

PLAN

- Introduction: why we need precision ?
- Basics in NLO calculations
- Generics in NLO calculations

Advanced NLO topics

INTRODUCTION

Precision & Accuracy

PRECISION MEASUREMENTS AT THE LHC

Very impressive SM cross section measurements at the LHC

PRECISION MEASUREMENTS AT THE LHC

Very impressive SM cross section measurements at the LHC

In order to fully exploit these data, theoretical calculations are crucial to keep pace !

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$
$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$
$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$
$$\mathbf{LO}$$

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$
$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$
NLO

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$
$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$
NNLO

HADRON COLLIDER PHYSICS: PRE-LHC ERA

HADRON COLLIDER PHYSICS: PRE-LHC ERA

N³LO HIGGS PRODUCTION: HIGHEST ACCURACY • Percent level inclusive ggF Higgs cross section

Integral Statistics

	NNLO	N3LO
#diagrams	~1.000	~100.000
#integrals	~50.000	517.531.178
#masters	27	1.028
#soft masters	5	78

- Reverse Unitarity
- Differential equations
- Mellin Barnes Representations
- Hopf Algebra of Generalized Polylogs
- Number Theory
- Soft Expansion by Region
- Optimised Algorithm for IBP reduction and powerful computing resources

N³LO HIGGS PRODUCTION: HIGHEST ACCURACY Percent level inclusive ggF Higgs cross section Anastasiou, Duhr, Dulat, Herzog, Mistlberger (PRL'15) Successfiller force between the formal and the phenomenology communities ! σ [pb] ~100.000 LHC PDF4LHC.0 517.531.178 $PP \rightarrow H+X$ 20 $\mu_t = \mu_r \in [m_h/4, m_h]$ m_b=125 GeV 10

- Reverse Unitarity
- Differential equations
- Mellin Barnes Representations
- Hopf Algebra of Generalized Polylogs
- Number Theory
- Soft Expansion by Region
- Optimised Algorithm for IBP reduction and powerful computing resources

Important (and often dominant) background at the LHC

Important (and often dominant) background at the LHC

NLO QCD correction: W+(>=n) jets, n=0,...,5

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

Friday, June 11, 21

- Local IR subtraction

- Important (and often dominant) background at the LHC
- NLO QCD correction: W+(>=n) jets, n=0,...,5

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

Automated NLO QCD: exclusive W+n jets, n=0,...,2

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP'I5)

Commands:

```
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5_aMC > define p = p b b~; define j = p
MG5_aMC > define l = e+ mu+ e- mu-
MG5_aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5_aMC > output; launch
```


- Important (and often dominant) background at the LHC
- NLO QCD correction: W+(>=n) jets, n=0,...,5

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

Automated NLO QCD: exclusive W+n jets, n=0,...,2

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP'I5)

Commands:

```
./bin/mg5_aMC

MG5_aMC > import model loop_sm-no_b_mass

MG5_aMC > define p = p b b~; define j = p

MG5_aMC > define l = e+ mu+ e- mu-

MG5_aMC > define vl = ve vm ve~ vm~

MG5_aMC > generate p p > l vl [QCD] @ 0

MG5_aMC > generate p p > l vl j [QCD] @ 1

MG5_aMC > generate p p > l vl j [QCD] @ 2

MG5_aMC > output; launch
```

Technique improvements:

- Matured automated framework
- Methods of matching ME to PS
- Merging of multi-jet ME with PS

Alwall et al. (JHEP'14)

BASICS

MCNET BEIJING

HUA-SHENG SHAO

BASICS

A NLO example

A NLO EXAMPLE: BORN

CNIS

Let us calculate NLO QCD of Z -> q qbar decay

Writing down Born amplitude according to Feynman rules

For simplicity, we assume quarks are massless

$$\mathcal{A}_{\mathrm{Born}} = -\delta_{c_q c_{\bar{q}}} \varepsilon_{\mu}(p_Z) \bar{u}(p_q) . \Gamma^{\mu}_{Zq\bar{q}} . v(p_{\bar{q}})$$

$$\Gamma^{\mu}_{Zq\bar{q}} = ie \left(\frac{I_q}{\cos\theta_w \sin\theta_w} - Q_q \frac{\sin\theta_w}{\cos\theta_w}\right) \gamma^{\mu} P_L - ie Q_q \frac{\sin\theta_w}{\cos\theta_w} \gamma^{\mu} P_R$$

 Squaring amplitude, summing over colours and spins, and averaging the spin of the initial state

$$\overline{\sum} |\mathcal{A}_{\mathrm{Born}}|^2 = 8\pi \alpha m_Z^2 \left(2Q_q^2 \left(\frac{\sin \theta_w}{\cos \theta_w} \right)^2 - 2\frac{I_q Q_q}{\cos^2 \theta_w} + \frac{I_q^2}{\cos^2 \theta_w} \sin^2 \theta_w \right)$$

Phase-space integration

$$\Gamma_{\text{Born}}(Z \to q\bar{q}) = \frac{1}{2m_Z} \int (2\pi)^4 \delta^4 (p_Z - p_q - p_{\bar{q}}) \frac{1}{(2\pi)^{3\times 2}} \frac{d^3 p_q}{2E_q} \frac{d^3 p_{\bar{q}}}{2E_{\bar{q}}} \overline{\sum} |\mathcal{A}_{\text{Born}}|^2$$
$$= \alpha m_Z \left(Q_q^2 \frac{\sin^2 \theta_w}{\cos^2 \theta_w} - \frac{Q_q I_q}{\cos^2 \theta_w} + \frac{I_q^2}{2\cos^2 \theta_w \sin^2 \theta_w} \right)$$

MCNET BEIJING

HUA-SHENG SHAO

cnrs

- Let us calculate NLO QCD of Z -> q qbar decay
 - Writing down one-loop amplitude according to Feynman rules

Need to evaluate two tensor integrals

$$I_{1}^{\mu} = \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{\bar{l}^{\mu}}{\bar{l}^{2} \left(\bar{l} - p_{q}\right)^{2} \left(\bar{l} - p_{Z}\right)^{2}} \qquad I_{2}^{\mu\nu} = \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{\bar{l}^{\mu}\bar{l}^{\nu}}{\bar{l}^{2} \left(\bar{l} - p_{q}\right)^{2} \left(\bar{l} - p_{Z}\right)^{2}}$$

according to Lorentz structures

 $I_1^{\mu} = p_q^{\mu} B_1 + p_Z^{\mu} B_2 \qquad I_2^{\mu\nu} = g^{\mu\nu} B_{00} + p_q^{\mu} p_q^{\nu} B_{11} + p_Z^{\mu} p_Z^{\nu} B_{22} + \left(p_q^{\mu} p_Z^{\nu} + p_Z^{\mu} p_q^{\nu} \right) B_{12}$

Solving the coefficients B, e.g.

 $p_q \cdot I_1 = p_q^2 B_1 + p_q \cdot p_Z B_2 = p_q \cdot p_Z B_2 \quad p_Z \cdot I_1 = p_q \cdot p_Z B_1 + p_Z^2 B_2 = p_q \cdot p_Z B_1 + m_Z^2 B_2$

Let us calculate NLO QCD of Z -> q qbar decay

Need to evaluate two tensor integrals

Solving the coefficients B, e.g.

$$B_{2} = \frac{p_{q} \cdot I_{1}}{p_{q} \cdot p_{Z}} \qquad B_{1} = \frac{p_{Z} \cdot I_{1} - m_{Z}^{2} B_{2}}{p_{q} \cdot p_{Z}}$$

$$p_{q} \cdot I_{1} = \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{p_{q} \cdot \bar{l}}{\bar{l}^{2} (\bar{l} - p_{q})^{2} (\bar{l} - p_{Z})^{2}}$$

$$= \frac{1}{2} \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{\bar{l}^{2} - (\bar{l} - p_{q})^{2}}{\bar{l}^{2} (\bar{l} - p_{q})^{2} (\bar{l} - p_{Z})^{2}}$$

$$= \frac{1}{2} \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{(\bar{l} - p_{q})^{2} (\bar{l} - p_{Z})^{2}} - \frac{1}{2} \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} (\bar{l} - p_{Z})^{2}}$$

$$= \frac{1}{2} \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} (\bar{l} - p_{\bar{q}})^{2}} - \frac{1}{2} \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} (\bar{l} - p_{Z})^{2}}$$

Let us calculate NLO QCD of Z -> q qbar decay

Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} (\bar{l} - p_{\bar{q}})^{2}} = \int_{0}^{1} dx \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\left[x\bar{l}^{2} + (1 - x)\left(\bar{l} - p_{\bar{q}}\right)^{2}\right]^{2}}$$
 Feynman parameterization !

$$= \int_{0}^{1} dx \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{(\bar{l} - (1 - x)p_{\bar{q}})^{4}}$$
 Using on-shell condition !

$$= \int_{0}^{1} dx \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{(\bar{l}^{2})^{2}}$$
 Translational invariance !

$$= \int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{(\bar{l}^{2})^{2}}$$
 Integration over x !

$$= \int \frac{d\bar{l}_{0}d^{d-1}\bar{l}}{(2\pi)^{d}} \frac{1}{(\bar{l}^{2} - |\bar{l}|^{2})^{2}}$$

Let us calculate NLO QCD of Z -> q qbar decay

Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} \left(\bar{l}-p_{\bar{q}}\right)^{2}} \stackrel{\bar{l}_{0}}{=} \frac{i\bar{l}_{0}}{(2\pi)^{d}} \int d\Omega_{d} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Wick rotation & spherical coordinate !

