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Detectors = Information
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Big data Science
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42 countries J
170 computing centres |

Over 2 million tasks/ day\J

1 million computer cores Q '
1 exabyte of storage (1B GB)

CMS: 15B events in 8 months
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Needles In a
haystack

In ATLAS, up to July 4, 2012:

A million billion collisions

4.2 billion events analyzed

240,000 Higgs particles produced
~350 diphoton Higgs events detected
~8 four-lepton Higgs events detected
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LHC Data Flow

1 KHz

1MB/evt :
—

L1 trigger: local, hardware based, on FPGA, @experiment site
HLT: local/global, software based, on C/GPU, @experiment site
Offline: global, software based, on C/GPU, @CERN TO
Analysis: user-specific applications running on the grid

'IDC] KHz

‘ 4 LomHz ’79
OIS

ML for: Particle ID; Signal Mining; Inference accelerator ;
Automatic anomaly detection...
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Brief history of ML
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ML in HEP

Using neural networks to identify jets
Leif Lonnblad (Lund U.), Carsten Peterson (Lund U.), Thorsteinn Rognvaldsson (Lund U.) (May, 1990)

Published in: Nucl.Phys.B 349 (1991) 675-702

& DOl [= cite %) 120 citations

arXiv.org > hep-ph > arXiv:1101.3844

High Energy Physics - Phenomenology

[Submitted on 20 Jan 2011 (v1), last revised 20 Jun 2011 (this version, v2)]
Searches for the ¢’ of a fourth family
Bob Holdom, Qi-Shu Yan

We study the detection of the ¢’ of a fourth family during the early running of LHC with 7 TeV collision energy and 1 fo~! integrated luminosity. By use of
a we show that it is feasible to search for the ¢’ even with a mass close to the unitarity upper bound, which is in the 500 to 600 GeV
range. We also present results for the Tevatron with 10 fb~!. In both cases the search for a fourth family quark doublet can be significantly enhanced if
one incorporates the contribution that the b’ can make to a #’-like signal. Thus the bound on the mass of a degenerate quark doublet should be stronger
than the bounds obtained by treating ¢’ and b’ in isolation.
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Peter Higgs
CH FRS FRSE FInstP

Nobel laureate Peter Higgs at a press
conference, Stockholm, December 2013

Born Peter Ware Higgs
29 May 1929 (age 90)
Newcastle upon Tyne,
England, UK
Residence  Edinburgh, Scotland, UK
Nationality Britishl!]

Alma mater King's College London

(BSc, MSc, PhD)

Known for Higgs boson
Higgs field
Higgs mechanism

Symmetry breaking

HEP and ML

University of Edinburgh
Imperial College London
University College London
King's College London

Institutions

Thesis Some problems in the
theory of molecular
vibrations# (1955)

Doctoral Charles Coulson(21(3]

advisor Christopher Longuet-

Higgins(214]

Charles Alfred Coulson: %R, EER
Christopher Longuet-Higgins: i b= R, 40
% (1970s), AT T E6E

Doctoral Christopher Longuet-
advisor Higgins(31(41(5]
Doctoral Richard Zemel(®!
students Brendan Freym

Radford M. Neall8!
Ruslan
Salakhutdinov!9]

llya sutskever!10]

Other notable
students

Yann LeCun (postdoc)
Peter Dayan (postdoc)
Zoubin Ghahramani
(postdoc)

Geoffrey Hinton
FRS FRSC CC

Hinton in 2013

Born Geoffrey Everest
Hinton

6 December 1947
(age 71)[1]

Wimbledon, London

Residence Canada

Alma mater University of
Cambridge (BA)
University of

Edinburgh (PhD)
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BDT introduction
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Gini: Note that Gini is O for all signal or all
background. W, is the weight of event “1”.

G, = Zn:vvz P(I_P)
i=1

Example:
(112/ 44) P =0.28,

 Pick the branch to maximize the change in gini.

¢ Criterion C = Ginipaent — GiNrightchita “G1NTiefi-chila

cutp;>30Gev — C=4.0

parent
/\Gini =31.6
@2/11) [P =0.13,

(40 / 33)
Gini = 9.5

P =045,
right

Gini = 18.1 left

* Optimize each node (e.g. p>30 GeV) by

maximizing “C”.
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BDT introduction

Easy to understand/interpret; Training Fast
Single tree are not stable

o a small change/fluctuation in the data can make a large difference!
Solution: e.g. Boosting! — Boosted Decision Trees

Each tree is created iteratively
® The tree’s output (4(x)) is given a weight (W) relative to its accuracy

® The ensemble output is the weighted sum:
§(z) = D wihi()

®  After each iteration each data sample is given a weight based on its misclassification
o0 The more often a data sample is misclassified, the more important it becomes

® The goal is to minimize an objective function
O(z) = Zz Wi, ys) + Zt Q(ft)

o l(’gi, yz) is the loss function --- the distance between the truth and the prediction of the /th sample
o Q(ft) is the regularization function --- it penalizes the complexity of the #h tree

https://en.wikipedia.org/wiki/Boosting_(machine_learning)

13


https://en.wikipedia.org/wiki/Boosting_(machine_learning)

BDT Introduction

o  One of the originals
o Freund and Schapire
Gradient Boosting

o Uses gradient descent to create new learners
o The loss function is differentiable
o Friedman: https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

AdaBoost “Adaptive Boosting”

o Type of gradient boosting

o Has become very popular in data science competitions
o Chen and Guestrin: hitps://arxiv.org/abs/1603.02754

XGBoost “eXtreme Gradient Boosting”

Overtraining check:

Split data in training / test
Performance on the training
samples should not be better
than on the test sample

(1/N) AN/ dx

2500 trees

TMVA overtraining check for classifier: BDT3

FI signal (test sample)
£~ | Background (test sample)

1 Signal (tfaining sample) '
+ Background (training sample) |

© a4 N W s DN D ©
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-
| FRUTE FETTY FRUTY FOTRY FYTRY FYOT] b
UIO-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)

ROC (Receiver Operating
Characteristic) Curves

Better

cejection
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Best classifier can be identified by
the largest AUC (Area under curve)


http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://arxiv.org/abs/1603.02754

