

Beyond the Standard Model physics From Lagrangians to events

Benjamin Fuks

LPTHE / Sorbonne Université

The MCnet Beijing School 2021 on Monte Carlo Event Generators

Chinese Academy of Sciences @ Beijing - 28 June 2021

Outline

Beyond the Standard Model physics - From Lagrangians to events

Benjamin Fuks - 28.06.2021 - 2

Monte Carlo simulations & new physics

From Lagrangians to events

Beyond the Standard Model physics - From Lagrangians to events

Deciphering a proton-proton collision

Beyond the Standard Model physics - From Lagrangians to events

Monte Carlo simulations for proton collisions

SM and BSM simulations: the status

Standard Model simulations under good control

- Relevant LHC processes: known with a very good precision
- Further improvements expected in the next few years

A comprehensive approach to MC simulations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

A comprehensive approach to MC simulations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Beyond the Standard Model physics - From Lagrangians to events

Outline

New physics simulations: the 'how-to'

Existing programs

The FEYNRULES platform (since 2009)

- Automatic linking of Lagrangians to files in a given programming language
 With all model particles, interactions, etc.
- Working environment: MATHEMATICA
 - ★ Flexibility, symbolic manipulations, easy implementation of new methods, etc.
 - ★ Shipped with many computation platforms (superspace, spectrum, decays, NLO, etc.)

Interfaced to many Monte Carlo tools

- ★ Dedicated interfaces (CALCHEP, FEYNARTS, and more in the past)
- ★ Interfaced to more tools via the UFO (HERWIG, MG5_AMC, SHERPA, WHIZARD,...)

Very few limitations on models

- ★ Higher-dimensional operators supported
- \star Spins (up to 2); colour structures (1, 3, 6, 8)

[Christensen & Duhr (CPC '09)] [Alloul, Christensen, Degrande, Duhr & BF (CPC'14)]

✦ LANHEP (since 1997)

- Automatic linking of Lagrangians to files in a given programming language
- Working environment: C
- Initially restricted to CALCHEP/COMPHEP
- Now: FEYNARTS and UFO outputs

[Semenov (NIMA'97; CPC'98; CPC'09; CPC'16)]

The SARAH package (since 2013)

- Automatic linking of Lagrangians to files in a given programming language
- Working environment: MATHEMATICA
- Spectrum generator, indirect constraints
- Interfaced to many tools (CALCHEP, COMPHEP, FEYNARTS, UFO, WHIZARD)

[Staub (CPC'13; CPC'14)]

More about interfaces

A step further: the Universal FEYNRULES Output

Summary

The UFO in practice

Examples: particles & parameters

\blacklozenge Particles = instances of the particle class go = Particle(pdg_code = 1000021, name = 'go', antiname = 'go', Attributes: spin, colour representation, mass, width, etc. spin = 2, color = 8,Antiparticles automatically derived mass = Param.Mgo,width = Param.Wgo, texname = 'go', antitexname = 'go', \blacklozenge Parameters = instances of the parameter class charge = 0) External parameters: Les Houches-like structure PYTHON-compliant formula for the internal parameters aS = Parameter(name = 'aS', nature = 'external', type = 'real', value = 0.1184,texname = '\\alpha _s', lhablock = 'SMINPUTS', lhacode = [3]G = Parameter(name = 'G', nature = 'internal', type = 'real', value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi)', texname = 'G'

Summary

Interactions: the key strategy

NLO cross sections

Contributions to an NLO result in QCD

Three ingredients: the Born, virtual loop and real emission contributions

Loop calculations

Automated NLO simulations with MG5_AMC

Summary

Back to the simulation chain

QCD 101: predictions at the LHC

• Distribution of an observable ω : the QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/\mathbf{p}_1}(x_a;\mu_F) \,\mathbf{f}_{b/\mathbf{p}_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\dots,\mu_F)$$

Long distance physics: the parton densities

• Short distance physics: the differential parton cross section $d\sigma_{ab}$

* Separation of both regimes through the factorisation scale μ_F

 \star Choice of the scale \succ theoretical uncertainties

Short distance physics: the partonic cross section

• Calculated order by order in perturbative QCD: $d\sigma = d\sigma^{(0)} + \alpha_s d\sigma^{(1)} + \dots$

* The more orders included, the more precise the predictions

\star Truncation of the series and $\alpha_s >$ theoretical uncertainties

Feynman diagrams (from UFOs)

Feynman diagram calculations

Direct squared matrix element computations
 Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_s^2 \left[\overline{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\overline{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2 c_1} T^a_{c_3 c_4}$$

Squaring with the conjugate amplitude
Algebraic calculation (colour and Lorentz structures)
Sum/average over the external states

$$\overline{\left|\mathcal{M}\right|^{2}} = \frac{1}{36} \frac{2g_{s}^{4}}{s^{2}} \operatorname{Tr}\left[\not\!\!p_{1}\gamma^{\mu}\not\!\!p_{2}\gamma^{\nu}\right] \left[\not\!\!p_{3}\gamma_{\mu}\not\!\!p_{4}\gamma_{\nu}\right]$$
$$= \frac{16g_{s}^{4}}{9s^{2}} \left[(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right]$$

The squared matrix element needs to be integrated

The number of diagrams increases with the number of final-state particles
 The complexity rises as N²
 Helicity amplitudes

Any calculation beyond 2-to-3 becomes a problem

Beyond the Standard Model physics - From Lagrangians to events

Benjamin Fuks - 28.06.2021 - 24

Helicity amplitudes

HELAS

Comparison

	For <i>M</i> diags	For <i>N</i> particles	2 →6 example
Analytical	M2	(N!)2	10 ⁹
Helicity	М	N! 2 ^N	107
Recycling	М	(N-1)! 2 ^{N-1}	5x10 ⁵

Heavy particle decays

- Concrete BSM models
 - Many additional new states
 - ★ Usually pair-produced
 - \star Cascade-decaying into each other
 - The lightest new state often stable (cf. dark matter)

Is the simulation of 2-to-N processes (with a large N) a problem?

2-to-N matrix-element generation is possible
 ~ computationally challenging

- The issue is the computing time
 - Connected to the final-state multiplicity
 - Diagrams with intermediate resonances dominate
 - Factorisation of the production from the decay

Making decays easy: the key principle

Practical implementations of decays

Case I: loss of spin correlations

✤ Helicity sums performed independently (production ⊕ decays)

$$\mathcal{M} = j_1^{\mu} \bigg[\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \bigg] j_2^{\nu} = \sum_{\lambda} j_1^{\mu} \varepsilon_{\mu}^*(\lambda) \ j_2^{\nu} \varepsilon_{\nu}(\lambda) = \underbrace{\sum_{\lambda} j_1^{\mu} \varepsilon_{\mu}^*(\lambda)}_{\text{Production}} \underbrace{\sum_{\lambda'} j_2^{\nu} \varepsilon_{\nu}(\lambda')}_{\text{Decay}} \bigg]$$

Importance of correctly-handled decays

Two examples (dependent of the observable)

Beyond the Standard Model physics - From Lagrangians to events

Benjamin Fuks - 28.06.2021 - 31

F Höche, Kuttimalai, Schumann & Siegert (FPIC'15) 1

Summary

Event simulation is a complex process
 Nature allows us to factorise it into pieces
 Event simulation is performed step-by-step

This talk: Ist parts of the simulation chain

- Connecting models (Lagrangians) to tools
- Generating squared matrix elements
- Including the decays of heavy particles