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Integration over solid angle

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \left(\int_{0}^{1} d|\bar{l}||\bar{l}|^{d-5} + \int_{1}^{+\infty} d|\bar{l}||\bar{l}|^{d-5} \right)$$

Let us calculate NLO QCD of Z -> q qbar decay

Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} \left(\bar{l}-p_{\bar{q}}\right)^{2}} \stackrel{\bar{l}_{0}}{=} \stackrel{i\bar{l}_{0}}{=} \frac{i}{(2\pi)^{d}} \int d\Omega_{d} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Wick rotation & spherical coordinate !

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Integration over solid angle !

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \left(\int_{0}^{1} d|\bar{l}||\bar{l}|^{d-5} + \int_{1}^{+\infty} d|\bar{l}||\bar{l}|^{d-5} \right)$$

 $|\bar{l}| \rightarrow 0$ (IR): the integral is divergent when $d \leq 4$ $|\bar{l}| \rightarrow +\infty$ (UV): the integral is divergent when $d \geq 4$

Let us calculate NLO QCD of Z -> q qbar decay

Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^{d}\bar{l}}{(2\pi)^{d}} \frac{1}{\bar{l}^{2} \left(\bar{l}-p_{\bar{q}}\right)^{2}} \stackrel{\bar{l}_{0}}{=} \frac{i\bar{l}_{0}}{(2\pi)^{d}} \int d\Omega_{d} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Wick rotation & spherical coordinate !

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \int_{0}^{+\infty} d|\bar{l}||\bar{l}|^{d-5}$$
 Integration over solid angle !

$$= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}} \left(\int_{0}^{1} d|\bar{l}||\bar{l}|^{d-5} + \int_{1}^{+\infty} d|\bar{l}||\bar{l}|^{d-5} \right)$$

 $\begin{aligned} |\bar{l}| &\to 0 \text{ (IR): the integral is divergent when } d \leq 4 \\ |\bar{l}| &\to +\infty \text{(UV): the integral is divergent when } d \geq 4 \end{aligned}$ Regularisations: $\begin{aligned} d &= 4 - 2\epsilon_{\mathrm{IR}}, \epsilon_{\mathrm{IR}} \to 0 - \\ d &= 4 - 2\epsilon_{\mathrm{UV}}, \epsilon_{\mathrm{UV}} \to 0 + \end{aligned}$

HUA-SHENG SHAO

- Let us calculate NLO QCD of Z -> q qbar decay
 - Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_{\bar{q}})^2} = \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(-\frac{1}{2\epsilon_{\rm IR}} + \frac{1}{2\epsilon_{\rm UV}} \right)$$

 Squaring with Born amplitude, summing over colours and spins, and averaging the spin of the initial state

$$\overline{\sum} 2\Re\{\mathcal{A}_{1\text{loop}}\mathcal{A}_{\text{Born}}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right) \frac{\alpha_s}{\pi} \left[\frac{2}{3\epsilon_{\text{UV}}} - \frac{4}{3\epsilon_{\text{IR}}^2} - \frac{4}{3\epsilon_{\text{IR}}} \left(1 - \log\frac{m_Z^2}{4\pi^2\mu_R^2}\right) - \frac{2}{3}\left(5 - \pi^2 - \log\frac{m_Z^2}{4\pi^2\mu_R^2} + \log^2\frac{m_Z^2}{4\pi^2\mu_R^2}\right)\right]$$

The UV divergence needs renormalisation

$$\overline{\sum} 2\Re\{\mathcal{A}_{\rm UV}\mathcal{A}_{\rm Born}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\overline{\sum} |\mathcal{A}_{\rm Born}|^2\right) \frac{\alpha_s}{\pi} \left[-\frac{2}{3\epsilon_{\rm UV}} + \frac{2}{3\epsilon_{\rm IR}}\right]$$

- Let us calculate NLO QCD of Z -> q qbar decay
 - Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 \left(\bar{l} - p_{\bar{q}}\right)^2} = \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(-\frac{1}{2\epsilon_{\rm IR}} + \frac{1}{2\epsilon_{\rm UV}}\right)$$

 Squaring with Born amplitude, summing over colours and spins, and averaging the spin of the initial state

$$\overline{\sum} 2\Re\{\mathcal{A}_{1\text{loop}}\mathcal{A}_{\text{Born}}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\overline{\sum}|\mathcal{A}_{\text{Born}}|^2\right) \frac{\alpha_s}{\pi} \left[\frac{2}{3\epsilon_{\text{UV}}} - \frac{4}{3\epsilon_{\text{IR}}^2} - \frac{4}{3\epsilon_{\text{IR}}} \left(1 - \log\frac{m_Z^2}{4\pi^2\mu_R^2}\right) - \frac{2}{3}\left(5 - \pi^2 - \log\frac{m_Z^2}{4\pi^2\mu_R^2} + \log^2\frac{m_Z^2}{4\pi^2\mu_R^2}\right)\right]$$

The UV divergence needs renormalisation

$$\overline{\sum} 2\Re\{\mathcal{A}_{\rm UV}\mathcal{A}_{\rm Born}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\overline{\sum} |\mathcal{A}_{\rm Born}|^2\right) \frac{\alpha_s}{\pi} \left[-\frac{2}{3\epsilon_{\rm W}} + \frac{2}{3\epsilon_{\rm IR}}\right]$$

The virtual matrix element is:

$$\mathcal{V} = \sum 2\Re\{\mathcal{A}_{1\text{loop}}\mathcal{A}_{B\text{orn}}^*\} + \sum 2\Re\{\mathcal{A}_{UV}\mathcal{A}_{B\text{orn}}^*\}$$

A NLO EXAMPLE: REAL

- Let us calculate NLO QCD of Z -> q qbar decay
 - Writing down real amplitude according to Feynman rules

 Squaring amplitude, summing over colours and spins, and averaging the spin of the initial state

$$\overline{\sum} |\mathcal{A}_{\text{real}}|^2 = \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right) \alpha_s \frac{8\pi(d-2)}{3m_Z^2 s_{24} s_{34}} \times \left[(d-2)s_{24}^2 + 2(d-4)s_{24}s_{34} + (d-2)s_{34}^2 - 4m_Z^2(s_{24}+s_{34}) + 4m_Z^4\right]$$

$$s_{24} = (p_q + p_g)^2, s_{34} = (p_{\bar{q}} + p_g)^2$$
A NLO EXAMPLE: REAL

- Let us calculate NLO QCD of Z -> q qbar decay
 - 3-body phase-space integration

 $\Gamma_{\text{real}} = \frac{1}{2m_Z} \int (2\pi)^d \,\delta^d \left(p_Z - p_q - p_{\bar{q}} - p_g \right) \frac{1}{(2\pi)^{3(d-1)}} \frac{d^{d-1}\vec{p}_q}{2E_q} \frac{d^{d-1}\vec{p}_{\bar{q}}}{2E_{\bar{q}}} \frac{d^{d-1}\vec{p}_g}{2E_g} \overline{\sum} |\mathcal{A}_{\text{real}}|^2$

$$y = \frac{s_{34}}{m_Z^2}, 1 - y - z = \frac{s_{24}}{m_Z^2}$$

$$\Phi^{(2)}(x - y - x) = (2\pi)^d \delta^d(x - y - x) = 1$$

$$\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) = (2\pi)^d \delta^d (p_Z - p_q - p_{\bar{q}}) \frac{1}{(2\pi)^{2(d-1)}} \frac{a p_q}{2E_q} \frac{a p_{\bar{q}}}{2E_{\bar{q}}} \frac{a}{2E_{\bar{q}}} = \frac{(4\pi)^{2\epsilon}}{8(2\pi)^2} \frac{1}{m_Z^{2\epsilon}} d\Omega_d$$

$$d\Phi^{(3)}(p_Z \to p_q, p_{\bar{q}}, p_g) = (2\pi)^d \delta^d (p_Z - p_q - p_{\bar{q}} - p_g) \frac{1}{(2\pi)^{3(d-1)}} \frac{d^{d-1}\vec{p}_q}{2E_q} \frac{d^{d-1}\vec{p}_{\bar{q}}}{2E_{\bar{q}}} \frac{d^{d-1}\vec{p}_{\bar{q}}}{2E_{\bar{q}}} = \frac{(4\pi)^{3\epsilon}}{32(2\pi)^4 \Gamma(1-\epsilon)} (m_Z^2)^{1-2\epsilon} d\Omega_d$$

$$= \frac{\int_0^1 dz z^{-\epsilon} \int_0^{1-z} dy y^{-\epsilon} (1-z-y)^{-\epsilon}}{\int_0^1 dz z^{-\epsilon} \int_0^{1-z} dy y^{-\epsilon} (1-z-y)^{-\epsilon}} (m_Z^2)^{1-\epsilon} \times \int_0^1 dz z^{-\epsilon} \int_0^{1-z} dy y^{-\epsilon} (1-z-y)^{-\epsilon}$$

