Introduction to Monte Carlo Event Generators

Stefan Gieseke

Institut für Theoretische Physik
KIT

Lectures at MCnet Beijing School 2021
University of Chinese Acedemy of Sciences, Beijing, China 28 June-2 July 2021

Karlsruhe Institute of Technology

Motivation: jets

[Google Images]

Motivation: jets (at LHC of course)

[CMS 2011]

Why Monte Carlos?

We want to understand
$\mathscr{L}_{\text {int }} \longleftrightarrow$ Final states.

Why Monte Carlos?

LHC experiments require sound understanding of signals and backgrounds.
\uparrow
Full detector simulation.
\uparrow
Fully exclusive hadronic final state.
\uparrow
Monte Carlo event generator with
parton shower, hadronization model, decays of unstable particles.
\uparrow
Parton level computations.

Experiment and Simulation

real life

Detector, Data Acquisition CMS, ATLAS, CDF ...
virtual reality

Monte Carlo Event Generators

- Complex final states in full detail (jets).
- Arbitrary observables and cuts from final states.
- Studies of new physics models.
- Rates and topologies of final states.
- Background studies.
- Detector Design.
- Detector Performance Studies (Acceptance).
- Obvious for calculation of observables on the quantum level

$$
|A|^{2} \longrightarrow \text { Probability. }
$$

$p p$ Event Generator

Divide and conquer

Partonic cross section from Feynman diagrams

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{\text {hard }} \mathrm{d} P(\text { partons } \rightarrow \text { hadrons })
$$

$\begin{array}{rlr}\mathrm{d} P(\text { partons } \rightarrow \text { hadrons })= & \mathrm{d} P(\text { resonance decays }) & {\left[\Gamma>Q_{0}\right]} \\ & \times \mathrm{d} P \text { (parton shower) } & {\left[\mathrm{TeV} \rightarrow Q_{0}\right]} \\ & \times \mathrm{d} P(\text { hadronisation }) & {\left[\sim Q_{0}\right]} \\ & \times \mathrm{d} P \text { (hadronic decays) } & {[O(\mathrm{MeV})]}\end{array}$

Underlying event from multiple partonic interactions

$$
\mathrm{d} \sigma \longleftarrow \mathrm{~d} \sigma(\mathrm{QCD} 2 \rightarrow 2)
$$

Plan for these lectures

- Monte Carlo Methods
- Hard Scattering
- Parton Showers

Monte Carlo Methods

Monte Carlo Methods

Introduction to the most important MC sampling (= integration) techniques.
(1) Hit and miss.
(2) Simple MC integration.
(3) (Some) methods of variance reduction.
(4) Adaptive MC, VEGAS.
(5) Multichannel.
(6) Mini event generator in particle physics.

Probability

Example: $f(x)=\cos (x)$.

Probability density:

$$
d P=f(x) d x
$$

is probability to find value x.

Probability

Example: $f(x)=\cos (x)$.

Probability density:

$$
d P=f(x) d x
$$

is probability to find value x.

$$
F(x)=\int_{x_{0}}^{x} f(x) d x
$$

is called probability distribution.

Probability

Example: $f(x)=\cos (x)$.
Probability density:

$$
d P=f(x) d x
$$

is probability to find value x.

$$
F(x)=\int_{x_{0}}^{x} f(x) d x
$$

is called probability distribution.

> Probability ~ Area

Hit and Miss

Hit and miss method:

- throw N random points (x, y) into region.
- Count hits $N_{\text {hit }}$ i.e. whenever $y<f(x)$.

Then

$$
I \approx V \frac{N_{\mathrm{hit}}}{N}
$$

approaches 1 again in our example.

Hit and Miss

$$
\text { Example: } f(x)=\cos (x)
$$

Hit and miss method:

- throw N random points (x, y) into region.
- Count hits $N_{\text {hit }}$, i.e. whenever $y<f(x)$.

Then

$$
I \approx V \frac{N_{\mathrm{hit}}}{N}
$$

approaches 1 again in our example.

Hit and Miss

$$
\text { Example: } f(x)=\cos (x)
$$

Hit and miss method:

- throw N random points (x, y) into region.
- Count hits $N_{\text {hit }}$ i.e. whenever $y<f(x)$.

Then

$$
I \approx V \frac{N_{\mathrm{hit}}}{N}
$$

approaches 1 again in our example.

Every accepted value of x can be considered an event in this picture. As $f(x)$ is the 'histogram' of x, it seems obvious that the x values are distributed as $f(x)$ from this picture.

Hit and Miss

How well does it converge?

Error $1 / \sqrt{N}$.

Hit and Miss

More points, zoom in...

Error $1 / \sqrt{N}$.

Hit and Miss

Error $1 / \sqrt{N}$.

Hit and Miss

This method is used in many event generators. However, it is not sufficient as such.

- Can handle any density $f(x)$, however wild and unknown it is.
- $f(x)$ should be bounded from above.
- Sampling will be very inefficient whenever $\operatorname{Var}(f)$ is large.

Improvements go under the name variance reduction as they improve the error of the crude MC at the same time.

Simple MC integration

Mean value theorem of integration:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle
\end{aligned}
$$

(Riemann integral).

Simple MC integration

Mean value theorem of integration:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle \\
& \approx\left(x_{1}-x_{0}\right) \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

(Riemann integral).

Simple MC integration

Mean value theorem of integration:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle \\
& \approx\left(x_{1}-x_{0}\right) \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

(Riemann integral).
Sum doesn't depend on ordering
\longrightarrow randomize x_{i}.

Simple MC integration

Mean value theorem of integration:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle \\
& \approx\left(x_{1}-x_{0}\right) \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

(Riemann integral).
Sum doesn't depend on ordering
\longrightarrow randomize x_{i}.
Yields a flat distribution of events x_{i}, but weighted with weight $f\left(x_{i}\right)(\rightarrow$ unweighting).