NN Introduction

e Artificial Neural Networks, connectionist models

e inspired by interconnected neurons in biological systems
First Mathematical model of neurons Pitts & McCulloch (1943)
1986 Backpropagation reinvented: Rumelhart, Hinton et al.Nature
1990s: Great success of SVM and graphical models almost kills the ANN
Yann LeCun (1998) developed deep convolutional neural networks

[ | LeNet-5, a pioneering 7-level convolutional network Hidden
o 2006+: Deep learning is a rebranding of ANN research.

m Convolutional neural networks running on GPUs ~ nput

Dendrite . l/ ‘\ / Q
N TR Sy Y, /7 \”}'Ui‘”

O O O O

7

Outputs

Myelin sheat

Myelinated axon




NN Introduction

given: network structure and a training set D = {(x‘”, ¥y, y<m>)}
initialize all weights in w to small random numbers

until stopping criteria met do
i O_ 5 for each (x@, y@) in the training set
2
e input x( to the network and compute output 0@

calculate the error () = l(y“” _ O(d))z

calculate the gradient

" Yi = fZwyx; + by v [ 2, 2, .. 2]
b: bias term update the weights
n: learning rate Aw = -1 VE(w)

Standard gradient descent (batch training)
Stochastic gradient descent (online training) "



NN Introduction

n

net' =w, + 2 w,x\®

1 <\ WMo
i=1
O(d) _ 1
i - —net®
l+e
B OTVZ Sigmoid
& Function
ao(d)

— O(d)(l _ O(d))

onet'?

QE@ 9 1 (y(d) D )2

Dropout layer:

Randomly drop links between neurons, with probability p

_ _(y(cn _ 0(d>)0<d)(1 — 0 @)x@

MBEFAMEERY, B—ERHAZ EEMARNZLIEERY, TIRHEME
BZLR MHBIWMANLEAS, XMHERMSREIRAELL

Maxout

max(w! z + by, wl z + by)

Activation Functions

tanh ’
tanh(x) .
ReLU 1 # ELU
z x>0
‘ _ {n(f"’ -1) =<0

max (0, z)

HLMERRER

Leaky ReLU

Sigmoid
max(0.1z, x)

0(1‘) = l+(1f"

a) Standard Neural Net

(b) After applying dropout. .
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A living Review of ML for Particle Physics

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics.
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the

latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as

useful as possible. Suggestions are most welcome.

® Reviews

© Modern reviews

Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Ti
Deep Learning and its Application to LHC Physics [DOI]

Machine Learning in High Energy Physics Community White Paper [DOI]
Machine learning at the energy and intensity frontiers of particle physics

Machine learning and the physical sciences [DOI]

Machine and Deep Learning Applications in Particle Physics [DOI]

Modern Machine Learning and Particle Physics

O Specialized reviews

The Machine Learning Landscape of Top Taggers [DOI]

Dealing with Nuisance Parameters using Machine Learning in High Energy Physic
Graph neural networks in particle physics [DOI]

A Review on Machine Learning for Neutrino Experiments [DOI]

Generative Networks for LHC events

Parton distribution functions

Simulation-based inference methods for particle physics

® Direct Dark Matter Detectors

® Boosted decision trees approach to neck alpha events discrimination in DEAP-3600 experime
® Improving sensitivity to low-mass dark matter in LUX using a novel electrode background miti¢
= Convolutional Neural Networks for Direct Detection of Dark Matter [DOI]

® Cosmology, Astro Particle, and Cosmic Ray physics

® Detecting Subhalos in Strong Gravitational Lens Images with Image Segmentation

® Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lense
Dol

= |nverting cosmic ray propagation by Convolutional Neural Networks

= Particle Track Reconstruction using Geometric Deep Learning

® Deep-Learning based Reconstruction of the Shower Maximum $X_{\mathrm{max}}$ using the
Detectors of the Pierre Auger Observatory

® A comparison of optimisation algorithms for high-dimensional particle and astrophysics applic:

® Tackling the muon identification in water Cherenkov detectors problem for the future Southern
Observatory by means of Machine Learning

® Muon identification in a compact single-layered water Cherenkov detector and gamma/hadron
Machine Learning techniques

= A convolutional-neural-network estimator of CMB constraints on dark matter energy injection

= A neural network classifier for electron identification on the DAMPE experiment

® Bayesian nonparametric inference of neutron star equation of state via neural network

® Novel null tests for the spatial curvature and homogeneity of the Universe and their machine I¢

® Machine Learning the 6th Dimension: Stellar Radial Velocities from 5D Phase-Space Correlations

® Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning

© Regression

© Pileup

= Pileup Mitigation with Machine Learning (PUMML) [DOI]
= Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector
® Pileup mitigation at the Large Hadron Collider with graph neural networks [DOI]

= Jet grooming through reinforcement learning [DOI]

© Calibration

= Parametrizing the Detector Response with Neural Networks [DOI]

= Simultaneous Jet Energy and Mass Calibrations with Neural Networks

= Generalized Numerical Inversion: A Neural Network Approach to Jet Calibration

= Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics
= Per-Object Systematics using Deep-Learned Calibration [DOI]

= A deep neural network for simultaneous estimation of b jet energy and resolution [DOI]

= How to GAN Higher Jet Resolution

= Deep leaming jet modifications in heavy-ion collisions

© Recasting

® The BSM-AI project: SU: - LHC limits on
= Accelerating the BSM interpretation of LHC data with machine learning [DOI]

® Bayesian Neural Networks for Fast SUSY Predictions [DOI]

with machine learing

© Matrix elements

= Using neural networks for efficient evaluation of high multiplicity scattering amplitudes [DOI]
® (Machine) Learing Amplitudes for Faster Event Generation

= Sitextsf{Xsec}$: the cross-section evaluation code [DOI]

® Matrix Element Regression with Deep Neural Networks — breaking the CPU barrier

= Unvelling the pole structure of S-matrix using deep learning

= Model independent analysis of coupled-channel scattering: a deep learning approach

© Parameter estimation

19


https://iml-wg.github.io/HEPML-LivingReview/?fbclid=IwAR153QR6RKa-mfcnruDuL2hMGusd6q28WekQkEwPHgGaVRZ_of2fplsYGfw

Application example 1: Higgs discovery

Higgs to diphoton in CMS:

