Hidden－charm molecule with

strangeness

Zhi Yang
University of Electronic Science and Technology of China（电子科技大学）

Based on arXiv： 2011.08725
In collaboration with Xu Cao，Feng－Kun Guo，Juan Nieves，Manuel Pavon Valderrama

Outline

- Hadron structure
- Zc family
- Molecular interpretation of $Z c(3900)$
- Line shape and pole position of $Z \operatorname{cs}(3985)$
- Summary

Hadron structures

Conventional hadrons

- Proposals for the heavy exotic hadrons
- Hadron structure is a platform to study the QCD in low energy region.
- Quark model classified the hadrons very well.
- However, many new hadrons can not fit into the conventional hadrons (mass and properties).

Exotic hadrons in Zc family

Lebed, Mitchell, Swanson, PPNP93(2017)143
$\mathrm{Zc}(3900)^{+}$
PRL 110, 252001 (2013)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{-} \pi^{+} / / / 1 \mathrm{~b}$ $\mathrm{Zc}(3900)^{0}$
PRL 115, 112003 (2015)

$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi$ $\mathrm{Zc}(4020)^{+}$
PRL 111, 242001(2013)

$e^{+} e^{-} \rightarrow \pi^{-} \pi^{+} h_{c}$
$\mathrm{Zc}(4020)^{0}$
PRL113,212002 (2014)

$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} h_{c}$
$\mathrm{Zc}(3885)^{+}$
PRL 112, 022001(2014)

$$
e^{+} e^{-} \rightarrow \pi^{-}\left(D \bar{D}^{*}\right)^{+}
$$

$\mathrm{Zc}(3885)^{0}$
PRL115, 222002 (2015)

$e^{+} e^{-} \rightarrow \pi^{0}\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}\right)^{0}$
Zc(4025) ${ }^{+}$
PRL 112, 132001 (2014)

$$
e^{+} e^{-} \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}
$$

$$
\mathrm{Zc}(4025)^{0}
$$

PRL115, 182002 (2015)

$e^{+} e^{-} \rightarrow \pi^{0}\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}^{*}\right)^{\mathbf{0}}$

Exotic hadrons in Zc family

> Zc states were observed in the hidden- and open-charm channel;
> Unsuccessful searches for Zcs by Belle and BES3 in the hidden channel. PRD77, 011105(2008); PRD89,072015(2014); PRD97, 071101(2018)

Zc(3900): kinematical effect or molecular?

- The charged one was observed in $J / \psi \pi^{ \pm}$mass distribution by BESIII and Belle.
- Must contain at least 4 quarks, $\bar{c} \bar{d} \bar{d}$, slightly above the $D^{*} \bar{D}$ threshold, mainly $D^{*} \bar{D}$ molecular? Or tetraquark, hybrid...?
- Kinematical cusp effect? In this scenario, it is not self consistent.

Guo, Hanhart, Wang and Zhao, PRD91(2015)051504

- Hadronic molecule, not triangle singularity

Gong, Pang, Wang and Zheng, EPJC78 (2018)276

Zc(3900): absence in B decay

$>$ The $Z_{c}(3900)$ was found through $e^{+} e^{-} \rightarrow J / \psi \pi \pi$ and $D^{*} \bar{D} \pi$.
$>$ However, it was not found in the $B \rightarrow K Z c\left(Z_{c} \rightarrow J / \psi \pi\right)$ decay. Instead, the $Z_{c}(4200)$ and $Z_{c}(4430)$ were found.
> The absence may have something to do with its internal structure.
> Under the hadronic molecular picture, both $X(3872)$ and $Z_{c}(3900)$ have $D^{*} \bar{D}$ constituent. The isospin of the $Z_{c}(3900)$ is 1 , while for the $X(3872)$ is 0 .
$>$ The production of the $D^{*} \bar{D}$ pair with isospin 1 is highly suppressed in B decays.
\rightarrow The $\mathrm{Zc}(3900)$ being a $D^{*} \bar{D}$ hadronic molecule naturally explains its absence in the B decays.

Zcs signal in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

D^{*} / D^{0}
> The recoil mass distribution was studied by BES3;
> A clear peak was found at energy point 4.681 GeV ;
> Search at other 4 energies was also performed.

arXiv: 2011.07855

Zcs signal in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

> The Zcs structure was also observed in other four energy points.