MCNET BEIJING

d

 $dd - 1 \overrightarrow{n} dd - 1 \overrightarrow{n}$

A NLO EXAMPLE: REAL

- Let us calculate NLO QCD of Z -> q qbar decay
 - 3-body phase-space integration

$$\overline{\sum} |\mathcal{A}_{\text{real}}|^2 = \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right) \alpha_s \frac{8\pi (d-2)}{3m_Z^2 y(1-z-y)} \left[(d-2)(1-z)^2 + 4y^2 - 4y(1-z) + 4z \right]$$

The integration over y is divergent when $d \le 4$ ($\epsilon \ge 0$)

A NLO EXAMPLE: REAL

- Let us calculate NLO QCD of Z -> q qbar decay
 - 3-body phase-space integration

$$\Gamma_{\text{real}} = \frac{1}{2m_Z} \int d\Phi^{(3)}(p_Z \to p_q, p_{\bar{q}}, p_g) \overline{\sum} |\mathcal{A}_{\text{real}}|^2$$

= $\frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right)$
 $\times \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\alpha_s}{\pi} \left[\frac{4}{3\epsilon_{\text{IR}}^2} + \frac{2}{3\epsilon_{\text{IR}}} \left(1 - 2\log \frac{m_Z^2}{4\pi^2 \mu_R^2} \right) + \frac{1}{3} \left(2\log^2 \frac{m_Z^2}{4\pi^2 \mu_R^2} - 2\log \frac{m_Z^2}{4\pi^2 \mu_R^2} - 2\pi^2 + 13 \right) \right]$

Sum real and virtual

$$\Gamma_{\text{virtual}} = \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \mathcal{V}$$

$$\Gamma_{\text{virtual}} + \Gamma_{\text{real}} = \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right) \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\alpha_s}{\pi}$$

A NLO EXAMPLE: NLO

- Let us calculate NLO QCD of Z -> q qbar decay
 - Sum real and virtual
 All remaining IR poles cancel (in general KLN theorem)

Kinoshita Lee

 $\Gamma_{\text{virtual}} + \Gamma_{\text{real}} = \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2 \right) \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\alpha_s}{\pi}$ $\stackrel{\epsilon \to 0}{=} \Gamma_{\text{Born}}(Z \to q\bar{q}) \frac{\alpha_s}{\pi}$

$$\Gamma_{\rm NLO}(Z \to q\bar{q} + X) = \Gamma_{\rm Born}(Z \to q\bar{q})\left(1 + \frac{\alpha_s}{\pi}\right)$$

We finally get a well-known result !

Nauenberg

GENERICS

Modern Techniques

Three parts need to be computed in a NLO calculation

GENERICS

Virtual=Loop+UV

MCNET BEIJING

ONE-LOOP DIAGRAM GENERATION

- No external tool for loop diagram generation: Reuse MG5_aMC efficient tree level diagram generation!
- Cut loops have two extra external particles

Trees (e⁺e⁻ \rightarrow u u~ u u~) \equiv Loops (e⁺e⁻ \rightarrow u u~)

ONE-LOOP INTEGRAL EVALUATION

 Consider this *m*-point loop diagram with *n* external momenta

$$\int \frac{d^d \ell}{(2\pi)^d} \frac{\mathcal{N}(\ell)}{D_0 D_1 D_2 D_3 \cdots D_{m-2} D_{m-1}}$$

with
$$D_i = (\ell + p_i)^2 - m_i^2$$

We will denote by \mathcal{C} this integral.

ONE-LOOP INTEGRAL EVALUATION

$$\mathcal{C}^{1-\text{loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \text{Box}_{i_0 i_1 i_2 i_3} \quad \text{Box}_{i_0 i_1 i_2 i_3} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2} D_{i_3}}$$

$$+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \text{Triangle}_{i_0 i_1 i_2} \quad \text{Triangle}_{i_0 i_1 i_2} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2}}$$

$$+ \sum_{i_0 < i_1} b_{i_0 i_1} \text{Bubble}_{i_0 i_1} \quad \text{Bubble}_{i_0 i_1} = \int d^d l \frac{1}{D_{i_0} D_{i_1}}$$

$$+ \sum_{i_0} a_{i_0} \text{Tadpole}_{i_0} \quad \text{Tadpole}_{i_0} = \int d^d l \frac{1}{D_{i_0}}$$

The a, b, c, d and R coefficients depend only on external parameters and momenta.

Reduction of the loop to these scalar coefficients can be achieved using either Tensor Integral Reduction or Reduction at the integrand level

TENSOR INTEGRAL REDUCTION

CNIS

• Passarino-Veltman reduction:

$$\int d^d l \, \frac{N(l)}{D_0 D_1 D_2 \cdots D_{m-1}} \to \sum_i \operatorname{coeff}_i \int d^d l \, \frac{1}{D_0 D_1 \cdots}$$

- Reduce a general integral to "scalar integrals" by "completing the square"
- Example: Application of PV to this triangle rank-1 integral

$$p = \frac{l}{p} - \frac{p+q}{p} \int \frac{d^n l}{(2\pi)^n} \frac{l^\mu}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)}$$

• Implemented in codes such as:

COLLIER [A. Denner, S. Dittmaier, L. Hofer, 1604.06792] GOLEM95 [T. Binoth, J.Guillet, G. Heinrich, E.Pilon, T.Reither, 0810.0992]

TENSOR INTEGRAL REDUCTION

$$\int \frac{d^n l}{(2\pi)^n} \frac{l^\mu}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)}$$

• The only independent four vectors are p^{μ} and q^{μ} . Therefore, the integral must be proportional to those. We can set-up a system of linear equations and try to solve for C_1 and C_2

$$\int \frac{d^n l}{(2\pi)^n} \frac{l^\mu}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)} = \left(\begin{array}{c} p^\mu & q^\mu \end{array}\right) \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right)$$

We can solve for C_1 and C_2 by contracting with p and q

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = \begin{pmatrix} [2l \cdot p] \\ [2l \cdot q] \end{pmatrix} = G \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \equiv \begin{pmatrix} 2p \cdot p & 2p \cdot q \\ 2p \cdot q & 2q \cdot q \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

where $[2l \cdot p] = \int \frac{d^n l}{(2\pi)^n} \frac{2l \cdot p}{l^2 (l+p)^2 (l+q)^2}$ (For simplicity, the masses are neglected here)

 By expressing 2*l.p* and 2*l.q* as a sum of denominators we can express R₁ and R₂ as a sum of simpler integrals, *e.g.*

$$R_{1} = \int \frac{d^{n}l}{(2\pi)^{n}} \frac{2l \cdot p}{l^{2}(l+p)^{2}(l+q)^{2}} = \int \frac{d^{n}l}{(2\pi)^{n}} \frac{(l+p)^{2} - l^{2} - p^{2}}{l^{2}(l+q)^{2}}$$
$$= \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{l^{2}(l+q)^{2}} - \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{(l+p)^{2}(l+q)^{2}} - p^{2} \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{l^{2}(l+p)^{2}(l+q)^{2}}$$

• And similarly for R_2

$$R_{2} = \int \frac{d^{n}l}{(2\pi)^{n}} \frac{2l \cdot q}{l^{2}(l+p)^{2}(l+q)^{2}} = \int \frac{d^{n}l}{(2\pi)^{n}} \frac{(l+q)^{2} - l^{2} - q^{2}}{l^{2}(l+p)^{2}(l+q)^{2}}$$
$$= \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{l^{2}(l+p)^{2}} - \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{(l+p)^{2}(l+q)^{2}} - q^{2} \int \frac{d^{n}l}{(2\pi)^{n}} \frac{1}{l^{2}(l+p)^{2}(l+q)^{2}}$$

• Now we can solve the equation

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = \begin{pmatrix} [2l \cdot p] \\ [2l \cdot q] \end{pmatrix} = G \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \equiv \begin{pmatrix} 2p \cdot p & 2p \cdot q \\ 2p \cdot q & 2q \cdot q \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

by inverting the "Gram" matrix G

$$\left(\begin{array}{c} C_1\\ C_2 \end{array}\right) = G^{-1} \left(\begin{array}{c} R_1\\ R_2 \end{array}\right)$$

• We have re-expressed, reduced, our original integral

$$\int \frac{d^n l}{(2\pi)^n} \frac{l^\mu}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)} = \left(\begin{array}{c} p^\mu & q^\mu \end{array}\right) \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right)$$

in terms of known, simpler *scalar* integrals

TIR

 The decomposition to the basis scalar integrals works at the level of the integrals

$$\begin{split} \mathcal{C}^{1\text{-loop}} &= \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} \\ &+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2} \\ &+ \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1} \\ &+ \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0} \\ &+ R + \mathcal{O}(\epsilon) \end{split}$$

Ossola, Papadopulos, Pittau (NPB'06)