BR~10"3

O

: small signal over huge bkg; 3
BDT applied in many parts T
Photon identification g

Event classification

O
o Energy regression
o Diphoton vertex

h ===

Events / 0.01

CMS Pre/lmlnary

359 b’ (13TeV)
35,48 PR AR |

H—)yy
CM,=125.4 GeV, {i=1.16

T

All categories

S/(S+B) weighted ]
12000 ¢ Data B
10000 — S+B fit =
- F N e B component ]
t D 8000 o =]
=) ]
=) 20 ]
‘$ 6000 —
= N -H- 1
- t o 4000} PR n =
2 1000 BACKGROUND
¢ & 0(mD Yv.Pp- )
600F ' " B component subtracted_
10— can o BN
wl CMS b 7
s ey Il P 100110120 130 140 150 160 170 1
o e | g m,, (GeV)
¢ Data | 20 « -~ ouf iy
e .MAG background J g 8 Ef:eLchnzi
= » 50
5
10 o 40
w

Y 2 0 02 0 ‘9
[ PARTICLE-ID: SEPARATE
PROMPT y FROM HADRONIC

JETS ]

[ yENERGY
REGRESSION ]

[EVENT CLASSIFICATION ]

19.7f0" (8 ToVI e

i o om

S R cMs

- 10°gt L 125 GV

2'"H

s Fw . e

- . - I

58 “'M .

o

8'0’[' g4 10°
f v

2 0.4 0.6 0.8
Transformed diphoton BDT classifier score

. [INVARIANT MASS ESTIMATION ]

13Tev, L=221"
Supe 19.7 16" 8 Tev)
£ 0T T
] cmMs
. Unpubiishec
s | Zoup
o 03

Comract st ot

| Commct vatas: siraszsze

iasarigses vrtes: cts

[ T rpe——

[ vy VERTEX-D

i g
gO 60 70 80 90 100 110 128 130

Vertex ID BDT score

m(e'e) [GeV]
m?= E_E_(1-cosu)

H

ad
3
LA

20°0 / SWaAd M «



€y

T2

€r3

Application example 2:NNPDF

ANNSs provide universal unbiased interpolants to parametrize the non-perturbative dynamics that
determines the size and shape of the PDFs from experimental data

Traditional approach

NNPDF approach

g9(x, Qo) =

!
é;"/ not from QCD!

Ag(1 — )27 (14 cg/s +dgz + ...

9(z, Qo) = AgANNy ()

f(L)

ANN,(z) = ¢8) = F [¢, {w}, {60}]

ni—1

£i(l) - Zwlg;—l)fjgz—l) _ 951)
j=1

& ANNs eliminate theory bias introduced in PDF fit:
from choice of ad-hoc functional forms

& NNPDF fits used O(400) free parameters, to b
compared with O(10-20) in traditional PDFs. Result:
stable if O(4000) parameters used!

ANNSs avoid biasing the PDFs, faithful extrapolation at
small-x (very few data, thus error blow up)

Fit vs HIPDF2000, Q° = 4. GeV?

L) B S 0 B S L R

Polynomials

PDF error

=4GeV?)

xg(xQ

e

rNo Data

o_—*""

Neural Networks

PDF error

vl el vl 0

10

10° 12" 107 1
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A mostly complete chart of

@ seces e Neural Networks ...........
Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

Y
_ STATAN
Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) A

DR

A Noisy Input Cell

. Qb iom R
@ Hidden Cell KA

@ \W AW/
© rrobablistic Hidden Cell

@ spiking Hidden cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o oo =

o Deep neural networks are those with >1 inner ~ @« AR 1 A

. Y

@ Match Input Output Cell OO0 N XHDXY RLERIERS.

latch Input Output Cel “'."‘ ""‘ “' "‘""‘ “' "‘""‘

I aye r . Recurrent Cell \""\""\ \""\"'.\ \--I.\..)‘\
@ remoryceu Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Kernel

them efficiently, which boosted the revival of -

o Thanks to GPUs, it is now possible to train Cp—— % 0
neural networks in the 2000s |

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)
g = @ (@]
o In addition, new architectures emerged, OLTSD 9 s
o o o KX XK SRS
. . . N 7 O A 2N
which better exploit the new computing power Sy N
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
>2 o~ >2 ~0 o~
) ¥ oo (B R AP
< :Oio> X io>o Oio>
- = - - & I~ Py 4" %o N ST
Universal approximation theorem: 2 ol St Tl

The Standard multllayer feed_forward networks Wlth a Generative Adversarial Network (GAN)  Liquid State Machine (LSM) Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

. . . . . O
single hidden layer that contains finite number of hidden AT,
. . o . NN
neurons, and with arbitrary activation function are

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

universal approximators in C(R*m). : : : % %
' 7 % E; 22



DNN: frameworks

. 2 IMVA,

ROOT

@ Data analysis framework for HEP, developed mainly at CERN
@ Written in C++ (fully interpreted)

TMVA

@ Toolkit for Multivariate Analysis
@ Includes several machine learning algorithms such as :

e Likelihood, KNN, Fisher, MLP. SVN, Neural Networks, BDT, etc...

s Google Cloud Platform S

==

+'amazon
e

c 1 O u d Amazon Machine Learning

aws.amazon.com/machine-learning

B8 Windows Azure

' - MACHINE LEARNING

TensorFlow

O PyTorch




Application example 3:Vector Boson Scattering
~200 events (2016-2018)!

Same-Sign W W-> Polarized scattering,
- WW — ww?
proton l 2 1031 I
Q [
, i <15
proton [ 2‘ /WL W, no Higgs
. 104 W M=1 Tev
(1) R
Boson scattering and Interaction 0|
* Yang-Mills Non-Abelian interactions |
Anomalous coupling, EFT O W, W, My=120 GeV N 2
* Electroweak symmetry breaking e
Higgs Unitarization Scheme Eeu (CeV)
 Tev scale new Physics WW->WW behavior
on scattering energy ot

Boosted Boson



Application example 3:Vector Boson Scattering

Phys. Lett. B 812 (2020) 136018

"

First probe on Longitudinal polarized VBS from CMS in
2020 with BDT. It is the beginning of the game, though
sensitivity ~ 1 standard deviation.

