{*}\overline{D}^{*}) = C_{a} - \frac{2}{3} C_{b}$$

$$V(5/2^{-}, \Sigma_{c}^{*}\overline{D}^{*}) = C_{a} + C_{b}$$

LHCb data

$$P_{c1} = 4311.9 \pm 0.7^{+6.8}_{-0.6} + \frac{i}{2}9.8 \pm 2.7^{+3.7}_{-4.5}$$

$$P_{c2} = 4440.3 \pm 1.3^{+4.1}_{-4.7} + \frac{i}{2}20.6 \pm 4.9^{+8.7}_{-10.1}$$

$$P_{c3} = 4457.3 \pm 0.6^{+4.1}_{-1.7} + \frac{i}{2}6.4 \pm 2.0^{+5.7}_{-1.9}$$

Three experimental data and two unknown coupling constants

 C_a and C_b can be determined !

Input $\begin{bmatrix} A & \overline{D}^* \Sigma_c (3/2^-) Pc(4457) & \overline{D}^* \Sigma_c (1/2^-) Pc(4440) \\ B & \overline{D}^* \Sigma_c (1/2^-) Pc(4457) & \overline{D}^* \Sigma_c (3/2^-) Pc(4440) \end{bmatrix}$

Emergence of a complete HQS multiplet (7)

3 new states

Scenario	Molecule	J^P	B (MeV)	M (MeV)
A	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 - 9.0	4311.8 - 4313.0
A	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
A	$ar{D}^*\Sigma_c$	$\frac{\overline{3}}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{\overline{3}}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	3.2 - 3.5	4523.3 - 4523.6
В	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
B	$ar{D}^*\Sigma_c$	$\frac{\overline{3}}{2}^{-}$	Input	4440.3
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
B	$ar{D}^*\Sigma_c^*$	$\frac{\overline{3}}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{5}$ -	25.7 - 26.5	4500.2 - 4501.0

RGI of binding energy of the pentaquarks

Spin-parities important to understand the Pcs

Vs.

Spins of the Pc(4457) and Pc(4440) undetermined
 Different molecular models show different preferences

Pc(4457): 3/2⁻ Pc(4440): 1/2⁻

Rui Chen et al., 1903.11013 Jun He et al., 1903.11872 Chuwen Xiao et al., 1904.01296 Jun He et al., 1909.05681 Pc(4457): 1/2⁻ Pc(4440): 3/2⁻

Y. Yamaguchi et al.,1907.04684 Mingzhu Liu et al., 1907.06093

Other model predictions are even more distinct

Compact diquark model	QCD sum rule (M)	NR Quark model	QCD sum rule (C)
Ahmed Ali et al., 1904.00446	H. X. Chen et al., 1904.00446	Ruilin Zhu et al., 1904.00446	Zhi-Gang Wang et al., 1905.0892
Pc(4457): 5/2 ⁺	Pc(4457): 3/2 ⁻ (5/2 ⁻)	Pc(4457): 1/2⁻	Pc(4457): 1,3/2
Pc(4440): 3/2 ⁺	Pc(4440): 3/2 ⁻ (1/2 ⁻)	Pc(4440): 1/2	$Pc(4440): 1,3,5/2^{-1}$
Pc(4312): 3/2 ⁻	Pc(4312): 1/2-	Pc(4312): 3/2 ⁻ (1/2 ⁻)	PC(4312): 1/2

Turn to lattice QCD?

Coupled channel study difficult

 \Box Up to now, only two groups studied $J/\psi N$ interactions, and no pentaquark states found

- ✓ T. Sugiura, Y. Ikeda, and N. Ishii, 1905.02336.
- ✓ U. Skerbis and S. Prelovsek, 1811.02285.

□ Recently, a study of $1 + \Xi_{cc}\Sigma_c$ baryons was successfully performed, and some bound states were found

B=8(17)MeV, Parikshit Junnarkar et al., 1906.06054

In a recent paper, we show that it is possible to determine the spins of the pentaquark states by studying the spectroscopy of the dibaryon systems via heavy antidquark diquark symmetry.

