

Recent results on heavy baryon spectroscopy at LHCb

Jibo He (何吉波), UCAS (中国科学院大学) 第五届强子谱与强子结构研讨会 (Jan 23-25, 2021)

Outline

- Introduction
- Charmed baryon
- Doubly heavy baryon
- Beauty baryon
- Summary

Please see Liming's talk on Exotic hadrons at LHCb

More results can be found here:

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html

Large Hadron Collider

RANC

CMS

Jibo HE (UCAS)

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

CERN Mevrin

ALICE

3

Heavy baryon spectroscopy @ LHCb⁻

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavor factory!

4

• Predominantly in forward/backward cones

- Compared to minimum bias (background)
 - Relatively high mass \rightarrow high *transverse momentum*
 - Relatively long lifetime \rightarrow large impact parameter (IP)
- Requires excellent vertexing, tracking, particleidentification

The LHCb experiment

The LHCb trigger (Run-II)

• Level-0, Hardware

- Fully synchronous at 40 MHz
- Selection of high p_T particles
 - * $p_{\mathrm{T}}(\mu) > \sim$ 1.5 GeV/*c*,
 - $ho_{\mathrm{T}}(\mu_1) imes
 ho_{\mathrm{T}}(\mu_2) > \sim (1.5 \,\mathrm{GeV}/c)^2$
 - ★ $E_{\rm T}(h,e,\gamma) > 2.5-4$ GeV
- High Level Trigger (HLT), Software
 - Stage 1, tracking info, IP cuts
 - Stage 2, full reconstruction + selections

 \sim 50 kB/event \Rightarrow 0.25GB/s, \sim 2 PB/year

 Offline data flow Raw data → Stripping → (μ)DST Stripping, also as HLT3, Pre-selections of all decay channels under study

The turbo stream

LHCb luminosity prospects

	LHC era	HL-LHC era			
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2022-24)	Run 4 (2027-30)	Run 5+ (2031+)	
3 fb ⁻¹	6 fb⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹ ??	
		Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??	

Lots of singly charmed baryons

Λ⁺_c → pK⁻π⁺: ~ 1×10⁶ per fb⁻¹ @ 7 TeV
Ξ⁺_c → pK⁻π⁺: ~ 3×10⁵ per fb⁻¹ @ 7 TeV

Charmed baryon spectroscopy

Jibo HE (UCAS)

Observation of excited Ω_c^0 states

- With $\Xi_c^+ K^-$, $\Xi_c^+ \to p K^- \pi^+$
- 5 narrow states + evidence of a broader one

	e 400)		LHCb	_				
01		-		$+ \Xi_c^+ K^-$	-	Resonance	Mass (MeV)	Γ (MeV)	$N_{\sigma} = \sqrt{\Delta \chi^2}$
	$\widetilde{}$	-		Full fit	d -	$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	20.4
7	§ 300			Feed-dowr	ns _	$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	20.4
	ida	-		Ξ_c^+ sidebar	nds -			$< 1.2\mathrm{MeV}, 95\%$ C	CL
RI SRI	ipu o				-	$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	23.9
	ਲ 200 ਹ					$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	21.1
	-			L - Haller - T - Aller - L - Aller - Al Aller - Aller - Aller - Aller - All		$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	10.4
	100				- T			$< 2.6\mathrm{MeV}, 95\%$ C	CL
	100				-	$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	6.4
	(al d _{aa} dat til blektoorpelie opka	hu, Mu, Junor				
	(3000	3100	3200	330	00			
				$m(\Xi_c^+K_c^-)$ [N	[eV]				4.0
	JIDO HE	(UCAS)		Heavy	barvor) spectroscopy (12

[82001]

