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Plan
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• Basics in NLO calculations

• Generics in NLO calculations

• Advanced NLO topics

• Introduction: why we need precision ?
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Precision & Accuracy

Introduction
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PRECISION MEASUREMENTS AT THE LHC
• Very impressive SM cross section measurements at the LHC

•  many processes are at percent even subpercent level
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PRECISION MEASUREMENTS AT THE LHC
• Very impressive SM cross section measurements at the LHC

•  many processes are at percent even subpercent level

In order to fully exploit these data, theoretical calculations are crucial to keep pace !
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CROSS SECTION @ LHC

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�̂(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�
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The “femto-universe” 
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CROSS SECTION @ LHC

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�̂(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�

NNLO

d�
all�orders

d logµR/F
= 0

d�NkLO

d logµR/F
⇠ O(↵n+k+1

s )

remaining scale 
uncertainty
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Accuracy

Complexity [n]

p p    n particles

]

in the Standard Model
via strong coupling expansion

[   loops]

HADRON COLLIDER PHYSICS: PRE-LHC ERA

fully exclusive and automatic 
fully exclusive

fully inclusive

parton-level

↵s
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HADRON COLLIDER PHYSICS: NOW
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HADRON COLLIDER PHYSICS: NOW
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Complexity [n]

p p    n particles
in the Standard Model
via electromagnatic coupling expansion

[   loops]

parton-level and automatic 
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HADRON COLLIDER PHYSICS: NOW
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N3LO HIGGS PRODUCTION: HIGHEST ACCURACY
• Percent level inclusive ggF Higgs cross section
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N3LO HIGGS PRODUCTION: HIGHEST ACCURACY
• Percent level inclusive ggF Higgs cross section

A successful interface between the formal and the phenomenology communities !
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

Technique improvements:
- Unitarity cuts
- Integrand reduction
- Recursion relations
- Local IR subtraction
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2
Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP’15)

Commands:
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5_aMC > define p = p b b~; define j = p
MG5_aMC > define l = e+ mu+ e- mu-
MG5_aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5_aMC > output; launch

Friday, June 11, 21
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2
Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP’15)

Commands:
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5_aMC > define p = p b b~; define j = p
MG5_aMC > define l = e+ mu+ e- mu-
MG5_aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5_aMC > output; launch

Technique improvements:
- Matured automated framework
- Methods of matching ME to PS
- Merging of multi-jet ME with PS

Alwall et al. (JHEP’14)
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Basics
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Basics

A NLO example

Zq q̄
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A NLO EXAMPLE: BORN
• Let us calculate NLO QCD of  Z -> q qbar decay

For simplicity, we assume quarks are massless

A
Born

= ��cqcq̄"µ(pZ)ū(pq).�
µ
Zqq̄.v(pq̄)

�

µ
Zqq̄ = ie

✓
Iq

cos ✓w sin ✓w
�Qq

sin ✓w
cos ✓w

◆
�µPL � ieQq

sin ✓w
cos ✓w

�µPR

• Writing down Born amplitude according to Feynman rules

• Squaring amplitude, summing over colours and spins, and 
averaging the spin of  the initial state
X

|A
Born

|2 = 8⇡↵m2

Z

 
2Q2

q

✓
sin ✓w
cos ✓w

◆
2

� 2

IqQq

cos

2 ✓w
+

I2q
cos

2 ✓w sin

2 ✓w

!

• Phase-space integration

�
Born

(Z ! qq̄) =
1

2mZ

Z
(2⇡)4�4(pZ � pq � pq̄)

1

(2⇡)3⇥2

d3pq
2Eq

d3pq̄
2Eq̄

X
|A

Born

|2

= ↵mZ

 
Q2

q
sin

2 ✓w
cos

2 ✓w
� QqIq

cos

2 ✓w
+

I2q
2 cos

2 ✓w sin

2 ✓w

!

↵ =
e2

4⇡
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay
• Writing down one-loop amplitude according to Feynman rules

For simplicity, we assume quarks are massless

A
1loop

= ig⌫⇢"µ(pZ)ū(pq).
⇣
�igs�⌫T

a
cqc

⌘
.