Ya-Wen Pan et al., 1907.11220

Contents

- □ Motivation: a new paradigm in studies of the strong interaction
- \Box The new pentaquark states as $\overline{D}\Sigma_c$ molecules
- **D** From $\Xi_{cc}\Sigma_c$ dibaryon mass splitting to the pentaquark spins
- □ From Pcs to the pentaquark spins
- □ Summary and outlook

Heavy Antiquark Diquark symmetry(HADS)

□ Heavy diquark behaves as a heavy anti-quark from color freedom

Savage et al., PLB248 (1990) 177; Hu et al., PRD73 (2006) 054003

□ Predictions tested in lattice QCD (satisfied at the level of 25%)

$$\begin{split} m_{\Xi_{cc\,3/2}} - m_{\Xi_{cc\,1/2}} &= \frac{3}{4} \left(m_{D*} - m_D \right) \approx 106.5 MeV \\ m_{\Omega_{cc\,3/2}} - m_{\Omega_{cc\,1/2}} &= \frac{3}{4} \left(m_{Ds*} - m_{Ds} \right) \approx 107.9 MeV \end{split}$$

M. Padmanath et al., Phys. Rev. D91, 094502 (2015), 1502.01845; Y.-C. Chen et al., Phys. Lett. B767, 193 (2017), 1701.02581; C. Alexandrou et al., Phys. Rev. D96, 034511 (2017), 1704.02647; N. Mathur et al., Phys. Rev. D99, 031501 (2019), 1807.00174.

Dibaryon systems

$$L_{D\Sigma_{c}} = C_{a}Tr[H_{c}^{\dagger}H_{c}]\vec{S}_{c}\cdot\vec{S}_{c}^{\dagger} + C_{b}\sum_{i=1}^{3}Tr[H_{c}^{\dagger}\sigma_{i}H_{c}]\vec{S}_{c}\cdot(J_{i}\vec{S}_{c}^{\dagger})$$

$$H_{c} = \frac{1}{\sqrt{2}} (D + \vec{D}^{*} \vec{\sigma}) \implies \vec{T}_{cc} = \frac{1}{\sqrt{3}} (\Xi_{cc} \vec{\sigma} + \vec{\Xi}^{*}_{cc})$$

 $L_{\Xi_{cc}\Sigma_{c}} = C_{a}Tr[\vec{T}_{cc}^{\dagger}\vec{T}_{cc}]\vec{S}_{c}\cdot\vec{S}_{c}^{\dagger} + C_{b}\sum_{i=1}^{3}Tr[\vec{T}_{cc}^{\dagger}\sigma_{i}\vec{T}_{cc}]\vec{S}_{c}\cdot(J_{i}\vec{S}_{c}^{\dagger})$

The same potentials in the HQS limit

state	J^P	V	state	J^P	V
$\bar{D}\Sigma_c$	$1/2^{-}$	C_a	$\Xi_{cc}\Sigma_c$	0^+	$C_a + \frac{2}{3}C_b$
				1+	$C_a - \frac{2}{9}C_b$
$\bar{D}\Sigma^*$	3/2-	C	Ξ Σ*	1+	$C_a + \frac{5}{9}C_b$
DL_c	572	C_a	$ \underline{\neg}_{cc} \underline{\neg}_{c}$	2^+	$C_a - \frac{1}{3}C_b$
⊅ *Σ	$1/2^{-}$	$C_a - \frac{4}{3}C_b$	□ * Σ	1+	$C_a - \frac{10}{9}C_b$
$D \mathcal{L}_c$	$3/2^{-}$	$C_a + \frac{2}{3}C_b$	$\Box_{cc} \Box_{c}$	2^+	$C_a + \frac{2}{3}C_b$
	$1/2^{-}$	$C_a - \frac{5}{3}C_b$		0^+	$C_a - \frac{5}{3}C_b$
$ar{D}^*\Sigma^*_*$	3/2-	$C = \frac{2}{3}C$	$\Xi_{cc}^*\Sigma_c^*$	1^{+}	$C_a - \frac{11}{9}C_b$
$\boldsymbol{\nu} - \boldsymbol{\mu}_c$		$C_a - \frac{1}{3}C_b$		2^+	$C_a - \frac{1}{3}C_b$
	$5/2^{-}$	$C_a + C_b$		3+	$C_a + C_b$

38

LHCb data lead to **10 molecular dibaryon states**

From (10) dibaryons to (7) pentquarks

Correlations seem to be robust

Heavy quark spin symmetry breaking

$$rac{\Lambda_{QCD}}{m_c} \approx 15\%$$

\Box Heavy antiquark diquark symmetry breaking $\frac{\Lambda_{QG}}{m_c}$

$$rac{A_{QCD}}{m_c \nu} pprox 25\%$$

$$1^{+} - 0^{+} = -(4.9 \sim 11.8) MeV$$

 $\Delta_m < 0$

Scenario A 3/2 higher 1/2 lower $1^{+} - 0^{+} = 6.3 \sim 13.1 \, MeV$ $\Delta_m > 0$