Simple MC integration

Pictorially:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle
\end{aligned}
$$

Simple MC integration

Pictorially:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{1}} f(x) d x \\
& =\left(x_{1}-x_{0}\right)\langle f(x)\rangle
\end{aligned}
$$

Simple MC integration

What's the error?

Again, looks like

$$
\sigma \sim \frac{1}{\sqrt{N}}
$$

Simple MC integration

What's the error?
We can calculate it (central limit theorem for the average):
In general: Crude MC

$$
\begin{aligned}
I & =\int f d V \\
& \approx V\langle f\rangle \pm V \sqrt{\frac{\langle f\rangle^{2}-\left\langle f^{2}\right\rangle}{N}} \\
& \approx V\langle f\rangle \pm V \frac{\sigma}{\sqrt{N}}
\end{aligned}
$$

Simple MC integration

What's the error?
We can calculate it (central limit theorem for the average):
Our example: $\cos (x), 0 \leq x \leq \pi / 2$, compute $\sigma_{M C}$ from

$$
\begin{aligned}
\langle f\rangle & =\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \\
\left\langle f^{2}\right\rangle & =\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(x_{i}\right)
\end{aligned}
$$

Simple MC integration

What's the error?
We can calculate it (central limit theorem for the average):
Compute σ directly ($V=\pi / 2$):

$$
\begin{aligned}
\langle f\rangle & =\int_{0}^{\pi / 2} \cos (x) d x=1 \\
\left\langle f^{2}\right\rangle & =\int_{0}^{\pi / 2} \cos ^{2}(x) d x=\frac{\pi}{4}
\end{aligned}
$$

then

$$
\sigma=\sqrt{1^{2}-\frac{\pi}{4}} \approx 0.4633
$$

Simple MC integration

What's the error?

Now, compare

$$
\sigma_{M C}=\frac{0.4633}{\sqrt{N}}
$$

with error estimate from MC.

Simple MC integration

What's the error?

Now, compare

$$
\sigma_{M C}=\frac{0.4633}{\sqrt{N}}
$$

with error estimate from MC.

Spot on.

Inverting the Integral

Another basic MC method, based on the observation that
Probability ~ Area

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P\left(x<x_{s}\right)=F\left(x_{s}\right)$.

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P\left(x<x_{s}\right)=F\left(x_{s}\right)$.
- Probability = 'area', distributed evenly,

$$
\int_{x_{0}}^{x} d P=r
$$

Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P\left(x<x_{s}\right)=F\left(x_{s}\right)$.
- Probability = 'area', distributed evenly,

$$
\int_{x_{0}}^{x} d P=r
$$

Sample x according to $f(x)$ with

$$
x=F^{-1}\left[F\left(x_{0}\right)+r\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)\right] .
$$

Inverting the Integral

Another basic MC method, based on the observation that

$$
\text { Probability } \sim \text { Area }
$$

Sample x according to $f(x)$ with

$$
x=F^{-1}\left[F\left(x_{0}\right)+r\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)\right] .
$$

Optimal method, but we need to know

- The integral $F(x)=\int f(x) \mathrm{d} x$,
- It's inverse $F^{-1}(y)$.

That's rarely the case for real problems.
But very powerful in combination with other techniques.

Importance sampling

Error on Crude MC $\sigma_{M C}=\sigma / \sqrt{N}$.
\Longrightarrow Reduce error by reducing variance of integrand.

Importance sampling

Error on Crude MC $\sigma_{M C}=\sigma / \sqrt{N}$.
\Longrightarrow Reduce error by reducing variance of integrand.
Idea: Divide out the singular structure.

$$
I=\int f \mathrm{~d} V=\int \frac{f}{p} p \mathrm{~d} V \approx\left\langle\frac{f}{p}\right\rangle \pm \sqrt{\frac{\left\langle f^{2} / p^{2}\right\rangle-\langle f / p\rangle^{2}}{N}}
$$

where we have chosen $\int p \mathrm{~d} V=1$ for convenience.
Note: need to sample flat in $p \mathrm{~d} V$, so we better know $\int p \mathrm{~d} V$ and it's inverse.

Importance sampling

Consider error term:

$$
\begin{aligned}
E & =\left\langle\frac{f^{2}}{p^{2}}\right\rangle-\left\langle\frac{f}{p}\right\rangle^{2}=\int \frac{f^{2}}{p^{2}} p \mathrm{~d} V-\left[\int \frac{f}{p} p \mathrm{~d} V\right]^{2} \\
& =\int \frac{f^{2}}{p} \mathrm{~d} V-\left[\int f \mathrm{~d} V\right]^{2}
\end{aligned}
$$

Importance sampling

Consider error term:

$$
E=\int \frac{f^{2}}{p} \mathrm{~d} V-\left[\int f \mathrm{~d} V\right]^{2}
$$

Best choice of p ? Minimises $E \rightarrow$ functional variation of error term with (normalized) p :

$$
\begin{aligned}
0 & =\delta E=\delta\left(\int \frac{f^{2}}{p} \mathrm{~d} V-\left[\int f \mathrm{~d} V\right]^{2}+\lambda \int p \mathrm{~d} V\right) \\
& =\int\left(-\frac{f^{2}}{p^{2}}+\lambda\right) \mathrm{d} V \delta p
\end{aligned}
$$

Importance sampling

Consider error term:

$$
E=\int \frac{f^{2}}{p} \mathrm{~d} V-\left[\int f \mathrm{~d} V\right]^{2}
$$

Best choice of p ? Minimises $E \rightarrow$ functional variation of error term with (normalized) p :

$$
0=\delta E=\int\left(-\frac{f^{2}}{p^{2}}+\lambda\right) \mathrm{d} V \delta p
$$

hence

$$
p=\frac{|f|}{\sqrt{\lambda}}=\frac{|f|}{\int|f| \mathrm{d} V} .
$$

Choose p as close to f as possible.