137 b (13 TeV)
W'W* — ww?* £ cMS | mOtherbkg. ¢ Data
3 ~ 10t —W, W, A\'Bkg. unc.
§ 10 ! o & ‘2 W Wy W Wy — W, W mw-
. n<1.5 5103 — W W, |
"""""" + -~'W, W, no Higgs 1 Nonprompt
10? \ W, W, M,=1 TeV 3 102 DR gy
proton (2 l N
7 10 W, W, MFSO&G\E‘V : &
v 5 g 1.:
W, W, M,=120 GeV 12
proton l L ; : s "t
10° 10° gt usf
v Ecu (GeV) = 0.5
(1) BDT score
“Longitudinal weak boson scattering... is one o, GB () Theontlprdeioa (ib)
of the most important processes to be studied Wi Wi 032,05 0.44 & 0.05
. . Wi W 3.067 7 3.13 £ 0.35
at the Superconducting Super Collider and the ik i
CERN L Had Collider.” WiWs 120702 1.63 +0.18
arge Hadron Collider. WEWE 211408 194 +0.21

Can verify Higgs unitarization scheme directly!
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http://dx.doi.org/10.1016/j.physletb.2020.136018

Application example 3:Vector Boson Scattering

p" - —— DNN (particle-based)
T % N 1 il ! —— DNN (dense)
2 oas -] P — BDT
< pas R p!
04 c . T
- —TTT — Ad.
| jet 2: InputLayer l I jet_1: InputLayer | I lep_1: InputLayer | lep_2: InputLayer ‘ 0.35 - L % 0.8 I L
a5 8
] ] -
3 ° i
[dcnsc_i: Dense | [dcnse_-l: Dense [ | dense_1: Dense | l dense_2: Dense [ o - g L
02 S 041 -
3 ) L
0.15 3 g - ; ]
‘ concatenate_2: Concatenate | l concatenate_1: Concatenate l I MET: InputLayer | 01 “F
0.05 F oL I L I I
E L L 0 0.2 04 0.6 0.8 i)
%0 o0 150 200 280 300 350 400 450 00 Signal eff
dense_6: Dense dense_3: Dense dense_7: Dense (a) p 1

—— DNN (particle-based)

A9

i

concatenate_3: Concatenate

Expected Significance (o)
S o
I T
/R*
ol w[\\m’\

1.2 1.4 1.6 1.8 2
Applied Mjj cut (TeV)

Classification

Il Il
2 25 3

) %
PKU group tried DNN using a specific particle based input structure, which
shows improvement over BDT. PRD 99, 033004 (2019), PRD 100, 116010 (2019)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.033004
https://arxiv.org/abs/1908.05196

Application example 3:Vector Boson Scattering

do
d cos 0*

3 *\ 2 3 *\ 2 N
2 gf_(l Fcosd)" + §f+(1 + cos ") C = % Z[((:os 6; ; — cos OV N2 + (cos 05, — cos 0NN )?],
e

+ %fL(l — cos? 9*), for W=
Two neutrinos: using DNN regression to get the angular distributions

= 0.06f - 21200  grr BTL | LL ~Pseudodata
...... o - cost, '€
0.05 £1000[L10-06) . [06:02) . [0202) . [0206) . [061.0)
...... 2 - : i i i
B a B i i o i
0.04 = 8001 e B B
@ o i E ! ;
0.03 600[- | | ’ ;
0.02 400F iF 5 5
0.01 TN 5 .
. S 1 | R~
0 _ = G-l o] l-l i L o 13 i | DR R ] i JEE T PR ] i [ D | l-l
-1 -0.8-0.6-04-02 0 02 04 06 08 1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1

NN
cos O* cos0,

DNN regression shows also promising results to be tried at the LHC
measurements. PRD 93, 094033 (2016)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.094033

Convolution NN overview

@A full ConvNN is a
sequence of
Con2D+Pool1ing
(+BatchNormalization+
Dropout) layers

® The Conv+Pooling
layer reduces the 2D
image representation

® The use of multiple
filters on the image
make the output grow
on a third dimension

® Eventually,
flattening occurs and
the result is given
to a dense layer

VGG 19

depth=64 depth=128 3x3conv
3x3 conv 3x3conv conv3_1

convl_ 1 conv2 1 conv3_2
convl_2  conv2_2  conv3_3
conv3_ 4

- | maxpool§ maxpool |
| maxposl | depth=256 depth=512

3x3 conv
conv4_1
conv4_2
conv4 3
conv4 4

1 ! o E ‘:?
maxpool | maxpool |
depth=512 size=4096

3x3 conv FC1
convS_1 FC2
conv5_2 size=1000
conv5_3 softmax
convS_4
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CNN overview

® Special architectures read the raw information (e.g.,
images) and convert them into “smart variables” (high-level
features) to accomplish the task

® Typical example: convolutional neural networks for image
processing & computing vision

convolution + max pooling vec
nonlinearity

[c{ooooo‘( 66484

|[o0oo0000000

-

l |

convolution + pooling layers fully connected layers  Nx binary classification

29



CNN introduction: convolution

® The main ingredient

: 3 5 4 4 1 4
of ConvNN is a '3 6 3 L
Miltar, a.k x Kk’ 9§;f 1_;325 s & o
matrix of weights sTolal=leialo
8 345 5 3 4 0x4 - 3x1 + 5x4 +
. -7x2 + 4x2 - 7x5
C)The filter scans the T4 ei2le Q3 A n 240150
image and performs a
scalar product of
each image patch
-8

® This results into a
new matrix of
values, with
different
dimensionality
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CNN introduction: pooling

® MaxPooling: Given an image
and a filter of size k x
k’, scans the image and
replaces each k x k’ patch
with 1ts maximum

® AveragePooling: Given an
image and a filter of size
k x k’, scans the image
and replaces each k x k’
patch with 1ts average

- BOE
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CNN introduction: Padding, Flattening, Inception

7946526 834553

® When the filter arrived
at the edge, i1t might
exceeds it (if n/k is
not an integer)

® In this case, a padding
rule needs to be

specified
0,8/ 5/¢:2: 4
® Same: repeat the values 7 4 7 376 8 W4
at the boundary 9 1 2 1 /976N
9211 SEEESES
® Zero: fill the extra 80 47 6 814
columns with zeros 81281455
o
concaienaton
P
11 convolutions 33 comvolutions Sx5 comvolutons 3x3 max poolng