> Scenario B 1/2 higher 3/2 lower

Breaking up to 39%

Pc(4457): 3/2 Pc(4440): 1/2

Pc(4457): 1/2 Pc(4440): 3/2

Correlation in case of even larger breaking

Contents

- □ Motivation: a new paradigm in studies of the strong interaction
- \Box The new pentaquark states as $\overline{D}\Sigma_c$ molecules
- **\square** From $\Xi_{cc}\Sigma_c$ dibaryon mass splitting to the pentaquark spins
- **From Pcs to the pentaquark spins**
- □ Summary and outlook

SU(3)symmetry

$$\overline{D}^{(*)}\Sigma_c^{(*)} \longrightarrow \overline{D}^{(*)}\Xi_c^{(\prime*)}$$

From Σ_c to Ξ_c' , straightforward, the same light quark spin

$$V(\bar{D}\Xi'_c, J=\frac{1}{2})=C_a\,,$$

$$V(\bar{D}\Xi_c^*, J=\frac{3}{2})=C_a\,,$$

$$V(\bar{D}^*\Xi'_c, J = \frac{1}{2}) = C_a - \frac{4}{3}C_b,$$
$$V(\bar{D}^*\Xi'_c, J = \frac{3}{2}) = C_a + \frac{2}{3}C_b,$$

$$V(\bar{D}^* \Xi_c^*, J = \frac{1}{2}) = C_a - \frac{5}{3} C_b ,$$

$$V(\bar{D}^* \Xi_c^*, J = \frac{3}{2}) = C_a - \frac{2}{3} C_b ,$$

$$V(\bar{D}^* \Xi_c^*, J = \frac{5}{2}) = C_a + C_b .$$

$$\overline{D}^{(*)}\Sigma_c^{(*)} \longrightarrow \overline{D}^{(*)}\Xi_c^{(*)}$$

From Σ_c and Ξ_c , more assumptions are needed

D For $\overline{D}^{(*)}\Xi_c^{(\prime*)}$, one can denote the contact range interaction by $F'_{1/2}$ and $F'_{3/2}$

$$\frac{1}{2} \bigotimes 1 = \frac{1}{2} \bigoplus \frac{3}{2}$$

D For $\overline{D}^{(*)} \mathcal{Z}_{c}^{(*)}$, one can denote the contact range interaction by $\mathbf{F}_{1/2}$

$$\frac{1}{2} \bigotimes 0 = \frac{1}{2}$$

Two scenarios

$$\Box F_{1/2} = F'_{1/2} = C_a - 2C_b \qquad \Box$$

$$\Box F_{1/2} = LHG$$

$$V(\bar{D}\Xi_c, J = \frac{1}{2}) = C_a - 2C_b,$$
$$V(\bar{D}^*\Xi_c, J = \frac{1}{2}) = C_a - 2C_b,$$
$$V(\bar{D}^*\Xi_c, J = \frac{3}{2}) = C_a - 2C_b.$$

$$V(\bar{D}\Xi_c, J = \frac{1}{2}) = C_a,$$
$$V(\bar{D}^*\Xi_c, J = \frac{1}{2}) = C_a,$$
$$V(\bar{D}^*\Xi_c, J = \frac{3}{2}) = C_a.$$

 C_a and C_b can be determined from reproducing Pc(4440) and Pc(4457)

Seven $\overline{D}^{(*)} \Xi_c^{(*)}$ molecules (I=1/2)

State	J^P	Λ(GeV)	B. E(A)	Mass(A)	B. E(B)	Mass(B)	Ref. [45]	Ref. [47]
$\bar{D}\Xi_c'$	$ 1/2^-$	1(0.5)	$8.5^{+17.4}_{-8.4}(9.3^{+8.7}_{-6.7})$	4437(4436)	$14.0^{+21.7}_{-12.8}(14.9^{+11.4}_{-9.3})$	4431(4430)	4436.7	4423.7
$\bar{D}\Xi_c^*$	$3/2^{-}$	1(0.5)	$9.0^{+17.7}_{-8.8}(9.5^{+7.8}_{-6.7})$	4504(4504)	$14.7^{+21.9}_{-13.3}(15.2^{+11.4}_{-9.4})$	4499(4498)	4506.99	4502.9
$\bar{D}^* \Xi_c'$	$ 1/2^-$	1(0.5)	$23.4^{+27.0}_{-18.9}(22.5^{+14.2}_{-12.3})$	4563(4564)	$5.6^{+14.3}_{\dagger}(5.2^{+6.4}_{-4.9})$	4581(4581)	4580.96	4568.7
$\bar{D}^* \Xi_c'$	$ 3/2^-$	1(0.5)	$5.6^{+14.3}_{\dagger}(5.2^{+6.4}_{-4.3})$	4581(4581)	$23.4^{+27.0}_{-18.8}(22.5^{+14.2}_{-12.3})$	4563(4564)	4580.96	4582.3
$\bar{D}^* \Xi_c^*$	$ 1/2^-$	1(0.5)	$28.0^{+29.4}_{-21.4}(26.3^{+15.5}_{-13.7})$	4627(4628)	$4.0^{+12.5}_{\dagger} (3.3^{+5.1}_{-3.0})$	4651(4651)	4650.86	4635.4
$\bar{D}^* \Xi_c^*$	$ 3/2^-$	1(0.5)	$\left 17.2^{+23.2}_{-14.9} (16.4^{+11.6}_{-9.8}) \right $	4637(4638)	$11.1^{+18.9}_{-10.5}(10.5^{+9.1}_{-7.2})$	4643(4644)	4650.58	4644.4
$\bar{D}^* \Xi_c^*$	$ 5/2^- $	1(0.5)	$4.0^{+12.5}_{\dagger}(3.3^{+5.1}_{-3.0})$	4651(4651)	$\left 28.0^{+29.4}_{-21.4} (26.3^{+15.5}_{-13.7}) \right.$	4627(4628)	4650.56	4651.7