OPP

Knowing a relation directly at the integrand level, we would be able to manipulate the reduction without doing the the integrals

$$N(l) = \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i$$

+ $\sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i$
+ $\sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i$
+ $\sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i$
+ $\tilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon)$

MCNET BEIJING

TIR

 The decomposition to the basis scalar integrals works at the level of the integrals

$$\begin{split} \mathcal{C}^{1\text{-loop}} &= \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} \\ &+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2} \\ &+ \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1} \\ &+ \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0} \\ &+ R + \mathcal{O}(\epsilon) \end{split}$$

Ossola, Papadopulos, Pittau (NPB'06)

OPP

Knowing a relation directly at the integrand level, we would be able to manipulate the reduction without doing the the integrals

$$N(l) = \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i$$

+ $\sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i$
+ $\sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i$
+ $\sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i$
+ $\tilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon)$
Spurious term

- The functional form of the spurious terms is known (it depends on the rank of the integral and the number of propagators in the loop) [del Aguila, Pittau 2004]
 - for example, a box coefficient from a rank 1 numerator is

$$\tilde{d}_{i_0i_1i_2i_3}(l) = \tilde{d}_{i_0i_1i_2i_3} \, \epsilon^{\mu\nu\rho\sigma} \, l^{\mu} p_1^{\nu} p_2^{\rho} p_3^{\sigma}$$

(remember that p_i is the sum of the momentum that has entered the loop so far, so we always have $p_0 = 0$)

• The integral is zero

$$\int d^d l \frac{\tilde{d}_{i_0 i_1 i_2 i_3}(l)}{D_0 D_1 D_2 D_3} = \tilde{d}_{i_0 i_1 i_2 i_3} \int d^d l \frac{\epsilon^{\mu\nu\rho\sigma} l^\mu p_1^\nu p_2^\rho p_3^\sigma}{D_0 D_1 D_2 D_3} = 0$$

• Take Box (4-point) coefficients as an example

$$N(\mathbf{l}^{\pm}) = d_{0123} + \tilde{d}_{0123}(\mathbf{l}^{\pm}) \prod_{i \neq 0, 1, 2, 3}^{m-1} D_i(\mathbf{l}^{\pm})$$

 Two values are enough given the functional form for the spurious term. We can immediately determine the Box coefficient

$$d_{0123} = \frac{1}{2} \left[\frac{N(l^+)}{\prod_{i \neq 0, 1, 2, 3}^{m-1} D_i(l^+)} + \frac{N(l^-)}{\prod_{i \neq 0, 1, 2, 3}^{m-1} D_i(l^-)} \right]$$

 By choosing other values for *l*, that set other combinations of 4 "denominators" to zero, we can get all the Box coefficients

• In general:

 $N(l) = \sum \left[d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(l) \right] \prod$ D_i $i_0 < i_1 < i_2 < i_3$ $i \neq i_0, i_1, i_2, i_3$ $+\sum_{i_{0}< i_{1}< i_{2}}^{m-1} \left[c_{i_{0}i_{1}i_{2}} + \tilde{c}_{i_{0}i_{1}i_{2}}(l) \right] \prod_{i\neq i_{0},i_{1},i_{2}}^{m-1} \\ +\sum_{i_{0}< i_{1}}^{m-1} \left[b_{i_{0}i_{1}} + \tilde{b}_{i_{0}i_{1}}(l) \right] \prod_{i\neq i_{0},i_{1}}^{m-1} D_{i}$ $+\sum_{i=1}^{m-1} \left[a_{i_0} + \tilde{a}_{i_0}(l) \right] \prod_{i\neq i_0}^{m-1} D_i$ $+\tilde{P}(l) \prod D_i$

To solve the OPP reduction, choosing special values for the loop momentum helps a lot

For example, choosing l such that $D_0(l^{\pm}) = D_1(l^{\pm}) =$ $= D_2(l^{\pm}) = D_3(l^{\pm}) = 0$

sets all the terms in this equation to zero except the first line

There are two (complex) solutions to this equation due to the quadratic nature of the propagators

$$N(l) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(l) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i$$

+
$$\sum_{i_0 < i_1 < i_2}^{m-1} \left[c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}(l) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i$$

+
$$\sum_{i_0 < i_1}^{m-1} \left[b_{i_0 i_1} + \tilde{b}_{i_0 i_1}(l) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i$$

+
$$\sum_{i_0}^{m-1} \left[a_{i_0} + \tilde{a}_{i_0}(l) \right] \prod_{i \neq i_0}^{m-1} D_i$$

+
$$\tilde{P}(l) \prod_{i}^{m-1} D_i$$

cnrs

Now we choose I such that

$$D_0(l^i) = D_1(l^i) = D_2(l^i) = 0$$

sets all the terms in this equation to zero except the first and second line

Coefficient computed in a previous step

Friday, June 11, 21

U

In general:

Now, choosing l such that $D_0(l^i) = D_1(l^i) = 0$

sets all the terms in this equation to zero except the first, second and third line

Coefficient computed in a previous step

In general:

Now, choosing I such that

$$D_1(l^i) = 0$$

sets the last line to zero

Coefficient computed in a previous step

• In general:

Now, choosing I such that

 $D_1(l^i) = 0$

sets the last line to zero

Coefficient computed in a previous step

 The previous expression should in fact be written in d dimensions

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l},\epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}$$
$$\bar{D}_i = \left(\bar{l} + p_i\right)^2 - m_i^2, \quad p_0 = 0$$

 The previous expression should in fact be written in d dimensions

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l},\epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}$$
$$\bar{D}_i = (\bar{l} + p_i)^2 - m_i^2, \quad p_0 = 0$$

• In numerical calculations, it is very convenient to perform the following decomposition

$$\bar{l}^{\mu} = l^{\mu} + \tilde{l}^{\mu} \qquad \mu = 0, 1, 2, 3, \cdots, 3 - 2\epsilon$$

$$d - \dim_{4 - \dim} (-2\epsilon) - \dim_{4 - \dim} dd \text{ spacetime } (-2\epsilon)d \text{ space}$$

$$\bar{l}^{\mu} = 0, \mu \in (-2\epsilon)d \text{ space} \qquad \tilde{l}^{\mu} = 0, \mu \in 4d \text{ spacetime}$$

 The previous expression should in fact be written in d dimensions

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l},\epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}$$
$$\bar{D}_i = (\bar{l} + p_i)^2 - m_i^2, \quad p_0 = 0$$

 In numerical calculations, it is very convenient to perform the following decomposition

$$\bar{l}^{\mu} = l^{\mu} + \tilde{l}^{\mu}$$

$$d - \dim (-2\epsilon) - \dim (-2\epsilon) - \dim (-2\epsilon)d \text{ space}$$

$$d - \dim (-2\epsilon)d \text{ space}$$

$$l^{\mu} = 0, \mu \in (-2\epsilon)d \text{ space}$$

$$\tilde{l}^{\mu} = 0, \mu \in 4d \text{ spacetime}$$

$$N(\bar{l}, \epsilon) = N(l) + \tilde{N}(l, \tilde{l}, \epsilon)$$
Suitable for numerical calc.
$$M(\bar{l}, \epsilon) = N(l) + \tilde{N}(l, \tilde{l}, \epsilon)$$

$$K = 100$$

$$M = 10, \mu \in 4d \text{ spacetime}$$

$$M(\bar{l}, \epsilon) = N(l) + \tilde{N}(l, \tilde{l}, \epsilon)$$

$$K = 100$$

$$M = 10, \mu \in 4d \text{ spacetime}$$

$$M(\bar{l}, \epsilon) = N(l) + \tilde{N}(l, \tilde{l}, \epsilon)$$

$$K = 100$$

MCNET

 Compute the remaining loop part in terms of rational functions of external momentum invariants and masses

$$R_2 = \lim_{\epsilon \to 0} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\tilde{N}(l, \bar{l}, \epsilon)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

• For example, a gluon self-energy diagram:

$$\sum_{m \in \mathcal{M}} \left(\begin{array}{c} \mathbf{t} \\ \mathbf{t} \end{array} \right) \sum_{m \in \mathcal{M}} \left[N(\overline{l}, \epsilon) = -2\pi \alpha_s \delta_{ab} \operatorname{Tr} \left[\gamma^{\mu} \left(\overline{l} + m_t \right) \gamma^{\nu} \left(\overline{l} + p_g' + m_t \right) \right] \varepsilon_{\mu} \varepsilon_{\nu}$$

After performing some Dirac algebra, we have

$$N(l,l,\epsilon)=8\pilpha_s\delta_{ab}g^{\mu
u}l^2arepsilon_\muarepsilon_
u$$
 Jsing the integration

$$\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\tilde{l}^2}{\left(\bar{l}^2 - m_t^2\right) \left((\bar{l} + p_g)^2 - m_t^2\right)} = -\frac{i}{32\pi^2} \left(2m_t^2 - \frac{p_g^2}{3}\right) + \mathcal{O}(\epsilon)$$