Importance sampling - example

Improving $\cos (x)$ sampling,

Importance sampling - example

Improving $\cos (x)$ sampling,

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \cos (x) d x \\
& =\int_{0}^{\pi / 2} \frac{\cos (x)}{1-\frac{2}{\pi} x}\left(1-\frac{2}{\pi} x\right) d x \\
& =\left.\int_{0}^{1} \frac{\cos (x)}{1-\frac{2}{\pi} x}\right|_{x=x(\rho)} d \rho
\end{aligned}
$$

Importance sampling - example Improving $\cos (x)$

 sampling,$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \cos (x) d x \\
& =\int_{0}^{\pi / 2} \frac{\cos (x)}{1-\frac{2}{\pi} x}\left(1-\frac{2}{\pi} x\right) d x \\
& =\left.\int_{0}^{1} \frac{\cos (x)}{1-\frac{2}{\pi} x}\right|_{x=x(\rho)} d \rho .
\end{aligned}
$$

Sample x with inverting the integral technique (flat random number ρ),

$$
x=\frac{\pi}{2}(1-\sqrt{1-\rho}) \hat{=} \frac{\pi}{2}(1-\sqrt{\rho}) \quad\left(I=\int_{0}^{1} \frac{\cos \left(\frac{\pi}{2}(1-\sqrt{\rho})\right)}{\sqrt{\rho}} d \rho .\right)
$$

Importance sampling - example

Improving $\cos (x)$ sampling,
much better
convergence,
about 80% "accepted events".

Reduced variance ($\sigma^{\prime}=0.027$)
\Rightarrow better efficiency.

Importance sampling - better example

More interesting for divergent integrands, eg

$$
\frac{1}{2 \sqrt{x}}
$$

Importance sampling - better example

More interesting for divergent integrands, eg

$$
\frac{1}{2 \sqrt{x}}
$$

with some wiggles,
$p(x)=1-8 x+40 x^{2}-64 x^{3}+32 x^{4}$.

Importance sampling - better example

More interesting for divergent integrands, eg

$$
\frac{1}{2 \sqrt{x}}
$$

with some wiggles,
$p(x)=1-8 x+40 x^{2}-64 x^{3}+32 x^{4}$.
i.e. we want to integrate

$$
f(x)=\frac{p(x)}{2 \sqrt{x}} .
$$

Importance sampling - better example

- Crude MC gives result in reasonable 'time'.
- Error a bit unstable.
- Event generation with maximum weight $w_{\max }=20$. (that's arbitrary.)
- hit/miss/events with $\left(w>w_{\max }\right)=$ 36566/963434/617 with 1 M generated events.

Importance sampling - better example

Want events: use hit+mass variant here:

- Choose new random number r
- $w=f(x)$ in this case.
- if $r<w / w_{\max }$ then "hit".
- MC efficiency = hit/N.

Importance sampling - better example

Want events: use hit+mass variant here:

- Choose new random number r
- $w=f(x)$ in this case.
- if $r<w / w_{\max }$ then "hit".
- MC efficiency = hit/N.
- Efficiency for MC events only 3.7%.
- Note the wiggly histogram.

Importance sampling - better example

Now importance sampling, i.e. divide out $1 / 2 \sqrt{x}$.

$$
\begin{aligned}
\int_{0}^{1} \frac{p(x)}{2 \sqrt{x}} d x & =\int_{0}^{1}\left(\frac{p(x)}{2 \sqrt{x}} / \frac{1}{2 \sqrt{x}}\right) \frac{d x}{2 \sqrt{x}} \\
& =\int_{0}^{1} p(x) d \sqrt{x} \\
& =\int_{0}^{1} p(x(\rho)) d \rho \\
& =\int_{0}^{1} 1-8 \rho^{2}+40 \rho^{4}-64 \rho^{6}+32 \rho^{8} d \rho
\end{aligned}
$$

so,

$$
\rho=\sqrt{x}, \quad d \rho=\frac{d x}{2 \sqrt{x}}
$$

x sampled with inverting the integral from flat random numbers $\rho, x=\rho^{2}$.

Importance sampling - better example

$$
\begin{aligned}
& \int_{0}^{1} \frac{p(x)}{2 \sqrt{x}} d x=\int_{0}^{1} p(x(\rho)) d \rho \\
& \text { with }
\end{aligned}
$$

$$
\rho=\sqrt{x}, \quad d \rho=\frac{d x}{2 \sqrt{x}}
$$

Events generated with $w_{\max }=1$, as $p(x) \leq 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.

Importance sampling - better example

$\int_{0}^{1} \frac{p(x)}{2 \sqrt{x}} d x=\int_{0}^{1} p(x(\rho)) d \rho$
with

$$
\rho=\sqrt{x}, \quad d \rho=\frac{d x}{2 \sqrt{x}}
$$

Events generated with $w_{\max }=1$, as $p(x) \leq 1$, no guesswork needed here! Now, we get 74.6% MC efficiency.
... as opposed to 3.7%.

Importance sampling - better example

Crude MC vs Importance sampling.

$100 \times$ more events needed to reach same accuracy.

Importance sampling - another useful example

 Breit-Wigner peaks appear in many realistic MEs for cross sections and decays.$$
I=\int_{s_{0}}^{s_{1}} \frac{d s}{\left(s-m^{2}\right)^{2}+m^{2} \Gamma^{2}}
$$

Importance sampling - another useful example

Breit-Wigner peaks appear in many realistic MEs for cross sections and decays.

$$
\begin{aligned}
I & =\int_{s_{0}}^{s_{1}} \frac{d s}{\left(s-m^{2}\right)^{2}+m^{2} \Gamma^{2}}=\frac{1}{m \Gamma} \int_{y_{0}}^{y_{1}} \frac{d y}{y^{2}+1} \quad\left(y=\frac{s-m^{2}}{m \Gamma}\right) \\
& =\left.\frac{1}{m \Gamma} \arctan \frac{s-m^{2}}{m \Gamma}\right|_{s_{0}} ^{s_{1}}
\end{aligned}
$$

Inverting the integral gives ("tan mapping").

$$
\begin{aligned}
f(s) & =\frac{m \Gamma}{\left(s-m^{2}\right)^{2}+m^{2} \Gamma^{2}}, \\
F(s) & =\arctan \frac{s-m^{2}}{m \Gamma}=\rho, \\
F^{-1}(\rho) & =m^{2}+m \Gamma \tan \rho .
\end{aligned}
$$

Importance sampling - another useful example

VEGAS

- Classic algorithm.
- Automatic impotance sampling.
- Adopt grid size.
- Often used for multidimensional integration.
- Very robust.