- Consistent with Chu-Wen Xiao et al [1906.0901], Bo Wang et al. [1912.12592], which favor that Pc(4440) ½ and Pc(4457) 3/2
- **Not very useful** to help distinguish the spins of Pc(4440) and Pc(4457)

Three $\overline{D}^{(*)} \Xi_c$ molecules (I=1/2)

	state	J^P	$\Lambda(\text{GeV})$	B. E(A)	Mass(A)	B. E(B)	Mass(B)	[45]	[47]
	$\bar{D}\Xi_c$	$1/2^{-}$	1(0.5)	$26.3^{+36.1}_{-24.3}(27.4^{+19.6}_{-16.9})$	4310(4309)	$0.9^{+10.5}_{\dagger}(1.0^{+4.1}_{\dagger})$	4335(4335)	4276.59	4319.4
Ι	$\bar{D}^* \Xi_c$	$1/2^{-}$	1(0.5)	$29.5_{-25.4}^{+37.4}(28.8_{-17.4}^{+20.0})$	4448(4449)	$1.6^{+12.0}_{\dagger}(1.3^{+4.5}_{\dagger})$	4476(4476)	4429.84	4456.9
	$\bar{D}^* \Xi_c$	$3/2^{-}$	1(0.5)	$29.5_{-25.4}^{+37.4}(28.8_{-17.4}^{+20.0})$	4448(4449)	$1.6^{+12.0}_{\dagger}(1.3^{+4.5}_{\dagger})$	4476(4476)	4429.84	4463.0
II	$\bar{D}\Xi_c$	$1/2^{-}$	1(0.5)	$7.7^{+20.9}_{\dagger}(8.9^{+10.5}_{-7.4})$	4329(4327)	$13.0^{+26.0}_{-12.9}(14.4^{+13.6}_{-10.6})$	4335(4321)	4276.59	4319.4
	$\bar{D}^* \Xi_c$	$1/2^{-}$	1(0.5)	$9.6^{+22.4}_{\dagger}(9.8^{+10.8}_{-7.9})$	4468(4468)	$15.4^{+28.4}_{-15.0}(15.5^{+14.0}_{-11.0})$	4462(4462)	4429.84	4456.9
	$\left \bar{D}^* \Xi_c \right $	$3/2^{-}$	1(0.5)	$9.6^{+22.4}_{\dagger}(9.8^{+10.8}_{-7.9})$	4468(4468)	$15.4^{+28.4}_{-15.0}(15.5^{+14.0}_{-11.0})$	4462(4462)	4429.84	4463.0

Case I can help to infer the spins of Pc(4440) and Pc(4457), but **Case II can not**

□ Binding energies from the LHG theory are much larger

Pcs from LHCb discovered

<u>2012.10380</u> 3.1 σ

• $M = 4458.8 \pm 2.9^{+4.71}_{-1.1}$ MeV

• $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV

a $\overline{D}^{(*)}\Xi_c$ molecule $J^P = \frac{1^-}{2}/\frac{3^-}{2}$

Summary

- We studied the latest LHCb pentaquark states using a contact-range effective field theory.
- **\Box** We showed that they can be accommodated rather nicely as $\overline{D}\Sigma_c$ bound states and predicted the existence of three more states.
- We pointed out that it is possible to determine the spins of these states by studying the dibaryon systems, which seem to be feasible in lattice QCD already.
- □ Their SU(3) partners, i.e., Pcs, are very likely to exist, but may not offer much help to determine the spins of Pc(4457) and Pc(4440)

谢谢!敬请批评指正!