• We have R₂ term

$$R_2 = -\frac{i\alpha_s}{4\pi}\delta_{ab}\left(2m_t^2 - \frac{p_g^2}{3}\right)g^{\mu\nu}\varepsilon_\mu\varepsilon_\nu$$

It has been proven that R₂ is only UV related. Therefore, like renormalisation counterterms, they can be reexpressed into R₂ Feynman rules

Draggiotis, Garzelli, Papadopoulos, Pittau (JHEP'09); HSS, Zhang, Chao (JHEP'11)

 In integrand reduction, additional rational terms R₁ are needed !

$$\begin{split} \widehat{N(l)} &= \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i \\ &+ \sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i \\ &+ \sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i \\ &+ \sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i \\ &+ \widetilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon) \end{split}$$

$$\begin{aligned} &= \sum_{i_0 \neq i_0} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i \neq i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0} D_i \\ &= \sum_{i_0 \neq i_0} (d_{i_0} + \tilde{d}_{i_0}) \prod_{i_0 \neq i_0} (d$$

4d couterparts

gives rise R₁

- Can be included in OPP reduction
- Not needed in TIR reduction

GENERICS

Real

MCNET BEIJING

CNIS

HUA-SHENG SHAO

Three parts need to be computed in a NLO calculation

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$

Born Virtual Real
cross section correction correction
$$A = B = a = b = \frac{A = B}{A} + B$$

$$Virtual = \frac{A}{\epsilon^2} + \frac{B}{\epsilon} + V \qquad Real = -\frac{A}{\epsilon^2} - \frac{B}{\epsilon} + R$$

- CNIS
- Three parts need to be computed in a NLO calculation

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$

Born Virtual Real
cross section correction correction
$$\operatorname{Virtual} = \frac{A}{\epsilon} + \frac{B}{\epsilon} + V \quad \operatorname{Real} = -\frac{A}{\epsilon} - \frac{B}{\epsilon} + R$$

Three parts need to be computed in a NLO calculation

$$\sigma_{\rm NLO} = \int d\Phi^{(n)}\mathcal{B} + \int d\Phi^{(n)}\mathcal{V} + \int d\Phi^{(n+1)}\mathcal{R}$$

Born Virtual Real
cross section correction correction
Virtual = $\frac{1}{\epsilon_1} + \frac{B}{\epsilon_1} + V$ Real = $-\frac{1}{\epsilon_1} - \frac{B}{\epsilon_1} + R$
$$d\sigma^{\rm NLO} = d\sigma^{\rm B} + d\sigma + d\sigma + d\sigma + d\sigma + d\sigma + Real = -\frac{1}{\epsilon_1} - \frac{B}{\epsilon_1} + R$$

BRANCHING: TO BE OR NOT TO BE

Let us consider the branching of a gluon from a quark

 $\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$ Where k_t is the transverse momentum of the gluon $k_t = E \sin\theta$. It diverges in the soft $(z \rightarrow 1)$ and collinear $(k_t \rightarrow 0)$ region

 These singularities cancel with the virtual contribution, which comes from the integration of the loop momentum

$$\sigma_{\rm h} \xrightarrow{\mathbf{p}} \mathbf{p} \qquad \sigma_{h+V} \simeq -\sigma_h \frac{\alpha_{\rm s} C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

 The cancelation happens if we cannot distinguish between the case of no branching, and of a soft or collinear branching

IR SAFETY

 In order to have meaningful fixed-order predictions in perturbation theory, observables must be IR-safe, i.e. not sensitive to the emission of soft/collinear partons

 $\lim_{p_i \mid \mid p_j} \mathcal{O}\left(1, \cdots, i, \cdots, j-1, j, j+1, \cdots, n\right) = \mathcal{O}\left(1, \cdots, ij, \cdots, j-1, j+1, \cdots, n\right)$

 $\lim_{p_i \to 0} \mathcal{O}\left(1, \cdots, i-1, i, i+1, \cdots, n\right) = \mathcal{O}\left(1, \cdots, i-1, i+1, \cdots, n\right)$

- For example,
 - The number of gluons is NOT IR safe.
 - The leading p_T/energy particle is NOT IR safe (soft or collinear unsafe ?).
 - The colour in a given cone is NOT IR safe (soft or collinear unsafe ?).
 - The transverse energy sum is IR safe.

A TOY EXAMPLE

• Assuming the phase space integration can be casted into a one-dimensional case $x \in [0, 1]$:

A TOY EXAMPLE

$$\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\mathcal{R} \qquad \text{Dimensionally regularise in x !}$$

$$= \frac{\alpha_{X}}{\pi} \left[\mathcal{O}(0) \left(\frac{\mathcal{B}}{2\epsilon_{\mathrm{IR}}} + V \right) + \int_{0}^{1} dx x^{-1-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)R(x) \right]$$

$$= \frac{\alpha_{X}}{\pi} \left[\mathcal{O}(0) \left(\frac{\mathcal{B}}{2\epsilon_{\mathrm{IR}}} + V \right) + \left(-\mathcal{O}(0) \frac{\mathcal{B}}{2\epsilon_{\mathrm{IR}}} + \int_{0}^{1} dx \left(\frac{1}{x} \right)_{+} \mathcal{O}(x)R(x) \right) \right]$$

$$= \frac{\alpha_{X}}{\pi} \left[\mathcal{O}(0)V + \int_{0}^{1} dx \left(\frac{1}{x} \right)_{+} \mathcal{O}(x)R(x) \right]$$

• We have used:

$$x^{-1-2\epsilon_{\rm IR}} = -\frac{1}{2\epsilon_{\rm IR}}\delta(x) + \left(\frac{1}{x}\right)_{+} + \epsilon_{\rm IR} \text{ term}$$
$$\left(\frac{1}{x}\right)_{+} f(x) \equiv \frac{f(x) - f(0)}{x} \qquad \forall f(x)$$
PHASE-SPACE SLICING

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Phase-space slicing

$$\int_{0}^{1} dx x^{-1-2\epsilon_{\rm IR}} \mathcal{O}(x) R(x)$$

PHASE-SPACE SLICING

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Phase-space slicing

HASE-SPACE SLICI

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed ! finite integral
 - Phase-space slicing

(can be computed numerically)

ASE-SPACE SLICI

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed ! finite integral
 - Phase-space slicing

(can be computed numerically)

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - Find a generic simple function S has exactly same IR singularity as real matrix element

$$\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}$$

• ... but much easier to integrate analytically.

$$\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\mathcal{R}$$
$$= \left(\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)S\right) + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\left(\mathcal{R} - S\right)$$

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - Find a generic simple function S has exactly same IR singularity as real matrix element

$$\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}$$

• ... but much easier to integrate analytically.

$$\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\mathcal{R}$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)S\right) + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x) \left(\mathcal{R} - S\right)$
Finite Finite Finite

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - Find a generic simple function S has exactly same IR singularity as real matrix element

$$\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}$$

• ... but much easier to integrate analytically.

$$\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\mathcal{R}$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)S\right) + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x) \left(\mathcal{R} - S\right)$
Finite Finite Finite

Analytically known

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - Find a generic simple function S has exactly same IR singularity as real matrix element

$$\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}$$

• ... but much easier to integrate analytically.

$$\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)\mathcal{R}$$

$$= \left(\mathcal{O}(0)\mathcal{V} + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x)S\right) + \int_{0}^{1} dx x^{-2\epsilon_{\mathrm{IR}}} \mathcal{O}(x) (\mathcal{R} - S)$$
Finite Finite
Analytically known Integrating numerically in 4d

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - In above toy example

- **CITS** al matrix
- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - In above toy example

- In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !
 - Subtraction method
 - In above toy example

NLO SUBTRACTION

• Master formula:

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$
$$= \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} + \int d\Phi^{(1)} S \right] + \int d\Phi^{(n+1)} \left[\mathcal{R} - S \right]$$

The subtraction counterterm S should be chosen:

- It exactly matches the singular behaviour of real ME
- It can be integrated numerically in a convenient way
- It can be integrated exactly in d dimension
- It is process independent (overall factor times Born ME)
- In gauge theory, the singular structure is universal

$$\begin{aligned} \left(p+k\right)^2 &= 2E_p E_k (1 - \cos \theta_{pk}) \\ \text{Collinear singularity:} \\ \lim_{p//k} |M_{n+1}|^2 &\simeq |M_n|^2 \ P^{AP}(z) \end{aligned}$$

Soft singularity:

$$\lim_{k \to 0} |M_{n+1}|^2 \simeq \sum_{ij} |M_n^{ij}|^2 \frac{p_i p_j}{p_i k \ p_j k}$$

TWO WIDELY-USED SUBTRACTION METHODS

Dipole subtraction

Catani, Seymour, hep-ph/9602277 & hep-ph/9605323

- Most used method
- Recoil taken by one parton
 →N³ scaling
- Method evolves from cancelation of soft divergences
- Proven to work for simple and complicated processes
- Automated in MadDipole, AutoDipole, Sherpa, Helac-NLO, ...

