# Detecting pure triangle singularity effect through $\psi(2S) \rightarrow \overline{p}p\eta$ process

### Qi Huang arXiV: 2011.14590 Collaborators: Chao-Wei Shen, Jia-Jun Wu UCAS

2021-01-24

# Outline

- Motivation
- Results
- Summary

Triangle Singularity (TS): L. D. Landau, Nucl. Phys. 13, 181-192 (1959) ⇒ Concept.



. . . . . . . . .

BESIII, 2012: Isospin breaking process  $\eta(1405) \rightarrow \pi^0 f_0(980)$ .

Nature of  $a_1(1420)$ : Triangle singularity caused by  $K^*\overline{K}K$  loop.

Lots of theoretical works.

A recent review: F. K. Guo, et. al., Prog. Part. Nucl. Phys. 112, 103757 (2020)

### Still not confirmed experimentally !

### Meaning:

- 1. Understand triangle singularity itself.
- 2. Confirm hadron loop mechanism.
- 3. Help studying properties of hadrons.





### 1. Threshold

#### Example:

 $Z_c(3900) - \overline{D}D^*$  threshold ~ 25 MeV  $P_c \sim 4.45 \ GeV - \chi_{c1}p$  threshold ~ O(10) MeV X.-H. Liu, M. Oka and Q. Zhao, Phys. Lett. B753, 297 (2016):

If a threshold enhancement falls into the TS kinematic region, distinguishing it from TS will be complicated.

### 2. Width of internal particles

Example:

 $\eta(1405) \rightarrow \pi^0 f_0(980) \rightarrow 3\pi$ 

### 3. Information of interaction vertex

Example:

 $P_c(4450)$ :  $\Lambda_b \to J/\psi pK$  via  $\chi_{c1}p\Lambda^*$  loop.  $\checkmark$  No experimental data to constraint the  $\Lambda_b \chi_{c1}\Lambda^*$  vertex  $\Rightarrow$  Line shape only.

N. N. Achasov, et.al., Phys. Rev. D92, 036003 (2015):





 $m_{TS} @ m_{p\eta}$ : 1.56387 GeV

#### 1. Far away from the threshold of the relative channel.

Position of TS is 80 MeV away from  $p\eta$  threshold. TS and threshold can be separated clearly.

#### 2. Narrow widths of all internal particles.

Peak caused by triangle singularity must be very sharp. Distinguishing it from  $N^*$  states is very easy.

#### 3. The well known three vertices in the triangle loop.

All three vertices can be constrained by experimental data. Strength of TS can be predicted precisely.

TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process



TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

Main decay mechanism:



TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

Main decay mechanism:



#### Loop diagram:

 $p\eta \rightarrow p\eta$  vertex: s-channel contribution:  $p\eta \rightarrow N^* \rightarrow p\eta$   $N^*$  near  $m_{TS}$ : N(1440), N(1520), N(1535), N(1650). Considerable  $B(N^* \rightarrow p\eta)$ : N(1535), N(1650).  $\Rightarrow N^* = N(1535), N(1650)$ .

$$\mathcal{F}(q,m,\Lambda)=rac{\Lambda^4}{(q^2-m^2)^2+\Lambda^4}$$
 ,  $\Lambda=m+lpha\,\Lambda_{QCD}$  .

Tree diagram: Dominant! BESIII: PRD 88, 032010(2013)



#### Purpose:

To check if the narrow peak caused by the triangle loop diagram is visible after mixing it with the tree diagram.

TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

#### Loop diagram only



- 1. The peak caused by the triangle singularity is very sharp, its width is only about 1 MeV.
- 2. The contribution of N(1650) is negligible.
- 3. The peak at the triangle singularity is little dependent on the  $\alpha$  that appears in the expression of form factor.

#### Stable!

TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

#### Interference between tree and loop diagrams



Loop diagram:  $\alpha = 1, N(1535) + N(1650)$ .

- 1. There exists a visible enhancement at the right shoulder of N(1535).
- 2. The width of the peak caused by the triangle singularity is enlarged to 5 MeV.
- 3. The enhancement of the peak comparing to the tree diagram is about 10%.

TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

Effect of the tree diagram  $\psi(2S) \rightarrow \eta(J/\psi \rightarrow p\bar{p})$ 



Schmid theorem can't be applied directly here:

1.  $p\eta \rightarrow p\eta$  is not purely elastic process,  $p\pi$  channel must couples with it, which is effectively included in the imaginary part of  $N^*$  propagator.

2.  $\psi(2S) \rightarrow \bar{p}(N^* \rightarrow p\eta)$  will modify the amplitude to  $|t_{J/\psi}^{\text{Tree}} + t_{N^*}^{\text{Loop}}|^2$ , where  $t_{\text{elastic}}^{\text{Loop}} \neq t_{\text{elastic}}^{\text{Loop}}$ .

3. Contribution of  $\psi(2S) \rightarrow \eta(J/\psi \rightarrow p\overline{p})$  can be ----removed by applying a cut  $m_{p\overline{p}} < m_{J/\psi}$ .



TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

#### Interference between tree and loop diagrams



Loop diagram:  $\alpha = 1, N(1535) + N(1650)$ .

Black solid: No  $\psi(2S) \rightarrow \eta(J/\psi \rightarrow p\bar{p})$ , no cut. Red dashed:  $\psi(2S) \rightarrow \eta(J/\psi \rightarrow p\bar{p})$ ,  $m_{p\bar{p}} < 3.067$  GeV.

- 1. The contribution of  $\psi(2S) \rightarrow \eta(J/\psi \rightarrow p\bar{p})$  can be neglected after applying the  $m_{p\bar{p}}$  cut, thus there will be no effect of Schmid theorem.
- 2. The line changes little, our previous conclusions on the triangle singularity that appears in the  $m_{p\eta}$  of  $\psi(2S) \rightarrow p\bar{p}\eta$  process are still valid.

TS in  $\psi(2S) \rightarrow p\bar{p}\eta$  process

Discussion with experimentalists:

- 1. High statistics: 4 billion  $\psi(2S) \Rightarrow$  about 120 events.
- 2. High resolution: The resolution of the detector should be less than 2-3 MeV (BESIII: ~4.3 MeV).

#### An unavoidable weakness:

Phase angle between tree and loop diagrams: In our calculation, the phase angle is set to 0.

Only assumption but as a weak point with no solution: Enhancement might be invisible at some specific values.

#### We still hope the future experiments such as STCF could do precise analysis on this process.

## Improvement: Selection of internal particles

#### A lesson: Widths of internal particles should not be too narrow !

Or:

1. Peak of TS is too sharp to be detected by experiment.  $\implies$  Requirement of the resolution is too high.





- We predict a detectable pure TS effect in  $\psi(2S) \rightarrow p\overline{p}\eta$  process.
- A precise calculation on the strength of this TS is done.
- A visible enhancement shows up on the  $m_{p\eta}$  invariant mass spectrum.
- We suggest experiments do a precise analysis on  $\psi(2S) \rightarrow \overline{p}p\eta$  process.

Thank you ~