Observation of excited Ξ_c^0 states

• Three excited Ξ_c^0 states

Resonance	Peak of ΔM [MeV]	Mass [MeV]	Γ [MeV]
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_c(2939)^0$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

 p, K^-, π^+

Observation of excited Ξ_c^0 states

- Gell-Mann-Okubo formula for baryons $m(\Omega_c^{**}) m(\Xi_c^{**}) = m(\Xi_c^{**}) m(\Sigma_c^{**})$
- We have
 - $$\begin{split} m[\Omega_c(2770)^0] &- m[\Xi_c(2645)^0] \\ &\simeq m[\Xi_c(2645)^0] m[\Sigma_c(2520)^0] \simeq 125 \text{ MeV}. \end{split}$$

```
it also holds for

m[\Omega_c(3050)^0] - m[\Xi_c(2923)^0]

\simeq m[\Xi_c(2923)^0] - m[\Sigma_c(2800)^0] \simeq 125 MeV,

m[\Omega_c(3065)^0] - m[\Xi_c(2939)^0] \simeq 125 MeV,

m[\Omega_c(3090)^0] - m[\Xi_c(2965)^0] \simeq 125 MeV.
```


(GeV)

Charmed baryon mass

[PRL 124 (2020) 222001

Doubly charmed baryon

- $-M(\Xi_{cc}^{+}) \approx M(\Xi_{cc}^{++}) = 3621.55 \pm 0.38 \text{ MeV}$
- $-M(\Omega_{cc}^+) \approx M(\Xi_{cc}^{++}) + 100 \text{ MeV}$
- Lifetime
 - $-3\tau(\Xi_{cc}^{+}) \approx 3\tau(\Omega_{cc}^{+}) \approx \tau(\Xi_{cc}^{++}) = 0.256 \pm 0.027 \text{ ps}$
- Production [PRD 83 (2011) 034026]

$$-\sigma(cc) = 90$$
 nb @ 13 TeV in LHCb

$$-f_{\rm frag} u: d: s \sim 1: 1: 0.3$$

 $\sigma(\Omega_{cc}) \sim 13 \text{ nb}$

$$\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \sim 40 \text{ nb}$$

Jibo HE (UCAS)

Ξ_{cc}^{++} @ SELEX

3.35

3.4

3.45

3.5

3.6

3.55

Ξ_{cc} @ LHCb & others

- SELEX results not confirmed by FOCUS, Babar, Belle & LHCb
- $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ searched by LHCb w/ 2011 data

• However, LHCb already had lots of B_c^+ events, and double-charm events...

Ξ_{cc}^{++} properties

- Ξ_{cc}^{++} mass measured: $3621.40 \pm 0.72(\text{stat.}) \pm 0.27(\text{syst.}) \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2$ SELEX: m(Ξ_{cc}^+)=3519±1 MeV Isospin partner?
 - Decay weakly, mass peak remains after lifetime cut
- \Rightarrow Measurement of $\tau(\Xi_{cc}^{++})$ needed

PRL 119 (2017) 112001]

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

• $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ expected to have large branching fraction

[F.-S. Yu et al., CPC 42 (2018) 051001]

- Searched w/ 2016 data
- [F.-S. Yu *et al.*, CPC 42 (2018) Searched w/ 2016 Ratio of total BR: $B(\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}) \cdot B(\Xi_{c}^{+})$ $B(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}) \cdot B(\Xi_{c}^{+})$ $= 0.035 \pm 0.009 \pm 0.000$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) \cdot \mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})$
 - $\frac{\mathcal{D}(\Xi_{cc}^{c} \to \Xi_{c} \pi^{-}) \mathcal{D}(\Xi_{c}^{c} \to p\pi^{-}\pi^{-})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}) \cdot \mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}$ $= 0.035 \pm 0.009 \pm 0.003$

at the lower end of prediction

• 5.9 σ , re-discovery!