Inception: \ T

Several conv layers, with different
filter size, process the same inputs

(a) Inception module, naive version



CNN history

- 10x¥
C1: feature maps $4:1. maps 16@5x5
6@28x28

INPUT
a2xa2

® LeNet (1990s): the very
first ConvNN, designer for
digit recognition (ZIP
codes) i A niin. ST

® AlexNet (2012): the first
big ConvNN (60M parameters, \N\i=
650K neurtons), setting the \E
state of the art: trained
on GPUs, using RelLU and
Dropout -

® GoogleNet (2014): built on
AlexNet, introduced an
inception model to reduce e
the number of parameters
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CNN history

56 Inception-v4
Xception
DenseNet- ResNet-101 ResNet-152
DepseNet-16 ResNet-50 5 i
75 - eNet-121 VGG-16 VGG-19
g ResNet-34
MobileNet=v2
i MobileNet-v1
2701 &Y ResNet-18
>
-] GooglLeNet
§ ENet_ Top-1 accuracy is the conventional accuracy: the model answer (the one with highest
¢ 65 fd-MobileNet probability) must be exactly the expected answer.
T ’ BN-NIN Top-5 accuracy means that any of your model 5 highest probability answers must
o] ShuffleNet match the expected answer.
60 5M 35M 65M 95M 125M  155M
SqueezeNet
BN-AlexNet
55 AlexNet
50 v v T v 1
0 10 20 30 40 50

Operations [G-Ops] 34



Application example 4: Tracking reconstruction

Quite challenging to reconstruct
charged particle’s track in dense
environment: combinatorial
complexity, fake seeds...

v
:
dapon Prelrendry at 9
x CMS o Windom, yer 2
[-% = =
= ' =
* = Swrera el Window, 12y
> & CMS smusen P
. -1 —_
> T CMS Semstsion Pt
“ (=% 5
> H
. =S
>
i W
L]
13
L L
3 F
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Application example 4: Tracking reconstruction

PixelSeed Convﬂﬂ

® The final model uses two sets of ~ ~ ~
inputs: & |
@ g ? s Iy
_— 3 RN RHE G
® the hit images 3 §->§ ;§ g
: HE RN
® a set of expert features (e.g. S HHE s 5
position of the hits in the ¢ ‘T‘ 8 L
detector) to help the learning < -
pro Ces S @ Batch normalization layer E m";("l:":olr:;l)::::yz!(:’)
® The trained model shows a good Layer Map Output Score

separation of true vs fake seeds

counts0.02

|

¢ Test-True

@® One can reduce the fake rate by one osg o Toe
order of magnitude with a few % loss [ Y- Fako

in efficiency
Efficiency (tpr) @ fake rejection

tpr @ rej 50%: 0.998996700259
tpr @ rej 75%: 0.990524391331 |
tpr @ rej 90%: 0.922210826719 T !
tpr @ rej 99%: 0.338669401587 P

03

02
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Application example 5:Jet tagging

it x4 - Sl
1 ,- DeepAK8: ConvNet on particle-flow candidates

o ParticleNet: jet tagging via particle clouds

LundNet: graph neural network in the Lund plane

See more details from Huilin Qu’s talk



https://indico.ihep.ac.cn/event/14261/material/slides/0.pdf

Application example 5:Jet tagging

https://indico.cern.ch/event/783781/contributions/3389493/attachments/1832744/3001915/Deep_Heavy Resonance_Tagding_ HEP2019 Kontaxakis.pdf

DeepAKS8 and ParticleNet are now the CMS
standards for H/W/Z Jet tagging

DeepAKS8

CMS-DP-2017-049
10.1007/JHEP10(2017)005

» Deep AKS8 takes advantage of this additional information

» Includes particle and detector-level
quantities (tracking, vertex formation)
» Individual jet constituents as inputs

» Uses convolutional NNs to take advantage of

nearby correlations

Inclusive particles

features

particles, ordered by pr
Charged particles (Tracks)

4

g

2

QO

QY r—
tracks, ordered by Sip2p

. . Secondary Vertices

s |

S fiter J§igg

&

lS.Vs, ordered by Spap

Fully
connected

(I layer,
512 units, [}
relu-
activation,
dropout
=0.2)

Output

( Many output

categories!

Category

Label

Higgs

Top

Qcb

H (bb)
H (cc)

H (VWW*—qqqq)
top (bcq)
top (bqq)

top (bc)
top (bq)
W (cq)
W (qa)
Z (bb)

Z (cc)
Z(qq)
QCD (bb)
QCD (cc)
QCD (b)
QCD (c)
QCD (others)

jet

Background efficiency

-t
o

-
o
~»

10°F

104 bl

—_

displaced
tracks

charged
lepton

16.6 fb™ (13 TeV)

F CMS

| Work in progress

Hbb vs QCD

1000 < P, < 400 GeV, n| <1.5
90 < mg;, < 140 GeV

Decorrelated Version

DeepAK8 2016 Training

2017 Samples

_ DeepAKS 2017 Training(Full 2017MC)
2017 Samples §

2017 Samples
DoubleB (BDT)

""" 2017 Samples

-

DeepAK8 2017 Training wio PIDs”  /f

G

=l

L

“Better

4

0

01 02 03

04 05 06 07

Signal efficiency

H(bb) jet
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https://indico.cern.ch/event/783781/contributions/3389493/attachments/1832744/3001915/Deep_Heavy_Resonance_Tagging_HEP2019_Kontaxakis.pdf

Higgs
coupling with
2nd
generation
fermion

Application example 5:Hcc

DeepAK8(-MD) has become the standard boosted jet tagging = (13 TeV)
algorithm in CMS and has been used in several high-profile s | SM?r
2 [ Simulation
ana[yses E L Hcc vs Vjets
First direct search for H—=cc in CMS 4 il
VH channel:V (W, 2) = L, lv,vv .
H—cc: resolved-jet topology + merged-jet topology 8
DeepAK8-MD used in the merged-jet topology Ly 3 *
adapted to R=1.5 jets (instead of R=0.8 jets) to increase acceptance TR '°f6|; 'c;°;$fi'ci;n;
at lower pT (> ~200 GeV) ’
35.9fb" (13 TeV)
the DeepAK8-MD cc-tagging discriminant used to select cc-jet and 2 sECMS omnes | @R
suppress light-/bb-flavor jets O i e e
20 ng: :mrilv D zejets B vH(H—cc), p=21

fit to the soft-drop jet mass distribution to extract the H—cc signal

Most stringent direct limit on H—cc to date

95% CL exclusion limit on jiyiH-)

Resolved-jet Merged-jet Combination

- VH{H—cc) » 100 §35 S+B Uncertainty

(pr(V) <300GeV) (pr(V) >300GeV) OL 1L 2L  All channels
Expected 45t18 7512 M2 piR s 37t
Observed 86 75 83 110 93 70

80 80 100

cf. ATLAS [PRL 120 (2018) 211802]: MzHH—cq) < 110 (150) obs. (exp.)