VEGAS

- start with equidistant grid $x_{0}, x_{1}, \ldots, x_{N}$.
- Sample a number of points $\left(x_{s, i}, f\left(x_{s, i}\right)\right)$, compute first estimate of integral as $\langle f\rangle$.
- Resize grid:
choose x_{i}^{\prime} such that contribution from partial areas inside $x_{i}<x<x_{i+1}$ to integral is $\langle f\rangle / N$.
- Remember, optimal $p(x) \sim|f(x)|$.
- Sample again with same number of points into every bin $x_{i}<x<x_{i+1}$. Results in step weight function with steps

$$
p_{i}=\frac{1}{N\left(x_{i}-x_{i-1}\right)}, \quad x_{i}<x<x_{i+1}
$$

- \Rightarrow Sample often where density is high.

VEGAS

Rebinning:

[from T. Ohl, VAMP]

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$ $N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$
$N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$
$N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$ $N_{\text {grid }}=20,100$ Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$ $N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$ $N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$ $N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$
$N_{\text {grid }}=20,100$ Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$
$N_{\text {grid }}=20,100$ Convergence improved.

VEGAS

Example: $\cos \left(\frac{\pi x}{2}\right)$
$N_{\text {grid }}=20,100$
Convergence improved.

VEGAS

VEGAS

Second example:

$p(x) / \sqrt{x}$
(divergence with
wiggles)

15

VEGAS

Second example:
$p(x) / \sqrt{x}$
(divergence with wiggles)

VEGAS

Second example:
$p(x) / \sqrt{x}$
(divergence with wiggles)

Acc 10^{-4} after $N=10^{6}$ comparable with 'inverting the integral'.

VEGAS

Second example: $p(x) / \sqrt{x}$
(divergence with wiggles)

VEGAS

Problem to adapt in multiple dimensions:

$$
p_{1}\left(x_{1}\right)
$$

[from T. Ohl, VAMP]

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.

Multichannel MC

Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.
- Encode this in sum of sample functions $g_{i}(s)$ with weights $\alpha_{i}, \sum_{i} \alpha_{i}=1$.

$$
g(s)=\sum_{i} \alpha_{i} g_{i}(s)
$$

Multichannel MC

Now rewrite

$$
\begin{aligned}
\int_{s_{0}}^{s_{1}} f(s) d s & =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g(s) d s \\
& =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} \sum_{i} \alpha_{i} g_{i}(s) d s \\
& =\sum_{i} \alpha_{i} \int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g_{i}(s) d s
\end{aligned}
$$

Now $g_{i}(s) d s=d \rho_{i}$ (inverting the integral).

Multichannel MC

Now rewrite

$$
\begin{aligned}
\int_{s_{0}}^{s_{1}} f(s) d s & =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g(s) d s \\
& =\int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} \sum_{i} \alpha_{i} g_{i}(s) d s \\
& =\sum_{i} \alpha_{i} \int_{s_{0}}^{s_{1}} \frac{f(s)}{g(s)} g_{i}(s) d s
\end{aligned}
$$

Now $g_{i}(s) d s=d \rho_{i}$ (inverting the integral).
Select the distribution $g_{i}(s)$ you'd like to sample next event from acc to weights α_{i}.
α_{i} can be optimized after a number of trials.

Multichannel MC

Works quite well:

Hard Scattering

Hard scattering

Hard scattering

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC $(O(100))$.

Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs $(O(1))$.

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC (O(100)).
- Want arbitrary cuts.
- \rightarrow use Monte Carlo methods.

Matrix elements

Where do we get (LO) $|M|^{2}$ from?

- Most/important simple processes (SM and BSM) are 'built in'.
- Calculate yourself (≤ 3 particles in final state).
- Matrix element generators:
- MadGraph/MadEvent.
- Comix/AMEGIC (part of Sherpa).
- HELAC/PHEGAS.
- Whizard.
- CalcHEP/CompHEP.
generate code or event files that can be further processed.
- \rightarrow FeynRules interface to ME generators.

Also NLO mostly automatically available. See "Matching and Merging".

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \quad \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

now,
$\frac{1}{F} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}=J(\vec{x}) \prod_{i=1}^{3 n-2} \mathrm{~d} x_{i} \quad\left(\mathrm{~d} \Phi_{n}=(2 \pi)^{4} \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \vec{p}}{(2 \pi)^{3} 2 E_{i}}\right)$
such that

$$
\begin{aligned}
\sigma & =\int g(\vec{x}) \mathrm{d}^{3 n-2} \vec{x}, \quad\left(g(\vec{x})=J(\vec{x}) f_{i} f_{j} \bar{\sum}|M|^{2} \Theta(\text { cuts })\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{g\left(\vec{x}_{i}\right)}{p\left(\vec{x}_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} w_{i}
\end{aligned}
$$

Cross section formula

From Matrix element, we calculate

$$
\sigma=\int f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \frac{1}{F} \bar{\sum}|M|^{2} \Theta(\text { cuts }) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}
$$

now,
$\frac{1}{F} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \Phi_{n}=J(\vec{x}) \prod_{i=1}^{3 n-2} \mathrm{~d} x_{i} \quad\left(\mathrm{~d} \Phi_{n}=(2 \pi)^{4} \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \vec{p}}{(2 \pi)^{3} 2 E_{i}}\right)$
such that

$$
\begin{aligned}
\sigma & =\int g(\vec{x}) \mathrm{d}^{3 n-2} \vec{x}, \quad\left(g(\vec{x})=J(\vec{x}) f_{i} f_{j} \bar{\sum}|M|^{2} \Theta(\text { cuts })\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{g\left(\vec{x}_{i}\right)}{p\left(\vec{x}_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} w_{i}
\end{aligned}
$$

We generate events \vec{x}_{i} with weights w_{i}.