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{\mathrm{int}}\left(\mathrm{pb}^{-1}\right)$
4.628	511.1
4.641	541.4
4.661	523.6
4.681	1643.4
4.698	526.2

arXiv: 2011.07855
> There exists one particle in the energy range:

$$
\psi(4660) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

```
\psi(4660) MASS
4633 \pm7 MeV (S = 1.4)
\psi(4660) WIDTH
64\pm9 MeV
```


Triangle singularity in Zcs production

$>$ There is such triangle diagram which appears as peak around threshold at c.m. energy 4.681 GeV ;
$>$ It can enhance the production of near-threshold hadronic molecules.

Guo, Liu and Sakai, PPNP112,103757; Guo, Hanhart, Meissner, Wang, Zhao and Zou, RMP90,015004

Energy points: $[4.628,4.641,4.661,4.681,4.698] \mathrm{GeV}$

Zcs in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

> Constant-contant EFT: (for virtual/bound state)

$$
V_{\text {virtual }}^{(O)}=C^{(O)}
$$

> Resonance EFT:

$$
V_{\text {res }}^{(O)}=C^{(O)}+2 D^{(O)} k^{2}
$$

Other fit parameters:

- N: overall constant (e+evertex);
- r: relative weight between
 diagrams (d, e) and diagrams (a, b, c) ;

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{\text {int }}\left(\mathrm{pb}^{-1}\right)$	$n_{\text {sig }}$	$f_{\text {corr }} \bar{\varepsilon}(\%)$	$\sigma^{B} \cdot \mathcal{B}(\mathrm{pb})$
4.628	511.1	$4.2_{-4.2}^{+6.1}$	1.03	$0.8_{-0.8}^{+1.2} \pm 0.6(<3.0)$
4.641	541.4	$9.3_{-6.2}^{+7.3}$	1.09	$1.6_{-1.1}^{+1.2} \pm 1.3(<4.4)$
4.661	523.6	$10.6_{-7.4}^{+8.9}$	1.28	$1.6_{-1.1}^{+1.3} \pm 0.8(<4.0)$
4.681	1643.4	$85.2_{-1.6}^{+17.6}$	1.18	$4.4_{-0.8}^{+0.9} \pm 1.4$
4.698	526.2	$17.8_{-7.2}^{+8.1}$	1.42	$2.4_{-1.0}^{+1.1} \pm 1.2(<4.7)$

Fits of Zcs line shapes

> Constant-contact EFT:
(for virtual/bound state)

$$
V_{\mathrm{virtual}}^{(O)}=C^{(O)}
$$

> Resonance EFT:

$$
V_{\text {res }}^{(O)}=C^{(O)}+2 D^{(O)} k^{2}
$$

Energy points: 4.681 GeV

Fits of Zcs line shapes

$>$ The fits are quite well, $\chi^{2} /$ dof ≈ 0.6
for both cases.

Energy points: $[4.628,4.641,4.661,4.698] \mathrm{GeV}$

LECs and Poles

$>$ The LECs in fitting Zcs line shapes:
for constant-contact EFT:

$$
C^{(O)}(\Lambda)=-0.77_{-0.10}^{+0.12}\left(-0.45_{-0.04}^{+0.05}\right) \mathrm{fm}^{2}
$$

for resonant EFT:

$$
\begin{aligned}
& C^{(O)}(\Lambda)=-0.72_{-0.13}^{+0.18}\left(-0.44_{-0.05}^{+0.06}\right) \mathrm{fm}^{2} \\
& D^{(O)}(\Lambda)=-0.17_{-0.21}^{+0.21}\left(-0.025_{-0.049}^{+0.066}\right) \mathrm{fm}^{4}
\end{aligned}
$$

Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {virtual }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	3871_{-3}^{+2}	3867_{-7}^{+4}	$3884.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	4014_{-3}^{+2}	4012_{-6}^{+3}	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*}-D^{*} \bar{D}_{s}$	$3979.4,3976.9$	3974_{-3}^{+2}	3971_{-6}^{+3}	
	$D^{*} \bar{D}_{s}^{*}$	4120.8	4117_{-5}^{+3}	4115_{-6}^{+3}	
Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {res }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	$3861_{-0}^{+20}-i 6_{-6}^{+14}(\mathrm{R} / \mathrm{V})$	$3861_{-35}^{+16}-i 0_{-0}^{+29}(\mathrm{R} / \mathrm{V})$	$3884.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	$4004_{-0}^{+18}-i 0_{-0}^{+20}(\mathrm{R} / \mathrm{V})$	$4006_{-37}^{+10}-i 0_{-0}^{+28}(\mathrm{R} / \mathrm{V})$	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*}-D^{*} \bar{D}_{s}$	$3979.4,3976.9$	$3963_{-0}^{+20}-i 3_{-3}^{+16}(\mathrm{R} / \mathrm{V})$	$3966_{-36}^{+12}-i 0_{-0}^{+20}(\mathrm{R} / \mathrm{V})$	$3982.5_{-3.3}^{+2.8}-i 25.6_{-10.6}^{+12.1}[4]$
	$D^{*} \bar{D}_{s}^{*}$	4120.8	$4110_{-0}^{+14}-i 0_{-0}^{+19}(\mathrm{R} / \mathrm{V})$	$4111_{-25}^{+9}-i 0_{-0}^{+15}(\mathrm{R} / \mathrm{V})$	

$Z c(3900):$ line shape in $J / \psi \pi$ and $D^{*-} D^{0}$ channels

Albaladejo, Guo, Hidalgo and Nieves, PLB755,337(2016)

$M_{Z_{c}}(\mathrm{MeV})$	$\Gamma_{Z_{c}} / 2(\mathrm{MeV})$	Ref.	Final state
$3894 \pm 6 \pm 1$	$30 \pm 12 \pm 6$	$\Lambda_{2}=1.0 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3886 \pm 4 \pm 1$	$22 \pm 6 \pm 4$	$\Lambda_{2}=0.5 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3831 \pm 26_{-28}^{+7}$	virtual state	$\Lambda_{2}=1.0 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3844 \pm 19_{-21}^{+12}$	virtual state	$\Lambda_{2}=0.5 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$

LECs and Poles from $\mathrm{Zc}(3900)$ case

> The LECS in reproducing the pole position of $\mathrm{Zc}(3900)$:
for constant-contact EFT:

$$
C^{(O)}(\Lambda)=-0.29_{-0.32}^{+0.15}\left(-0.28_{-0.39}^{+0.08}\right) \mathrm{fm}^{2}:
$$

for resonant EFT:

$$
\begin{aligned}
& C^{(O)}(\Lambda)=-0.06_{-0.16}^{+0.24}\left(-0.22_{-0.06}^{+0.10}\right) \mathrm{fm}^{2} \\
& D^{(O)}(\Lambda)=-0.31_{-0.17}^{+0.10}\left(-0.09_{-0.07}^{+0.03}\right) \mathrm{fm}^{4}
\end{aligned}
$$

Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {virtual }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	Input $[19]$	Input $[19]$	$3888.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	3988_{-27}^{+21}	3978_{-36}^{+25}	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*} / D^{*} \bar{D}_{s}$	$3979.4 / 3976.9$	3948_{-27}^{+22}	397_{-36}^{+25}	
	$D^{*} \bar{D}_{s}^{*}$	4120.8	4092_{-26}^{+21}	4083_{-35}^{+24}	
Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {res }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	Input $[19]$	Input $[19]$	$3888.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	$4025 \pm 4-i(21 \pm 7)$	$4035 \pm 6-i(29 \pm 13)$	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*} / D^{*} \bar{D}_{s}$	$3979.4 / 3976.9$	$3986 \pm 4-i(22 \pm 7)$	$3996 \pm 6-i(30 \pm 13)$	$3982.5_{-3.3}^{+2.8}-i 25.6_{-10.6}^{+12.1}[4]$
	$D^{*} \bar{D}_{s}^{*}$	4120.8	$4129 \pm 4-i(21 \pm 7)$	$4138 \pm 6-i(28 \pm 12)$	

Summary

> Two EFTs correspond to two origins: virtual/bound and resonance states. Both can fit the line shapes very well.
> Triangle singularity plays an important role.
$>$ Zc and Zcs are partners in SU(3)-flavor symmetry with molecular configurations.
> High statistic measurements from different channels or energies are needed to:

- classify the origin of Zcs;
- reduce the error of pole position.

Thank you!