120 140 160 180 200
Higgs candidate mass [GeV]

cms HEP 03 2020) 131)] %




Application example 5: WWW resonance

First search of TeV scale resonances decaying to three W bosons

Jet q ™)

We do NOT have
standard candle in SM
to calibrate all these

cascade decay: Wik -> W(lv) + Radion

Resolved Radion Merged Radion

A 1(q) fl

| [CMS-PAS-B2G-20-001] |

(13 Tev)

y o \ = T
A @ Y <
o . L
w w
Wik Jet Wik
oo w q .

R «-««a’;’j’é L5

—T——T—TT—
CMS  Simulation Preliminary

SR1+SR2+SR3
M, =3.5TeV, M =0.21 TeV

B2G-20-001

Jet 1) let “Fq = - W i ---\gﬂ‘m"ﬁ -
aqQ —— Background jets - 5
- I B
W-tagging w/ DeepAK8-MD Hybrid tagging w/ DeepAK8-MD - I - 2o
score(W — ¢q.qq) score(W — ¢q. qq) + score(H — 4q) o I L RN L L I T
02 04 06 0.8 1
score(W — ¢q, qq) + score(QCD)  score(W — cq, qq) + score(H — 4q) + score(QCD) g 2

innovative usage of the DeepAK8-MD tagger to g

4 . : 2
identify merged radion decay e
new approach developed for the calibration of the 2
DeepAK8-MD tagger 15} ok
final signal extraction based on the invariant mass of

the lv+jet(s) system o

3.5F CMS Praliminary

t pp =W, — WR —WWW
i:: Expected = 1o
| — Observed limit

‘axpormert

95% C.L. upper limit on cross section (pb)

40


https://cds.cern.ch/record/2759857

Generative Adversarial Network (GAN)

® Two networks trained
against each other

® Generator: create
images (from noise,
other images, etc)

@ Discriminator:
to spot which image
comes from the
generator and which
1S genuine

tries

Latent
Space

8

B L. G
Generated
H A Generator Fake

Real
Samples

=

e

P —

~——5——" Samples

® Loss function to minimise: Loss(Gen)-Loss(Disc)
@ Better discriminator -> bigger loss

@ Better generator -> smaller loss

more realistic images

—

-

3 IsD
: D — Correct?
¥ Discriminato

! Fine Tune Training

...........................................................

® Trying to full the discriminatore, generatore learns how to create
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Application example 6: fast simulation and reconstruction

0 DI~ 1
_J / ‘GEQF‘]T
. N e g

B D

- .- BBC- = Hf.~ | '

SIMULATION

GEANT

Energy IMeV)

Tracking+clust
ering+...
+ParticleFlow

3

RECONSTRU
CTION

' Selection

ANALYSIS-

SPECIFIC
DATASET
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Recurrent NN

® Recurrent architectures are
designed to process
sequences of data

® Then idea 1s to have
information flowing in the
network while the sequence
1s sequentially processed

® Through this idea, recurrent
networks mimic memory
persistence

® Advantages

@ the input 1s not fixed-
sized

43



Application example 7: RNN for classification

® particles as words

@® QCD 1s the grammar

in a sentence

four-momenta are like
words and the
clustering history of
sequential
recombination jet
algorithms is like the
parsing of a sentence.

Deep
Topology
Classifier

Calo Image
Classifier

Particle Sequence
Classifier

Abstract Image
Classifier

High-level Feature
Classifier

A sequence of
particles taken as
input to a recurrent

Based on an abstract
representation of the
reconstructed particles

NN. as an image to feed to
Similar to https:// a convolutional NN.
arxiv.org/abs/1702.00748 Tnspired from https://
arxiv.org/abs/1708.07034

Raw images of the
calorimetry hits fed to
a convolutional NN.

Use high-level features
as inputs to a fully
connected NN.




@

Autoencoders

Autoencoders are networks

with a typical “bottleneck”
structure, with a symmetric

structure around it
® They go from Rn — Rn

® They are used to learn

the identity function as

30 (x))
where f: Rn — Rk and f-1: Rk
— RN
®|Autoencoders are essential

tools for unsupervised
studies

0k
3 224 %224 % 64
112x 112 x 12
e P 56 X 56 x 256____Z
gy 1 Full F
.4:_;, s Y connected

e 4096 units
224

14x14x 512
28x28x512

14x14x512
28x28x512

Input

Convolutional Part (Encoder) Deconvolution Part (Decoder)

https://github.com/arthurmeyer/Saliency
Detection  Convolutional Autoencoder
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https://github.com/arthurmeyer/Saliency_Detection_Convolutional_Autoencoder
https://github.com/arthurmeyer/Saliency_Detection_Convolutional_Autoencoder

Application example 8: Data Quality Monitoring

Fully connected
—_—

® Given the nature of these
data, ConvNN are a natural
analysis tool. Two
approaches pursued

® Classify good vs bad
data. Works if failure
mode 1s known

® Use autoencoders to

Generalises to unknown
failure modes

assess data “typicality”.