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

Generate events with same frequency as in nature!

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

where $w_{\text {max }}$ has to be chosen sensibly.
\rightarrow reweighting, when $\max \left(w_{i}\right)=\bar{w}_{\max }>w_{\max }$, as

$$
P_{i}=\frac{w_{i}}{\bar{w}_{\max }}=\frac{w_{i}}{w_{\max }} \cdot \frac{w_{\max }}{\bar{w}_{\max }}
$$

i.e. reject events with probability $\left(w_{\max } / \bar{w}_{\max }\right)$ afterwards.

Mini event generator

- We generate pairs $\left(\vec{x}_{i}, w_{i}\right)$.
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \vec{x}_{i} with probability

$$
P_{i}=\frac{w_{i}}{w_{\max }}
$$

Generate events with same frequency as in nature!

Matrix elements

Some comments:

- Use common Monte Carlo techniques to generate events efficiently. Goal: small variance in w_{i} distribution!

Matrix elements

Some comments:

- Use common Monte Carlo techniques to generate events efficiently. Goal: small variance in w_{i} distribution!
- Efficient generation closely tied to knowledge of $f\left(\vec{x}_{i}\right)$, i.e. the matrix element's propagator structure.
\rightarrow build phase space generator already while generating ME's automatically.

Parton Showers

Hard matrix element

Hard matrix element \rightarrow parton showers

Parton showers

Quarks and gluons in final state, pointlike.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.
Dominated by large logs, terms

$$
\alpha_{S}^{n} \log ^{2 n} \frac{Q}{Q_{0}} \sim 1
$$

Generated from emissions ordered in Q.

Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim$ few GeV to $O(\mathrm{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\mathrm{TeV} \rightarrow 1 \mathrm{GeV}$.
- Measure hadronic final states, long distance effects, $Q_{0} \sim 1 \mathrm{GeV}$.
Dominated by large logs, terms

$$
\alpha_{S}^{n} \log ^{2 n} \frac{Q}{Q_{0}} \sim 1
$$

Generated from emissions ordered in Q. Soft and / or collinear emissions.

ME approximated by parton cascade

Evolution in scale, typically $Q \sim 1 \mathrm{TeV}$ down to $Q \sim 1 \mathrm{GeV}$.

ME approximated by parton cascade

Evolution in scale, typically $Q \sim 1 \mathrm{TeV}$ down to $Q \sim 1 \mathrm{GeV}$.

ME approximated by parton cascade

Evolution in scale, typically $Q \sim 1 \mathrm{TeV}$ down to $Q \sim 1 \mathrm{GeV}$.

ME approximated by parton cascade

Evolution in scale, typically $Q \sim 1 \mathrm{TeV}$ down to $Q \sim 1 \mathrm{GeV}$.

ME approximated by parton cascade

Evolution in scale, typically $Q \sim 1 \mathrm{TeV}$ down to $Q \sim 1 \mathrm{GeV}$.

$e^{+} e^{-}$annihilation

Good starting point: $e^{+} e^{-} \rightarrow q \bar{q} g:$
Final state momenta in one plane (orientation usually averaged).
Write momenta in terms of

$$
\begin{gathered}
x_{i}=\frac{2 p_{i} \cdot q}{Q^{2}} \quad(i=1,2,3) \\
0 \leq x_{i} \leq 1, x_{1}+x_{2}+x_{3}=2 \\
q=(Q, 0,0,0) \\
Q \equiv E_{c m}
\end{gathered}
$$

Fig: momentum configuration of q, \bar{q} and g for given point $\left(x_{1}, x_{2}\right), \bar{q}$ direction fixed.

$e^{+} e^{-}$annihilation

Differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Collinear singularities: $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$. Soft singularity: $x_{1}, x_{2} \rightarrow 1$.

$e^{+} e^{-}$annihilation

Differential cross section:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Collinear singularities: $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$. Soft singularity: $x_{1}, x_{2} \rightarrow 1$.

Rewrite in terms of x_{3} and $\theta=\angle(q, g)$:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta \mathrm{~d} x_{3}}=\sigma_{0} \frac{C_{F} \alpha_{S}}{2 \pi}\left[\frac{2}{\sin ^{2} \theta} \frac{1+\left(1-x_{3}\right)^{2}}{x_{3}}-x_{3}\right]
$$

Singular as $\theta \rightarrow 0$ and $x_{3} \rightarrow 0$.

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 \mathrm{~d} \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 \mathrm{~d} \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

So, we rewrite $\mathrm{d} \sigma$ in collinear limit as

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} C_{F} \frac{1+(1-z)^{2}}{z} \mathrm{~d} z
$$

$e^{+} e^{-}$annihilation

Can separate into two jets as

$$
\begin{aligned}
\frac{2 \mathrm{~d} \cos \theta}{\sin ^{2} \theta} & =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \theta}{1+\cos \theta} \\
& =\frac{\mathrm{d} \cos \theta}{1-\cos \theta}+\frac{\mathrm{d} \cos \bar{\theta}}{1-\cos \bar{\theta}} \\
& \approx \frac{\mathrm{d} \theta^{2}}{\theta^{2}}+\frac{\mathrm{d} \bar{\theta}^{2}}{\bar{\theta}^{2}}
\end{aligned}
$$

So, we rewrite $\mathrm{d} \sigma$ in collinear limit as

$$
\begin{aligned}
\mathrm{d} \sigma & =\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} C_{F} \frac{1+(1-z)^{2}}{z} \mathrm{~d} z \\
& =\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
\end{aligned}
$$

with DGLAP splitting function $P(z)$.