Z
dd l̄

(2⇡)d
l̄/.�µ

Zqq̄.
�
l̄/� p/Z

�

l̄2
�
l̄ � pq

�
2

�
l̄ � pZ

�
2

.
⇣
�igs�⇢T

a
ccq̄

⌘
.v(pq̄)

• Need to evaluate two tensor integrals

Iµ1 =

Z
dd l̄

(2⇡)d
l̄µ

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2 Iµ⌫2 =

Z
dd l̄

(2⇡)d
l̄µ l̄⌫

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

according to Lorentz structures

Iµ1 = pµqB1 + pµZB2 Iµ⌫2 = gµ⌫B00 + pµq p
⌫
qB11 + pµZp

⌫
ZB22 +

�
pµq p

⌫
Z + pµZp

⌫
q

�
B12

Solving the coefficients B, e.g.
pq · I1 = p2qB1 + pq · pZB2 = pq · pZB2 pZ · I1 = pq · pZB1 + p2ZB2 = pq · pZB1 +m2

ZB2

Friday, June 11, 21
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals

B2 =
pq · I1
pq · pZ

Solving the coefficients B, e.g.

B1 =
pZ · I1 �m2

ZB2

pq · pZ

pq · I1 =

Z
dd l̄

(2⇡)d
pq · l̄

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
l̄2 �

�
l̄ � pq

�2

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
1

�
l̄ � pq

�2 �
l̄ � pZ

�2 � 1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 � 1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pZ

�2
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

d

d
l̄

(2⇡)d
1

l̄

2
�
l̄ � pq̄

�2 =

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

h
xl̄

2 + (1� x)
�
l̄ � pq̄

�2i2 Feynman parameterization !

Using on-shell condition !=

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

�
l̄ � (1� x)pq̄

�4

=

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

�
l̄

2
�2 Translational invariance !

=

Z
dd l̄

(2⇡)d
1

�
l̄2
�2 Integration over x !

=

Z
dl̄0dd�1~̄l

(2⇡)d
1

⇣
l̄20 � |~̄l|2

⌘2
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• Let us calculate NLO QCD of  Z -> q qbar decay

18

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆
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• Let us calculate NLO QCD of  Z -> q qbar decay

18

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆

(IR): the integral is divergent when |l̄| ! 0 d  4

|l̄| ! +1(UV): the integral is divergent when d � 4
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• Let us calculate NLO QCD of  Z -> q qbar decay

18

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆

(IR): the integral is divergent when |l̄| ! 0 d  4

|l̄| ! +1(UV): the integral is divergent when d � 4

Regularisations:

d = 4� 2✏UV, ✏UV ! 0+
d = 4� 2✏IR, ✏IR ! 0�
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 =
i2⇡d/2

�(d/2)(2⇡)d

✓
� 1

2✏IR
+

1

2✏UV

◆

• Squaring with Born amplitude, summing over colours and spins, 
and averaging the spin of  the initial state

�2

3

✓
5� ⇡2 � log

m2
Z

4⇡2µ2
R

+ log

2 m2
Z

4⇡2µ2
R

◆�

• The UV divergence needs renormalisation
X

2<{A
UV

A⇤
Born

} =
(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


� 2

3✏
UV

+
2

3✏
IR

�

X
2<{A

1loop

A⇤
Born

} =

(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


2

3✏
UV

� 4

3✏2
IR

� 4

3✏
IR

✓
1� log

m2

Z

4⇡2µ2

R

◆

↵s =
g2s
4⇡
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 =
i2⇡d/2

�(d/2)(2⇡)d

✓
� 1

2✏IR
+

1

2✏UV

◆

• Squaring with Born amplitude, summing over colours and spins, 
and averaging the spin of  the initial state

�2

3

✓
5� ⇡2 � log

m2
Z

4⇡2µ2
R

+ log

2 m2
Z

4⇡2µ2
R

◆�

• The UV divergence needs renormalisation
X

2<{A
UV

A⇤
Born

} =
(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


� 2

3✏
UV

+
2

3✏
IR

�

• The virtual matrix element is:

V =
X

2<{A
1loop

A⇤
Born

}+
X

2<{A
UV

A⇤
Born

}

X
2<{A

1loop

A⇤
Born

} =

(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


2

3✏
UV

� 4

3✏2
IR

� 4

3✏
IR

✓
1� log

m2

Z

4⇡2µ2

R

◆

↵s =
g2s
4⇡
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay
• Writing down real amplitude according to Feynman rules

• Squaring amplitude, summing over colours and spins, and 
averaging the spin of  the initial state

s24 = (pq + pg)
2, s34 = (pq̄ + pg)

2

X
|A

real

|2 =

✓X
|A

Born

|2
◆
↵s

8⇡(d� 2)

3m2

Zs24s34

⇥
⇥
(d� 2)s224 + 2(d� 4)s24s34 + (d� 2)s234 � 4m2

Z(s24 + s34) + 4m4
Z

⇤
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration

�real =
1

2mZ

Z
(2⇡)d �d (pZ � pq � pq̄ � pg)