A. Pol et al., to appear soon

3x1 convolutions
—_—

i

“‘NI

—
47x1 input w

10 45x1 feature maps

5 -—r—b:L 5x1 max pooking

10 9x1 feature maps

Pol, G. Cerminara, C. Germain, MP and

A. Seth arXiv:1808.00911
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Application example 8: Anomaly detection

e Train on standard events
o Run autoencoder on new events
o Consider as anomalous

all events with loss > threshold

e SM val. Mix
107 1 h%tr
1 A-4
10-3 L] h*¥-Ttv
=Tl LO

Probability
[
b

MSE

1k evts/month

10°

1071

1072

BSM efficiency
—
S

—
Q
-

107>

Supervised Classifier (BDT)

A-4t AE

AUC = 0.91 (0.84)
LQ
AUC = 0.85 (0.79)
ho-tT
AUC = 0.75 (0.72)
h*==T1V
AUC = 0.92 (0.91)

A-4/ (area = 0.98)

LQ (area = 0.94)

h-71Tt (area = 0.90)

h*-tv (area = 0.97)
50 SM evts/day

-6
10 10-5

1073

104

1073

102 107! 10°

SM efficiency

Worse than Supervised but results encouraging
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Others: ML for EFT

parameter > |

N ()
CRTE N\ ,’,x < L
*' AR O—0 0
\ ! < K LUK ot s
\ observable ! i1, SRS ( J
latent 2 7 {\ BN/ —
\ 1/ / 3 \) \

e ,‘ argmin L[g] — 7(z|0) —> =
-..'. * :‘ y f(’l Zl()) g

" approximate
augmented data hkehlfOOd
ratio 92.
Simulation Machine Learning Inference

p(T|9) - /dzdetector /dzshower /dZ g)(m|zdetect0r) p(zdetector|zshower) p(zshowerlz) p(zl@)l .

~
:P(m yZdetector;@shower ;2 | 9)

EFT is continuous; many latent variables; using special DNN and loss
function to regress likelihood ratio.
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https://arxiv.org/pdf/1907.10621.pdf

Others: Firmware/hardware e.g. FPGA

Map DNN nicely into an FPGA

Keras
TensorFlow
PyTorch

Y.

Co-processing kernel
-~ . hils 4 ml
\ 4

compressed
model ——— HLS —_—
conversion Custom firmware
design
Usual ML j f

software workflow

tune configuration
recision
reuse/pipeline

h Is 4 m I https://github.com/hls-fpga-machine-learning/hls4ml

DOl 10.5281/zenodo.1204445

A package for machine learning inference in FPGAs. We create firmware implementations of machine learning algorithms

using high level synthesis language (HLS). We translate traditional open-source machine learning package models into HLS
that can be configured for your use-case!


https://github.com/hls-fpga-machine-learning/hls4ml

Others: ML with quantum computing
HO= ). OF
= Y i Jijsisj+ L hisi

H,is effectively () Z Cijwiw; +Z(/\ — 2Ciy )w;
quantum " '

annealing
H(0) has no interactions, so cools to ground state quickly, and the

total ground state is an equal superposition over all bitstrings
Setup Hamiltonian: H(0) Problem Hamiltonian: H,
Uniform superposition of State minimizing the energy

possible qubit states of the problem
Hamiltonian

o Fhas a ground state of proportional to [0)+ [1)

T=0

H(t) = "‘(t)H(O) + B(t)Hp T=tfinal

..you'd better
make it
QUANTUM

Solving a Higgs optimization problem with N

quantum annealing for machine learning

nature

International journal of science

Letter ~ Published: 18 October 2017

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar & Maria Spiropulu

Nature 550, 375-379 (19 October 2017) Download Citation *




Summary

100 KHz 1 KHz 1MB/evt

. . ."." . k ‘xzé\ 4 _
High level == L NGRS

analysis

INFORMATION

Deeper and Deeper in HEP
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Tutorial: BDT, DNN

Z’ search: https://pan.baidu.com/s/1b54D2m

10
= by
ISTEP Preliminary 1. fb’' (mu-channel) at ys=13TeV CITT
I sT
= - ww
- data
- 52 « Zprime 2000
- » Zprime 2500
o Zprime 3500

T IIIIII[

T IIHHI

Events/bin

{0 %

[ llllll[

1072 B
+

IL#..I... ::Wlll|llll

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
L [GeV]

[TT llHIl



https://www.notion.so/High-Energy-Physics-ML-Tutorial-f9f8a3c624cb489cbeda53d38628d5ed
https://pan.baidu.com/s/1b54D2m




First Probe from CMS on Polarized VBS

e Signal sample simulated in WW/pp center-of-mass frame
e Simultaneous fit in bins of two BDT discriminant variables:
MADGRAPH5_aMC@NLO02.7.2

CMS  smuianon Supplemsalsy 113 TeY) CMS  simutston Suppiemsitary 13 TeV)
5351 : T 5350 ‘ T ]
< vapt ia = - e
- EVI VI, —~—EWw'w N EW Wy —~—EWW'w 4 : I
SE Stal. uncertainty EW YW/, = SE Stal. uncertainty EW YW, = _(I:MSI , Slr?u,atllon St‘Jpp/eImenz‘lary SN I(13'I|'eV2
asp- Wewvivt 25| Wewww 102 -
2 —— 2f- ——e 1
- [ 5 C | = . 10 =
PP B oww g T L
E ] = C = ©) C a1
o —— =1 - [r—" S b, ez
1 R 1 a 1= @@ ——  }.e... —
- 4 L et ~ = L+ 3
— 3 o C — % o T L deka B
03E- - g & = -—— i5] £ e L S =
e N 1| st m— ! (ta 3 0 =
. F o T B R L] BT T - T T © E Bwwwe T e E
= 1.2 B s 12 - © = - . N
= o l = r * l * { * - EW WW? (WW-CM) e nnd
P it " L _
:l‘. ‘*'*"' NN "'+‘"*"“f“'*“‘?"—’“"t"’V"‘."' :‘ L A T DOy ¥ B § Ny 1 10° 7 io@uen EWWWS HWW scaled by 08 3
= sk pilpe gy S porg gy 8y oo S5 sk pop g Boipeepergg ol g oo o] E ------- EW WW? (WW-CM): HWW scaled by 0.8 E
0 05 1 15 2 25 ,\“ 0 0 ) 1 2 24 .\“ S N I AU RN AR RPN AR I B
X ¢u " ¢“ 200 400 600 800 1000 1200 1400 1600 1800 2000

My (GeV)