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

$$
P_{q \rightarrow q g}(z)=C_{F} \frac{1+z^{2}}{1-z}
$$

$$
P_{g \rightarrow g g}(z)=C_{A} \frac{(1-z(1-z))^{2}}{z(1-z)}
$$

$$
P_{q \rightarrow g q}(z)=C_{F} \frac{1+(1-z)^{2}}{z}
$$

$$
P_{g \rightarrow q q}(z)=T_{R}(1-2 z(1-z))
$$

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

Note: Other variables may equally well characterize the collinear limit:

$$
\frac{\mathrm{d} \theta^{2}}{\theta^{2}} \sim \frac{\mathrm{~d} Q^{2}}{Q^{2}} \sim \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \sim \frac{\mathrm{~d} \tilde{q}^{2}}{\tilde{q}^{2}} \sim \frac{\mathrm{~d} t}{t}
$$

whenever $Q^{2}, p_{\perp}^{2}, t \rightarrow 0$ means "collinear".

Collinear limit

Universal DGLAP splitting kernels for collinear limit:

$$
\mathrm{d} \sigma=\sigma_{0} \sum_{\text {jets }} \frac{\mathrm{d} \theta^{2}}{\theta^{2}} \frac{\alpha_{S}}{2 \pi} P(z) \mathrm{d} z
$$

Note: Other variables may equally well characterize the collinear limit:

$$
\frac{\mathrm{d} \theta^{2}}{\theta^{2}} \sim \frac{\mathrm{~d} Q^{2}}{Q^{2}} \sim \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \sim \frac{\mathrm{~d} \tilde{q}^{2}}{\tilde{q}^{2}} \sim \frac{\mathrm{~d} t}{t}
$$

whenever $Q^{2}, p_{\perp}^{2}, t \rightarrow 0$ means "collinear".

- θ : HERWIG
- $Q^{2}:$ PYTHIA ≤ 6.3, SHERPA.
- $p_{\perp}:$ PYTHIA ≥ 6.4, ARIADNE, Catani-Seymour showers.
- $\tilde{q}:$ Herwig++.

Resolution

Need to introduce resolution t_{0}, e.g. a cutoff in p_{\perp}. Prevent us from the singularity at $\theta \rightarrow 0$.

Emissions below t_{0} are unresolvable.
Finite result due to virtual corrections:

unresolvable + virtual emissions are included in Sudakov form factor via unitarity (see below!).

Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

$$
\sigma_{2+1}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}} \int_{z_{-}}^{z_{+}} \mathrm{d} z \frac{\alpha_{S}}{2 \pi} \hat{P}(z)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \mathrm{~d} t W(t)
$$

Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

$$
\sigma_{2+1}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}} \int_{z_{-}}^{z_{+}} \mathrm{d} z \frac{\alpha_{S}}{2 \pi} \hat{P}(z)=\sigma_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \mathrm{~d} t W(t)
$$

Simple example:
Multiple photon emissions, strongly ordered in t.
We want

$$
W_{\mathrm{sum}}=\sum_{n=1} W_{2+n}=\frac{\int|\sim|^{2} \mathrm{~d} \Phi_{1}+\int|\approx|^{2} \mathrm{~d} \Phi_{2}+\int|\approx|^{2} \mathrm{~d} \Phi_{3}+\cdots}{| |^{2}}
$$

for any number of emissions.

Towards multiple emissions

$$
W_{2+1}=\left(\int \left\lvert\,\left\langle\left.\right|^{2}+\right|\left\langle\left.\right|^{2} \mathrm{~d} \Phi_{1}\right) /|\alpha|^{2}=\frac{2}{1!} \int_{t_{0}}^{t} \mathrm{~d} t W(t)\right.\right.
$$

Towards multiple emissions

$$
\begin{aligned}
& (n=1) \\
& W_{2+1}=\left(\int \left|<\left.\right|^{2}+\left|\left\langle\left.\right|^{2} \mathrm{~d} \Phi_{1}\right) /| |^{2}=\frac{2}{1!} \int_{t_{0}}^{t} \mathrm{~d} t W(t)\right. \text {. }\right.\right. \\
& (n=2) \approx
\end{aligned}
$$

$$
\begin{aligned}
& =2^{2} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \int_{t_{0}}^{t^{\prime}} \mathrm{d} t^{\prime \prime} W\left(t^{\prime}\right) W\left(t^{\prime \prime}\right)=\frac{2^{2}}{2!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{2} .
\end{aligned}
$$

We used

$$
\int_{t_{0}}^{t} \mathrm{~d} t_{1} \ldots \int_{t_{0}}^{t_{n-1}} \mathrm{~d} t_{n} W\left(t_{1}\right) \ldots W\left(t_{n}\right)=\frac{1}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n} .
$$

Towards multiple emissions

Easily generalized to n emissions

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\sigma_{>2}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right)
$$

Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\begin{aligned}
\sigma_{>2}\left(t_{0}\right) & =\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right) \\
& =\sigma_{2}\left(t_{0}\right)\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right)
\end{aligned}
$$

Sudakov Form Factor
$\Delta\left(t_{0}, t\right)=\exp \left[-\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right]$

Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$
W_{2+n}=\frac{2^{n}}{n!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{n}
$$

So, in total we get

$$
\begin{aligned}
\sigma_{>2}\left(t_{0}\right) & =\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}=\sigma_{2}\left(t_{0}\right)\left(\mathrm{e}^{2 \int_{t_{0}}^{t} \mathrm{~d} t W(t)}-1\right) \\
& =\sigma_{2}\left(t_{0}\right)\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right)
\end{aligned}
$$

Sudakov Form Factor in QCD

$$
\Delta\left(t_{0}, t\right)=\exp \left[-\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right]=\exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Sudakov form factor

Note that

$$
\begin{aligned}
\sigma_{\text {all }} & =\sigma_{2}+\sigma_{>2}=\sigma_{2}+\sigma_{2}\left(\frac{1}{\Delta^{2}\left(t_{0}, t\right)}-1\right) \\
& \Rightarrow \Delta^{2}\left(t_{0}, t\right)=\frac{\sigma_{2}}{\sigma_{\text {all }}}
\end{aligned}
$$

Two jet rate $=\Delta^{2}=P^{2}\left(\right.$ No emission in the range $\left.t \rightarrow t_{0}\right)$.