FKS subtraction

Frixione, Kunszt, Signer, hep-ph/9512328

- Less known method
- Recoil distributed among all particles
 →N² scaling
- Probably (?) more efficient because less subtraction terms are needed
- Method evolves from cancelation of collinear divergences
- Proven to work for simple and complicated processes
- Automated in MadGraph5_aMC@NLO and in the Powheg box/Powhel

FKS SUBTRACTION

SO

• The real ME singular as

$$\mathcal{R} \stackrel{\text{IR limit}}{\longrightarrow} \frac{1}{\xi_i} \frac{1}{1 - y_{ij}} \qquad \begin{array}{l} \xi_i = \frac{E_i}{\sqrt{\hat{s}}} \\ y_{ij} = \cos \theta_{ij} \end{array}$$
• Partition the phase space in order to have at most one and/or one collinear singularity

$$\mathcal{R}d\Phi^{(n+1)} = \sum_{ij} S_{ij}\mathcal{R}d\Phi^{(n+1)} \qquad \sum_{ij} S_{ij} = 1$$
$$S_{ij} \to 1 \text{ if } p_i \cdot p_j \to 0$$
$$S_{ij} \to 0 \text{ if } p_m \cdot p_n \to 0, \ \{m,n\} \neq \{i,j\}$$

Use plus prescriptions to subtract the divergences

$$d\sigma_{\tilde{R}} = \sum_{ij} \left(\frac{1}{\xi_i} \right)_+ \left(\frac{1}{1 - y_{ij}} \right)_+ \xi_i \left(1 - y_{ij} \right) S_{ij} \mathcal{R} d\Phi^{(n+1)}$$

$$\int d\xi \left(\frac{1}{\xi} \right)_+ f(\xi) = \int d\xi \frac{f(\xi) - f(0)}{\xi} \int dy \left(\frac{1}{1 - y} \right)_+ g(y) = \int dy \frac{g(y) - g(1)}{1 - y}$$

FKS SUBTRACTION

Counterevents:

- Soft counterevent $(\xi_i \rightarrow 0)$
- Collinear counterevents $(y_{ij} \rightarrow 1)$
- Soft-collinear counterevents ($\xi_i \rightarrow 0$ and $y_{ij} \rightarrow 1$)

Real emission

Subtraction term

- If i and j are on-shell in the event, for the counterevent the combined particle i+j must be on shell
- *i+j* can be put on shell only be reshuffling the momenta of the other particles
- It can happen that event and counterevent end up in different histogram bins
 - Use IR-safe observables and don't ask for infinite resolution!

A FEW ADVANCED TOPICS

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

HUA-SHENG SHAO

A FEW ADVANCED TOPICS

• Let us start from defining NLO "EW Corrections" (= "EWC")

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\,\alpha\,{\rm expansion}$ wrt Born
 - Situation may be more complicated

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\alpha {\rm expansion} ~{\rm wrt}~{\rm Born}$
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- CNIS
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\alpha {\rm expansion} ~{\rm wrt}~{\rm Born}$
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- CITS
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M\simeq \alpha\,$
 - Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M\simeq \alpha\,$
 - Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three α schemes are frequently used
 - $\alpha(0)$ scheme: appropriate for external final photon (see e.g., 2106.02059)
 - $\alpha(M_Z)$ scheme: works good for internal photon
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\Gamma/M\simeq \alpha$
 - Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three $\alpha \, {\rm schemes} \, {\rm are} \, {\rm frequently} \, {\rm used}$
 - $\alpha(0)$ scheme: appropriate for external final photon (see e.g., 2106.02059)
 - ${\scriptstyle \bullet}\, \alpha(M_Z) {\rm scheme:}\, {\rm works} \ {\rm good} \ {\rm for} \ {\rm internal} \ {\rm photon}$
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured

Shall we use different scheme/renormalization for different vertices in one diagram ?

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\Gamma/M\simeq \alpha$
 - Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three $\alpha \, {\rm schemes} \, {\rm are} \, {\rm frequently} \, {\rm used}$
 - $\alpha(0)$ scheme: appropriate for external final photon (see e.g., 2106.02059)
 - ${\scriptstyle \bullet}\, \alpha(M_Z) {\rm scheme:}\, {\rm works} \ {\rm good} \ {\rm for} \ {\rm internal} \ {\rm photon}$
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured
- Shall we use different scheme/renormalization for different vertices in one diagram ?
 - Use $K_{\text{NLO QCD}} \times K_{\text{NLO EW}}$ to capture the missing higher order ?

ENHANCE EW CORRECTIONS

Enhance EWC by Yukawa coupling

ENHANCE EW CORRECTIONS

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%

ENHANCE EW CORRECTIONS

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_z^2} \sim 3\%$

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2%

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms

ENHANCE EW CORRECT

- Enhance EWC by Yukawa coupling
 - e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2% •
 - •
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons •

e.g.

$$Q = 1 \text{ TeV}$$
 $-c_{\text{LL}} \times 26\% + c_{\text{NLL}} \times 16\%$

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2% •
 - •
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons •
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst.

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- **Enhance EWC** by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst. •
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet ullet

Enhance EWC by Yukawa coupling

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- **Enhance EWC** by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons •
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst.
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet
 - However, EW Sudakov logarithms is not always relevant in Sudakov regime
 - e.g. Drell-Yan at large invariant mass receives large contributions from small t Dittmaier et al. '10

EW IN HIGH-ENERGY SCATTERINGS

- BSM effects are expected to be enhanced in the highenergy scatterings
- -> motivated BSM search go to the tail
- EW corr. increase up to tens of percent due to EW Sudakov logs
 - The EW log resummation is still not mandatory@ (HL-)LHC as

 $\alpha L \ll 1$

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall et al. (JHEP'14)

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall et al. (JHEP'14)

MADGRAPH5_AMC@NLO: COMPLETE NLO

cnrs

• Generation syntax for any LO and NLO (in v3.X):

Frederix et al. (JHEP'18)

Caveat: new generation syntax at http://amcatnlo.web.cern.ch/amcatnlo/co.htm

MADGRAPH5_AMC@NLO: NLO EW

• Examples:

MADGRAPH5_AMC@NLO: NLO EW

· -

• Examples:

LO

Frederix et al. (JHEP'18)