Approval of SMP-20-006 : Measurements of the scattering of polarized same-sign WW bosons

Speakers: Aram Apyan , Mr Jie Xiao

Phys. Lett. B 812 (2020) 136018 o4



http://dx.doi.org/10.1016/j.physletb.2020.136018

First Probe from CMS on Polarized VBS

Inclusive BDT: Isolate VBS against non VBS background

Variables Definitions Process Yields in W=W™ SR
W W, T6.0 = 183
i Dijet mass WEWE 63.1+10.7
. . . . . . ‘Al‘l:\/\/l: 1101 2181
| A Difference in pseudorapidity between the leading and subleading jets QCD WEW= 1384+ 1.6
Agj Difference in azimuth angles between the leading and subleading jets wtzerference L 62:51 i (7)2
,i1 V. e ZZ 0.7+0.2
of the leading jet
pg Pr &) Nonprompt 2137 +52.3
P pr of the subleading jet tVx 71422
¢ Other background 26999
1 1 -
P1 Leading lepton. g Total SM 522.9+60.7
pY Dilepton pr Data 524
i . R ;
zy, Zeppenfeld variable of the leading lepton
z, Zeppenfeld variable of the subleading lepton
piniss Missing transverse momentum
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First Probe from CMS on Polarized VBS

Signal BDTs to improve the sensitivity to polarized scattering
Train LL against (LT+TT) and train (LL+LT) against TT

Variables Definitions

Ay Difference in azimuthal angle between the leading and subleading jets
p¥ pr of the leading jet

piﬁ pr of the subleading jet

p.’r‘ Leading lepton pt

p’f Subleading lepton py

Ay Difference in azimuthal angle between the two leptons
M gy Dilepton mass

P Dilepton py

m"TV - Transverse WW diboson mass

zy Zeppenfeld variable of the leading lepton

z; Zeppenfeld variable of the subleading lepton
A;{jl,f { AR between the leading jet and the dilepton system
AR 4 AR between the subleading jet and the dilepton system
( p’T’ pfl? )/ ( piTl p?) Ratio of pr products between leptons and jets
pniss Missing transverse momentum

CMS simulation (183 TeV)
:‘ __l T T l T8 Lk l_l I-I L L L l L I g ] T8 T8 ]:
. 0.18: —EWWLW[_ ]
0.16F — EWW;W; =
044 — EWWW; _i:
0.12F -+ 3
3 —+ 3
0B et ; g
P _4_¢+ 1
0_06:':—0ﬁi— -
i b= g
0.04F+ pp ]
0.02F =
0:...I|||I...|I|.:I.|.|I...I'

0o 05 1 1. 25 3

A )

!
CMS simulation (13 TeV)
. LN N N L R B | L B W ¢
2018 —Ewww; 3
0.16F — EWW;W; =
04k —— EWWRW; _|__+_—:
0.12F —t= -
L —+ 3
0.1 _— -

F —t

o.os_—__t:=0=:':=|=='=j:—c=a=='=:t :E
0.06[ o J
E —0—+ E
0.04F, ”””” 3
0.02fF -
I el sl ol e el il o Wi I
%05 16 2 25 3

Ag
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Deep Learning Tagger in CMS

DeepAKS8 st 15 2020) Pos005 Output
e multi-class classifier for t/W/Z/H tagging Category  Label
o categories subdivided based on decay modes H (bb)
e directly uses jet constituents new - ch.f‘zqqq)

o PF candidates / secondary vertices
e 1D CNN based on the ResNet architecture

standards top (ocq)

top (bqq)

. . . . Top
e mass-decorrelated version using adversarial training top (bc)
techniques top (bq)
o signal and background samples reweighted to yield flat w m::;
distributions in both pT and mSD to aid the training. Z (bb)
i Particles Full z Z (cc)
I D comnected| | T Z(q)
= ;articles, ordered by Er (H¥iayes) (1 t\(/)\lj QCD (bb)
ayer,
512 uynits, > 7 QCD (cc)
. Secondary Vertices relu- Fligys Qcb QCD (b)
éI iﬁ]lﬁ‘l — ”jﬁ;vg;ft”’ QCD QCD (c)
*= "V "SVs, ordered by Sik2p =0.2) QCD (others)



https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/1512.03385

‘ MOr'(-j‘in‘a‘r-'ylli‘/‘Iiattér‘ | The standard MOdel*

(a.k.a. our best theory of Nature) ] Ind | reCt or

Mediate Matter '\,_' Electro search for new Particle
teractions o Magnetic

"= Forces

E coll

— Dilepton Bkg

Events / 25 GeV

No resonance

Before July 4, 2012, but = SM

never directly observed!
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» Assuming linear representation for the Higgs, no new light particles,
SM symmetries, etc:

/ \

c(’) 5) A6 (6) ((6+K) o (6+K)
( AZZ O +ZZ A2+k OJ

Lsmerr = Lsym +
N\ \ g

Deviations in the tails of
differential distributions
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Consider the L? squared loss functional for functions g(x) that only depend on z, but which are
trying to approximate a function g(r, z),

Llg(w)] = [deds p(z.216) . 2) - )

= / dr [92(1) / dz p(x. z|0) — 24(x) / dz p(z, z|0) g(z, z) + / dz p(z, 2|0) ¢*(z, 2)

F(z)

Via calculus of variations we find that the function g*(x) that extremizes L[g] is given by [53]

0= 6—{ =20 /dz p(z, z|0) —2 /dz p(z, z|0) g(z, 2) ,
0g o
| S —
—p(x/6)
therefore
0@ =~ [z 210)g(a2)
p(z|0) i o

We can make use of this general property in our problem in two ways. Identifving g(z., z.) with
the joint likelihood ratios r(ze, zay.¢|f0,01) (which we can calculate!) and 6 = 6y, we find

5 p(z, z|6o)
¥ dz p(zx, z|6y) = r(x|0y.0y) . 24
o (@) =~ [ s ol 2161) BEEZE = r(aif. 00 (24)
By minimizing the squared loss
2 1 . .
L[ (x(60,61)] = > Ir(®es zaelf0, 01) — #(wc |60, 61) 2 (25)

(Te.2e)~p(x.2]60y)
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https://arxiv.org/pdf/1805.00020.pdf