Sudakov form factor $=$ No emission probability.

Often $\Delta\left(t_{0}, t\right) \equiv \Delta(t)$.

- Hard scale t, typically CM energy or p_{\perp} of hard process.
- Resolution t_{0}, two partons are resolved as two entities if inv mass or relative p_{\perp} above t_{0}.
- $P^{2}($ not $P)$, as we have two legs that evolve independently.

Sudakov form factor from Markov property

Unitarity
$P($ "some emission" $)+P$ ("no emission")

$$
=P(0<t \leq T)+\bar{P}(0<t \leq T)=1 .
$$

Multiplication law (no memory)

$$
\bar{P}(0<t \leq T)=\bar{P}\left(0<t \leq t_{1}\right) \bar{P}\left(t_{1}<t \leq T\right)
$$

Sudakov form factor from Markov property

Unitarity
$P($ "some emission" $)+P$ ("no emission")

$$
=P(0<t \leq T)+\bar{P}(0<t \leq T)=1 .
$$

Multiplication law (no memory)

$$
\bar{P}(0<t \leq T)=\bar{P}\left(0<t \leq t_{1}\right) \bar{P}\left(t_{1}<t \leq T\right)
$$

Then subdivide into n pieces: $t_{i}=\frac{i}{n} T, 0 \leq i \leq n$.

$$
\begin{aligned}
\bar{P}(0<t \leq T) & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1} \bar{P}\left(t_{i}<t \leq t_{i+1}\right)=\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-P\left(t_{i}<t \leq t_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} P\left(t_{i}<t \leq t_{i+1}\right)\right)=\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} P(t)}{\mathrm{d} t} \mathrm{~d} t\right) .
\end{aligned}
$$

Sudakov form factor

Again, no-emission probability!

$$
\bar{P}(0<t \leq T)=\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} P(t)}{\mathrm{d} t} \mathrm{~d} t\right)
$$

So,

$$
\mathrm{d} P(\text { first emission at } T)=\mathrm{d} P(T) \bar{P}(0<t \leq T)
$$

$$
=\mathrm{d} P(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} P(t)}{\mathrm{d} t} \mathrm{~d} t\right)
$$

That's what we need for our parton shower! Probability density for next emission at t :
$\mathrm{d} P($ next emission at $t)=$

$$
\frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z \exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Parton shower Monte Carlo

Probability density:
$\mathrm{d} P($ next emission at $t)=$

$$
\frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z \exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Conveniently, the probability distribution is $\Delta(t)$ itself.

Parton shower Monte Carlo

Probability density:
$\mathrm{d} P($ next emission at $t)=$

$$
\frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z \exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Conveniently, the probability distribution is $\Delta(t)$ itself. Hence, parton shower very roughly from (HERWIG):
(1) Choose flat random number $0 \leq \rho \leq 1$.
(2) If $\rho<\Delta\left(t_{\max }\right)$: no resolbable emission, stop this branch.
(3) Else solve $\rho=\Delta\left(t_{\max }\right) / \Delta(t)$
(= no emission between $t_{\max }$ and t) for t.
Reset $t_{\max }=t$ and goto 1.
Determine z essentially according to integrand in front of exp.

Parton shower Monte Carlo

Probability density:
$\mathrm{d} P($ next emission at $t)=$

$$
\frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z \exp \left[-\int_{t_{0}}^{t} \frac{\mathrm{~d} t}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \hat{P}(z, t) \mathrm{d} z\right]
$$

Conveniently, the probability distribution is $\Delta(t)$ itself.

- That was old HERWIG variant. Relies on (numerical) integration/tabulation for $\Delta(t)$.
- Pythia, now also Herwig++, use the Veto Algorithm.
- Method to sample x from distribution of the type

$$
\mathrm{d} P=F(x) \exp \left[-\int^{x} \mathrm{~d} x^{\prime} F\left(x^{\prime}\right)\right] \mathrm{d} x
$$

Simpler, more flexible, but slightly slower.

Parton cascade

Get tree structure, ordered in evolution variable t :

Here: $t_{1}>t_{2}>t_{3} ; t_{2}>t_{3^{\prime}}$ etc.
Construct four momenta from $\left(t_{i}, z_{i}\right)$ and (random) azimuth ϕ.

Parton cascade

Get tree structure, ordered in evolution variable t :

Here: $t_{1}>t_{2}>t_{3} ; t_{2}>t_{3^{\prime}}$ etc.
Construct four momenta from (t_{i}, z_{i}) and (random) azimuth ϕ.
Not at all unique!
Many (more or less clever) choices still to be made.

Parton cascade

Get tree structure, ordered in evolution variable t :

- t can be $\theta, Q^{2}, p_{\perp}, \ldots$
- Choice of hard scale $t_{\max }$ not fixed. "Some hard scale".
- z can be light cone momentum fraction, energy fraction, ...
- Available parton shower phase space.
- Integration limits.
- Regularisation of soft singularities.

Good choices needed here to describe wealth of data!

Soft emissions

- Only collinear emissions so far.
- Including collinear+soft.
- Large angle+soft also important.

Soft emissions

- Only collinear emissions so far.
- Including collinear+soft.
- Large angle+soft also important.