LUI						
	Process	Syntax	Cross section (in pb)		Correction (in %)	
			LO	NLO		
	$pp \rightarrow e^+\!$	p p > e+ ve QCD=0 QED=2 [QED]	$5.2498 \pm \ 0.0005 \cdot 10^{3}$	$5.2113\pm0.0006\cdot10^{3}$	-0.73 ± 0.01	
	$pp \rightarrow e^+ \nu_e j$	pp > e+ ve j QCD=1 QED=2 [QED]	$9.1468 \pm 0.0012 \cdot 10^2$	$9.0449 \pm 0.0014 \cdot 10^2$	-1.11 ± 0.02	
	$pp \rightarrow e^+ \nu_e j j$	рр>е+ ve j j QCD=2 QED=2 [QED]	$3.1562 \pm 0.0003 \cdot 10^2$	$3.0985\ \pm 0.0005\ \cdot 10^2$	-1.83 ± 0.02	
	$pp \rightarrow e^+e^-$	p p > e+ e- QCD=0 QED=2 [QED]	$7.5367 \pm \ 0.0008 \cdot 10^2$	$7.4997\pm0.0010\cdot10^2$	-0.49 ± 0.02	
	$pp \rightarrow e^+e^-j$	p p > e+ e- j QCD=1 QED=2 [QED]	$1.5059 \pm 0.0001 \cdot 10^{2}$	$1.4909\pm0.0002\cdot10^2$	-1.00 ± 0.02	
	$pp \rightarrow e^+e^-jj$	рр>е+е-јјQCD=2 QED=2 [QED]	$5.1424 \pm 0.0004 \cdot 10^{1}$	$5.0410\pm0.0007\cdot10^{1}$	-1.97 ± 0.02	
NLO ₂	$pp \to e^+e^-\mu^+\mu^-$	p p > e+ e- mu+ mu- QCD=0 QED=4 [QED]	$1.2750\pm0.0000\cdot10^{-2}$	$1.2083\ \pm 0.0001\ \cdot 10^{-2}$	-5.23 ± 0.01	
	$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$	p p > e+ ve mu- vm~ QCD=0 QED=4 [QED]	$5.1144 \pm 0.0007 \cdot 10^{-1}$	$5.3019\pm0.0009\cdot10^{-1}$	$+3.67\pm0.02$	
	$pp \rightarrow He^+\nu_e$	pp > h e+ ve QCD=0 QED=3 [QED]	$6.7643 \pm 0.0001 \cdot 10^{-2}$	$6.4914 \pm 0.0012 \cdot 10^{-2}$	-4.03 ± 0.02	
	$pp \rightarrow He^+e^-$	p p > h e+ e- QCD=0 QED=3 [QED]	$1.4554 \pm 0.0001 \cdot 10^{-2}$	$1.3700 \pm 0.0002 \cdot 10^{-2}$	-5.87 ± 0.02	
	$pp \rightarrow Hjj$	pp>hjjQCD=0QED=3[QED]	$2.8268 \pm 0.0002 \cdot 10^{0}$	$2.7075\ \pm 0.0003\ \cdot 10^{0}$	-4.22 ± 0.01	
	$pp \rightarrow W^+W^-W^+$	p p > w+ w- w+ QCD=0 QED=3 [QED]	$8.2874 \pm 0.0004 \cdot 10^{-2}$	$8.8017 \pm 0.0012 \cdot 10^{-2}$	$+6.21\pm0.02$	
2	$pp \rightarrow ZZW^+$	p p > z z w+ QCD=0 QED=3 [QED]	$1.9874 \pm 0.0001 \cdot 10^{-2}$	$2.0189 \pm 0.0003 \cdot 10^{-2}$	$+1.58 \pm 0.02$	
$o_{\rm EW} = 1$	$pp \rightarrow ZZZ$	pp>zzzQCD=0QED=3[QED]	$1.0761 \pm 0.0001 \cdot 10^{-2}$	$0.9741\pm 0.0001\cdot 10^{-2}$	-9.47 ± 0.02	
	$pp \rightarrow HZZ$	pp>hzzQCD=0QED=3[QED]	$2.1005 \pm 0.0003 \cdot 10^{-3}$	$1.9155 \pm 0.0003 \cdot 10^{-3}$	-8.81 ± 0.02	
	$pp \rightarrow HZW^+$	p p > h z w + QCD=0 QED=3 [QED]	$2.4408 \pm 0.0000 \cdot 10^{-3}$	$2.4809\pm0.0005\cdot10^{-3}$	$+1.64\pm0.02$	
	$pp \rightarrow HHW^+$	p p > h h w+ QCD=0 QED=3 [QED]	$2.7827 \pm \ 0.0001 \cdot 10^{-4}$	$2.4259 \pm 0.0027 \cdot 10^{-4}$	-12.82 ± 0.10	
	$pp \rightarrow HHZ$	pp>hhzQCD=0QED=3[QED]	$2.6914 \pm 0.0003 \cdot 10^{-4}$	$2.3926\pm 0.0003\cdot 10^{-4}$	$-11.10\ \pm\ 0.02$	
	$pp \rightarrow t\bar{t}W^+$	p p > t t~ + QCD-2 QED-1 [QED]	$2.4119 \pm \ 0.0003 \cdot 10^{-1}$	$2.3025\pm0.0003\cdot10^{-1}$	-4.54 ± 0.02	
	$pp \rightarrow t\bar{t}Z$	$p p > t t^{-} z QCD=2 QED=1 [QED]$	$5.0456 \pm \ 0.0006 \cdot 10^{-1}$	$5.0033 \pm 0.0007 \cdot 10^{-1}$	-0.84 ± 0.02	
	$pp \rightarrow t\bar{t}H$	pp>tt~hQCD=2QED=1[QED]	$3.4480 \pm 0.0004 \cdot 10^{-1}$	$3.5102 \pm 0.0005 \cdot 10^{-1}$	$+1.81\pm0.02$	
	$pp \rightarrow t\bar{t}j$	pp>ttjQCD=3QED=0[QED]	$3.0277 \pm 0.0003 \cdot 10^2$	$2.9683\ \pm 0.0004\ \cdot 10^{2}$	-1.96 ± 0.02	
	$pp \rightarrow jjj$	p p > j j j QCD=3 QED=0 [QED]	$7.9639 \pm \ 0.0010 \cdot 10^{6}$	$7.9472\pm0.0011\cdot10^{6}$	-0.21 ± 0.02	
	$pp \rightarrow tj$	pp>tjQCD=0 QED=2 [QED]	$1.0613 \pm \ 0.0001 \cdot 10^2$	$1.0539\pm0.0001\cdot10^2$	-0.70 ± 0.02	

MCNET BEIJING

MADGRAPH5_AMC@NLO: COMPLETE NLO

• Examples:

Frederix et al. (JHEP'18)

	$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}Z$	$pp \rightarrow t\bar{t}W^+$	$pp \rightarrow t\bar{t}H$	$pp \rightarrow t\bar{t}j$
LO1	$4.3803 \pm 0.0005 \cdot 10^2 \ \rm pb$	$5.0463 \pm 0.0003 \cdot 10^{-1} \rm pb$	$2.4116 \pm 0.0001 \cdot 10^{-1} \ \mathrm{pb}$	$3.4483 \pm 0.0003 \cdot 10^{-1} \ \mathrm{pb}$	$3.0278 \pm 0.0003 \cdot 10^2 \rm pb$
LO_2	$+0.405 \pm 0.001$ %	-0.691 ± 0.001 %	$+0.000 \pm 0.000$ %	$+0.406 \pm 0.001$ %	$+0.525 \pm 0.001$ %
LOs	$\pm 0.630 \pm 0.001$ %	$+2.259 \pm 0.001$ %	$+0.962 \pm 0.000$ %	$+0.702 \pm 0.001$ %	$+1.208 \pm 0.001 \%$
LO_4					$+0.006 \pm 0.000 \%$
NLO_1	$+46.164 \pm 0.022$ %	$+44.809 \pm 0.028$ %	$+49.504 \pm 0.015$ %	$+28.847 \pm 0.020$ %	$+26.571\pm0.063~\%$
NLO_2	-1.075 ± 0.003 %	-0.846 ± 0.004 %	-4.541 ± 0.003 %	$+1.794 \pm 0.005 \%$	-1.971 ± 0.022 %
NLO_3	$\pm 0.552 \pm 0.002 \%$	$+0.845 \pm 0.003$ %	$+12.242 \pm 0.014 \%$	$+0.483 \pm 0.008 \%$	$+0.292\pm 0.007~\%$
NLO_4	$+0.005 \pm 0.000$ %	-0.082 ± 0.000 %	$+0.017 \pm 0.003$ %	$+0.044 \pm 0.000 \%$	$+0.009 \pm 0.000 \%$
$\rm NLO_5$					$+0.005 \pm 0.000 \%$

AUTOMATION TOOLS FOR EW CORRECTIONS

- Automation tools for QCD+EW on the market (so far)
 Les Houches SM report 2017 (1803.07977)
 - MadGraph5_aMC@NLO
 - Openloops+Sherpa/Munich
 - Recola+Sherpa/BBMC/MoCaNLO
 - GoSam+Sherpa
 - NLOX (only an one-loop provider)
- Extensive validation among various tools is extremely important

$pp \rightarrow e^+e^-\mu^+\mu^-$	σ^{LO}	$\sigma_{\rm EW}^{\rm NLO}$	$\Delta \sigma^{\text{LO}}$		$\Delta \sigma_{\rm EW}^{\rm NLO}$	
	[fb]	[fb]	$[\sigma]$	[‰]	$[\sigma]$	[‰]
average	11.49675[8]	10.88697[15]				
MCBB+Recola	11.49648[12]	10.88669[22]	-2.9	-0.02	-1.7	-0.03
Munich+OpenLoops	11.49702[11]	10.88720[25]	+3.2	+0.02	+1.2	+0.02
MoCaNLO+Recola	11.49666[26]	10.88734[56]	-0.3	-0.01	+0.7	+0.03
Sherpa+GoSam/OpenLoops/Recola	11.49670[34]	10.88737[77]	-0.1	-0.00	+0.5	+0.04
MadGraph5_aMC@NLO+MadLoop	11.4956[22]	10.8860[63]	-0.5	-0.10	-0.1	-0.09

A FEW ADVANCED TOPICS

MCNET BEIJING

HUA-SHENG SHAO

BSM TH/EXP INTERACTIONS: THE OLD WAY

MCNET BEIJING

Friday, June 11, 21

HUA-SHENG SHAO

BSM TH/EXP INTERACTIONS: THE OLD WAY

BSM TH/EXP INTERACTIONS AUGMENTED

BSM TH/EXP INTERACTIONS AUGMENTED

MCNET BEIJING

BSM TH/EXP INTERACTIONS AUGMENTED

HUA-SHENG SHAO

Friday, June 11, 21

MCNET BEIJING

 How to define final states at NLO without spoiling perturbative convergence ?

- How to define final states at NLO without spoiling perturbative convergence ?
 - Let us consider gluino pair production in SUSY

NLO diagram for gluino-pair

How to define final states at NLO without spoiling perturbative convergence ?

Let us consider gluino pair production in SUSY

NLO diagram for gluino-pair

LO diagram for gluino-squark with squark decay

How to define final states at NLO without spoiling perturbative convergence?