Precision measurement of $m(\Xi_{cc}^{++})$

 UROP, as preparation to search for excited states, event-selection re-optimised

Measurement of Ξ_{cc}^{++} production

- Measured w/ 2016 data

Measurement of Ξ_{cc}^{++} production

Search for Ξ_{cc}^+

g maa

g mm

- Blinded analysis
- $\tau(\Xi_{cc}^+)$: (0 fs, 80 fs) × (non)observation
- Evidence around Ξ_{cc}^{++} , with local (global) significance $3.1\sigma (1.7\sigma)$

Unblinded Ξ_{cc}^+ mass distribution

 Swtiching to event-selection designed for setting upper limit

Upper limits on Ξ_{cc}^+ production

• UL relateive to Λ_c^+ and Ξ_{cc}^{++} in the fiducial region $4 < p_{\rm T} < 15$ GeV, 2<y<4.5

Doubly heavy baryon

Mass

$$-M(\Xi_{bc}^{+}) \approx M(\Xi_{bc}^{0})$$
: 6.7-7.2 GeV

- $-M(\Omega_{bc}^{0}) \approx M(\Xi_{bc}^{+}) + 100 \text{ MeV}$
- Lifetime

 $-\tau(\Xi_{bc}^{+}) \approx \tau(\Xi_{bc}^{0}) \approx \tau(\Omega_{bc}^{0})$: 100-500 fs

• Production [PRD 83 (2011) 034026]

 $-\sigma(bc) = 35 \text{ nb} @ 13 \text{ TeV}$ in LHCb, c.f. $\sigma(cc) = 90 \text{ nb}$

$$-f_{\text{frag}} u: d: s \sim 1: 1: 0.3$$

$$\sigma(\Xi_{bc}^{+}) = \sigma(\Xi_{bc}^{0}) \sim 15 \text{ nb}$$

$$\sigma(\Omega_{bc}^{0}) \sim 5 \text{ nb}$$

Beauty baryon

Jibo HE (UCAS)

Excited Λ_b / Σ_b states

Excited Λ_b / Σ_b states

Jibo HE (UCAS)

Heavy baryon spectroscopy @ LHCb

33

Excited Ξ_b states

• Netural $\Xi_b(6227)$ with $\Xi_b^-\pi^+, \Xi_b^- \to \Xi_c^0\pi^-$

Excited Ω_b states

• Four states decaying to $\Xi_b^0 K^-$, $\Xi_b^0 \to \Xi_c^+ \pi^-$

State	Mass [MeV]	Width [MeV] (90% UL)	Nsig	Local significance	Global significance
$\Omega_{b}(6316)^{-}$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	<2.8	15^{+6}_{-5}	3.6	2.1
$\Omega_{b}(6330)^{-}$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	<3.1	18^{+6}_{-5}	3.7	2.6
$\Omega_{b}(6340)^{-}$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	<1.5	47^{+11}_{-10}	7.2	6.7
$\Omega_{b}(6350)^{-}$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	$\begin{array}{c} \textbf{<2.8} \\ 1.4^{+1.0}_{-0.8} \pm 0.1 \end{array}$	57^{+14}_{-13}	7.0	6.2

Prospects

current LHCb

ŝ

Upgrade I

LS3

LS2

Upgrade II

S4

Integrated Luminosity [fb⁻¹]

200

150

100

50

-S5

- Beauty/charmed baryon
- Doubly heavy baryon

$$-\Xi_{cc}^{++} \Longrightarrow \Xi_{cc}^{+} \Longrightarrow \Omega_{cc}^{+},$$
excited states

Summary

- LHCb has done world-leading works on charmed & beauty baryon spectroscopy
 - Charmed baryon, e.g., excited Ω_c/Ξ_c states
 - Doubly heavy hadrons, e.g., Ξ_{cc}^{++}
 - Beauty baryon, e.g., excited Ω_b/Ξ_b states
- With LHCb upgrade (50 fb⁻¹) & upgrade-II (300 fb⁻¹), much more will be done
- Your suggestions are always welcome

Science China Physics, Mechanics & Astronomy

- Editor's Focus: aim at PRL quality, fast channel
 - Full-text HTML and timely publication (online immediately)
 - Highlighted at EurekAlert and other public media

Scan the QR code 😪 Get the news

✓ Springer

Scientia Sinica Physica, Mechanica & Astronomica

- Since 1950, in Chinese
- Indexed in Scopus, ESCI, etc.
- Special topic is encouraged, published over 50 special topics

国家自然科学基金委员会

Sponsored by

中國科学院

Published by