Soft emission: consider eikonal factors, here for $q(p+q) \rightarrow q(p) g(q)$, soft g :

$$
u(p) \xi \frac{p p+\not q+m}{(p+q)^{2}-m^{2}} \longrightarrow u(p) \frac{p \cdot \varepsilon}{p \cdot q}
$$

soft factorisation. Universal, i.e. independent of emitter. In general:

$$
d \sigma_{n+1}=d \sigma_{n} \frac{d \omega}{\omega} \frac{d \Omega}{2 \pi} \frac{\alpha_{S}}{2 \pi} \sum_{i j} C_{i j} W_{i j} \quad \text { ("QCD-Antenna") }
$$

with

$$
W_{i j}=\frac{1-\cos \theta_{i j}}{\left(1-\cos \theta_{i q}\right)\left(1-\cos \theta_{q j}\right)}
$$

Soft emissions

We define

$$
W_{i j}=\frac{1-\cos \theta_{i j}}{\left(1-\cos \theta_{i q}\right)\left(1-\cos \theta_{q j}\right)} \equiv W_{i j}^{(i)}+W_{i j}^{(j)}
$$

with

$$
W_{i j}^{(i)}=\frac{1}{2}\left(W_{i j}+\frac{1}{1-\cos \theta_{i q}}-\frac{1}{1-\cos \theta_{q j}}\right) .
$$

$W_{i j}^{(i)}$ is only collinear divergent if $q \| i$ etc.

Soft emissions

We define

$$
W_{i j}=\frac{1-\cos \theta_{i j}}{\left(1-\cos \theta_{i q}\right)\left(1-\cos \theta_{q j}\right)} \equiv W_{i j}^{(i)}+W_{i j}^{(j)}
$$

with

$$
W_{i j}^{(i)}=\frac{1}{2}\left(W_{i j}+\frac{1}{1-\cos \theta_{i q}}-\frac{1}{1-\cos \theta_{q j}}\right)
$$

$W_{i j}^{(i)}$ is only collinear divergent if $q \| i$ etc .
After integrating out the azimuthal angles, we find

$$
\int \frac{d \phi_{i q}}{2 \pi} W_{i j}^{(i)}= \begin{cases}\frac{1}{1-\cos \theta_{i q}} & \left(\theta_{i q}<\theta_{i j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

That's angular ordering.

Angular ordering

Radiation from parton i is bound to a cone, given by the colour partner parton j.

Results in angular ordered parton shower and suppresses soft gluons viz. hadrons in a jet.

Colour coherence from CDF

Events with 2 hard ($>100 \mathrm{GeV}$) jets and a soft 3rd jet ($\sim 10 \mathrm{GeV}$)

FIG. 14. Observed R distribution compared to the predictions of (a) HERWIG; (b) ISAJET; (c) PYTHIA; (d) PYTHIA+.

FIG. 13. Observed η_{3} distribution compared to the predictions of (a) HERWIG; (b) ISAJET; (c) PYTHIA; (d) PYTHIA+.
F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.

Colour coherence from CDF

Events with 2 hard ($>100 \mathrm{GeV}$) jets and a soft 3rd jet ($\sim 10 \mathrm{GeV}$)

Pseudorapidity, η, of 3rd jet

F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.

Initial state radiation

Similar to final state radiation. Sudakov form factor $\left(x^{\prime}=x / z\right)$

$$
\Delta\left(t, t_{\max }\right)=\exp \left[-\sum_{b} \int_{t}^{t_{\max }} \frac{\mathrm{d} t}{t} \int_{z_{-}}^{z_{+}} \mathrm{d} z \frac{\alpha_{S}(z, t)}{2 \pi} \frac{x^{\prime} f_{b}\left(x^{\prime}, t\right)}{x f_{a}(x, t)} \hat{P}_{b a}(z, t)\right]
$$

Have to divide out the pdfs.

Initial state radiation

Evolve backwards from hard scale Q^{2} down towards cutoff scale Q_{0}^{2}. Thereby increase x.

With parton shower we undo the DGLAP evolution of the pdfs.

Dipoles

Exact kinematics when recoil is taken by spectator(s).

- Dipole showers.
- Ariadne.
- Recoils in Pythia.
- New dipole showers, based on
- Catani Seymour dipoles.
- QCD Antennae.
- Herwig, Sherpa, Vincia, Dire, ...
- Goal: matching with NLO.
- Generalized to IS-IS, IS-FS.

Brief graphical summary

Brief graphical summary

A few plots

How well does it work?

- $e^{+} e^{-} \rightarrow$ hadrons, mostly at LEP.
- Jet shapes, jet rates, event shapes, identified particles...
- 'Tuning' of parameters.
- Use all analyses available in Rivet.
- Want to get everything right with one parameter set.
- Compare to literally ≈ 20000 plots.
- Check out http://herwig.hepforge.org $(\rightarrow$ Plots) for many more and comparisons with the latest release.

How well does it work?

Smooth interplay between shower and hadronization.

[^0]
How well does it work?

$N_{\text {ch }}$ at LEP. Crucial for t_{0} (Herwig++ 2.5.2)

How well does it work?

How well does it work?

Differential Jet Rates at LEP (Herwig++ pre-3.0).
Dipole shower + some merging

How well does it work?

Event Shapes at LEP (Herwig++ pre-3.0).
Dipole shower + some merging

Parton showers do very well, today!

How well does it work?

Hadron Multiplicities at LEP (e.g. π^{+}, Λ_{b}^{0}).

How well does it work?

$p_{\perp}\left(Z^{0}\right) \rightarrow$ intrinsic $k_{\perp}(\mathrm{LHC} 7 \mathrm{TeV})$.
See also in context of matching/marging.

Transverse thrust

Integral jet shapes

not too hard, central $\left(30<p_{T} / \mathrm{GeV}<40 ; 0<|y|<0.3\right)$

Integral jet shapes

harder, more forward ($80<p_{T} / \mathrm{GeV}<110 ; 1.2<|y|<2.1$)

Limits of parton showers

$W+$ jets, LHC 7 TeV .

Higher jets not covered by parton shower only \rightarrow merging.

[^0]: Partons

 Hadrons