Let us consider gluino pair production in SUSY

Frixione et al. (JHEP'19)

FED TREATMENTS OF RESON Frixione et al. (IHEP'19)

• The formulation of the problem is:

LO: $a+b \longrightarrow \delta + X$ **NLO(Real):** $a + b \longrightarrow \delta + \gamma + X$ with/without $\beta \longrightarrow \delta + \gamma$ $\mathcal{A}_{ab\to\delta\gamma X} = \mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)} + \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \qquad \begin{array}{c} \text{non-resonance} \\ \text{resonance} \end{array}$ $\left|\mathcal{A}_{ab\to\delta\gamma X}\right|^{2} = \left|\mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)}\right|^{2} + 2\Re\left(\mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)}\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)\dagger}\right) + \left|\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)}\right|^{2}$

- No fully satisfactory solutions but a few proposals: **Diagram Removal**
- istr=1 DR: remove the resonance diagrams/amplitude
- istr=2 DRI: remove the resonance amplitude squared **Diagram Subtraction** $d\sigma_{ab\to\delta\gamma X}^{(DS)} \propto \left\{ \left| \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \right|^2 + 2\Re \left(\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)\dagger} \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)\dagger} \right) + \left| \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \right|^2 \right\} d\phi$ $- f(m_{\delta\gamma}^2) \mathbb{P}\left(\left| \mathcal{A}_{ab \to \delta\gamma X}^{(\beta)} \right|^2 d\phi \right), \quad \text{DS subtraction term}$ (18)

- istr=6 DS-finalresh-runBW:P (FS momenta reshuffling), f (ratio of two BWs with running width
- DS-initresh-runBW:P (IS momenta reshuffling), f (ratio of two BWs with running width) istr=4
- DS-finalresh-stdBW:P (FS momenta reshuffling), f (ratio of two standard BWs) istr=5
- istr=3 DS-initresh-stdBW:P (IS momenta reshuffling), f (ratio of two standard BWs)

• The formulation of the problem is:

Lo: $a+b \longrightarrow \delta + X$ **NLO(Real):** $a + b \longrightarrow \delta + \gamma + X$ with/without $\beta \longrightarrow \delta + \gamma$ $\mathcal{A}_{ab\to\delta\gamma X} = \mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)} + \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \qquad \begin{array}{c} \text{non-resonance} \\ \text{resonance} \end{array}$ $\left|\mathcal{A}_{ab\to\delta\gamma X}\right|^{2} = \left|\mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)}\right|^{2} + 2\Re\left(\mathcal{A}_{ab\to\delta\gamma X}^{(\not\beta)}\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)\dagger}\right) + \left|\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)}\right|^{2}$ No fully satisfactory solutions but a few proposals: **Diagram Removal** istr=1 • DR: remove the resonance diagrams/amplitude squared Not gauge invariant istr=2 • DRI: remove the resonance amplitude squared **Diagram Subtraction** $d\sigma_{ab\to\delta\gamma X}^{(DS)} \propto \left\{ \left| \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \right|^2 + 2\Re \left(\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)\dagger} \right) + \left| \mathcal{A}_{ab\to\delta\gamma X}^{(\beta)} \right|^2 \right\} d\phi$ $- f(m_{\delta\gamma}^2) \mathbb{P}\left(\left| \mathcal{A}_{ab \to \delta\gamma X}^{(\beta)} \right|^2 d\phi \right), \quad \text{DS subtraction term}$ (18)

istr=6 • DS-finalresh-runBW:P (FS momenta reshuffling), f (ratio of two BWs with running width

- istr=4 DS-initresh-runBW:P (IS momenta reshuffling), f (ratio of two BWs with running width)
- istr=5 DS-finalresh-stdBW:P (FS momenta reshuffling), f (ratio of two standard BWs)
- **istr=3** DS-initresh-stdBW:P (IS momenta reshuffling), f (ratio of two standard BWs)

• Jets plus missing Et $pp \longrightarrow nj + \not\!\!\!E_T$

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO
> generate p p > go go [QCD]

> output; launch

MCNET BEIJING

• Jets plus missing Et $pp \longrightarrow nj + \not\!\!\!E_T$

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

MCNET BEIJING

• Jets plus missing Et $pp \longrightarrow nj + \not\!\!\!E_T$

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

A FEW ADVANCED TOPICS

More Operator Is Different
$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}}$$

$$\sum SIMEF T \qquad \sum SIM \\ + \sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}} \\ + \sum_{i} \frac{C_{i}^{(8)} O_{i}^{(8)}}{\Lambda^{4}} + \dots$$

MCNET BEIJING

HUA-SHENG SHAO

AN ISSUE FOR SMEFT@NLO

Evanescent 4f Operators

Slide by C. Zhang at QCD@LHC-X 2020

 4F operators that vanish in D=4, need to be introduced so that Dirac algebra is complete and closed in D dimension.

E.g
$$E = \left(\bar{u}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{L}T^{A}u\right)\left(\bar{t}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L}T^{A}t\right) + \left(-16 + 4a\varepsilon\right)\left(\bar{u}\gamma^{\mu}P_{L}T^{A}u\right)\left(\bar{t}\gamma_{\mu}P_{L}T^{A}t\right)$$

- · Which vanishes in 4D.
- Loop results can depend on how they are chosen (i.e. evanescent operator basis)
- It means that just "MSbar" is not sufficient to specify a renormalization scheme. Have to use, e.g. "MSbar + some evanescent basis".
- Other equivalent formulation exists.
 "Greek projections".

E.g. Nucl. Phys., B586:397-426, 2000.

$$\begin{split} E_1^{\mathrm{VLL}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\gamma^{\mu}P_Ld^{\alpha}\right) - Q_1^{\mathrm{VLL}}, \\ E_2^{\mathrm{VLL}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_Ld^{\alpha}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_Ld^{\beta}\right) + \left(-16 + 4\epsilon\right)Q_1^{\mathrm{VLL}}, \\ E_3^{\mathrm{VLL}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_Ld^{\alpha}\right) + \left(-16 + 4\epsilon\right)Q_1^{\mathrm{VLL}}, \\ E_1^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}D_Ld^{\beta}\right) \left(\bar{s}^{\beta}\gamma^{\mu}P_Rd^{\alpha}\right) + \frac{1}{2}Q_1^{\mathrm{LR}}, \\ E_2^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}\rho_Ld^{\beta}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_Rd^{\beta}\right) + \left(-4 - 4\epsilon\right)Q_1^{\mathrm{LR}}, \\ E_3^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_Ld^{\alpha}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_Rd^{\alpha}\right) + \left(8 + 8\epsilon\right)Q_2^{\mathrm{LR}}, \\ E_4^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\sigma_{\mu\nu}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\sigma^{\mu\nu}P_Rd^{\beta}\right) - 6\epsilon Q_2^{\mathrm{LR}}, \\ E_5^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\sigma_{\mu\nu}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\sigma^{\mu\nu}P_Rd^{\alpha}\right) + 3\epsilon Q_1^{\mathrm{LR}}, \\ E_6^{\mathrm{LR}} &= \left(\bar{s}^{\alpha}\sigma_{\mu\nu}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\sigma^{\mu\nu}P_Rd^{\alpha}\right) - 6Q_2^{\mathrm{LL}}, \\ E_1^{\mathrm{SLL}} &= \left(\bar{s}^{\alpha}\sigma_{\mu\nu}P_Ld^{\beta}\right) \left(\bar{s}^{\beta}\sigma^{\mu\nu}P_Ld^{\alpha}\right) - 6Q_1^{\mathrm{SLL}} - \frac{1}{2}Q_2^{\mathrm{SLL}}, \\ E_3^{\mathrm{SLL}} &= \left(\bar{s}^{\alpha}\sigma_{\mu\gamma}\rho_{\gamma}\rho_{\gamma}\sigma_{P_L}d^{\alpha}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}P_Ld^{\beta}\right) + \left(-64 + 96\epsilon\right)Q_1^{\mathrm{SLL}} + \left(-16 + 8\epsilon\right)Q_2^{\mathrm{SLL}}, \\ E_4^{\mathrm{SLL}} &= \left(\bar{s}^{\alpha}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\rho_Ld^{\alpha}\right) \left(\bar{s}^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}P_Ld^{\alpha}\right) - 64Q_1^{\mathrm{SLL}} + \left(-16 + 16\epsilon\right)Q_2^{\mathrm{SLL}}. \end{split}$$

$$\begin{split} \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{L}\otimes\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L} &= E + (16 - 4a\varepsilon)\gamma^{\mu}P_{L}\otimes\gamma_{\mu}P_{L}\\ \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{L}\otimes\gamma_{\rho}\gamma_{\nu}\gamma_{\mu}P_{L} &= -E + [4 - (12 - 4a)\varepsilon]\gamma^{\mu}P_{L}\otimes\gamma_{\mu}P_{L} \end{split}$$

MCNET BEIJING

NLO HELPS SMEFT@LHC

Precision and accuracy

Degrande et al. (JHEP'18)

MCNET BEIJING
Precision and accuracy

Large, negative K factors: Non-interference/cancellation at LO breaks at NLO

Degrande et al. (PRD'21)

Degrande et al. (JHEP'18)

HUA-SHENG SHAO

MCNET BEIJING

Precision and accuracy

Large, negative K factors: Non-interference/cancellation at LO breaks at NLO

Degrande et al. (PRD'21)

Degrande et al. (JHEP'18)

MCNET BEIJING

Friday, June 11, 21

Improved sensitivity

Friday, June 11, 21

Improved sensitivity

MCNET BEIJING

Impact on the global fit

Ethier et al. (2105.00006)

Friday, June 11, 21

IN MEMORY OF CEN ZHANG

- A great organiser of the school !
- A talent physicist with several groundbreaking research works
- A very good collaborator and friend
- Our last meeting in person in Beijing (Oct 2019, before Covid confinement)