1

(2⇡)3(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

dd�1~pg
2Eg

X
|Areal|2

y =
s34
m2

Z

, 1� y � z =
s24
m2

Z

d�(2)(pZ ! pq, pq̄) = (2⇡)d�d(pZ � pq � pq̄)
1

(2⇡)2(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

d�(3)(pZ ! pq, pq̄, pg) = (2⇡)d�d(pZ � pq � pq̄ � pg)
1

(2⇡)3(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

dd�1~pg
2Eg

=
(4⇡)2✏

8(2⇡)2
1

m2✏
Z

d⌦d

=
(4⇡)3✏

32(2⇡)4�(1� ✏)
(m2

Z)
1�2✏d⌦d

⇥
Z 1

0
dzz�✏

Z 1�z

0
dyy�✏(1� z � y)�✏

= d�(2)(pZ ! pq, pq̄)⇥
(4⇡)✏

16⇡2�(1� ✏)
(m2

Z)
1�✏

⇥
Z 1

0
dzz�✏

Z 1�z

0
dyy�✏(1� z � y)�✏
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration
X

|A
real

|2 =

✓X
|A

Born

|2
◆
↵s

8⇡(d� 2)

3m2

Zy(1� z � y)

⇥
(d� 2)(1� z)2 + 4y2 � 4y(1� z) + 4z

⇤

The integration over y is divergent when d  4 (✏ � 0)

y ! 0 (s34 ! 0)

y ! 1� z (s24 ! 0) on shell

on shell

pg ! 0

pg ! 0

pg||pq

pg||pq̄

(1)

(2)

(1)

(2)

(z ! 0)

(z ! 0)

soft singularity

collinear singularity

soft singularity

collinear singularity
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration

�virtual =
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)V

�real =
1

2mZ

Z
d�(3)(pZ ! pq, pq̄, pg)

X
|Areal|2

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

+

1

3

✓
2 log

2 m2
Z

4⇡2µ2
R

� 2 log

m2
Z

4⇡2µ2
R

� 2⇡2
+ 13

◆�
⇥ (4⇡)✏

�(1� ✏)

↵s

⇡


4

3✏2IR
+

2

3✏IR

✓
1� 2 log

m2
Z

4⇡2µ2
R

◆

�
virtual

+ �
real

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

(4⇡)✏

�(1� ✏)

↵s

⇡

• Sum real and virtual
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A NLO EXAMPLE: NLO
• Let us calculate NLO QCD of  Z -> q qbar decay

• Sum real and virtual

�
virtual

+ �
real

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

(4⇡)✏

�(1� ✏)

↵s

⇡

All remaining IR poles cancel (in general KLN theorem)
Kinoshita Lee Nauenberg

✏!0

= �
Born

(Z ! qq̄)
↵s

⇡

�NLO(Z ! qq̄ +X) = �Born(Z ! qq̄)
⇣
1 +

↵s

⇡

⌘

We finally get a well-known result !
Friday, June 11, 21
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Generics

25

Modern Techniques
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NLO ANATOMY
• Three parts need to be computed in a NLO calculation

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

O(↵b
s) O(↵b+1

s ) O(↵b+1
s )

Born
cross section

Virtual
correction

Real
correction

Finite Divergent Divergent
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Generics

27

Virtual=Loop+UV
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ONE-LOOP DIAGRAM GENERATION
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ONE-LOOP INTEGRAL EVALUATION
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ONE-LOOP INTEGRAL EVALUATION
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TENSOR INTEGRAL REDUCTION
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TENSOR INTEGRAL REDUCTION
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TENSOR INTEGRAL REDUCTION
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INTEGRAND REDUCTION

• The decomposition to the 
basis scalar integrals 
works at the level of the 
integrals

• Knowing a relation directly at 
the integrand level, we would 
be able to manipulate the 
reduction without doing the 
the integrals

TIR OPP
Ossola, Papadopulos, Pittau  (NPB’06)
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INTEGRAND REDUCTION
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INTEGRAND REDUCTION
• Take Box (4-point) coefficients as an example
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INTEGRAND REDUCTION
• In general:
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INTEGRAND REDUCTION
• In general:
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0

• In numerical calculations, it is very convenient to perform 
the following decomposition

l̄µ = lµ + l̃µ

d� dim

µ = 0, 1, 2, 3, · · · , 3� 2✏{
4� dim

(�2✏)� dim 4d spacetime {

physical
(�2✏)d space

abstract

lµ = 0, µ 2 (�2✏)d space l̃µ = 0, µ 2 4d spacetime
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0

• In numerical calculations, it is very convenient to perform 
the following decomposition

l̄µ = lµ + l̃µ

d� dim

µ = 0, 1, 2, 3, · · · , 3� 2✏{
4� dim

(�2✏)� dim 4d spacetime {

physical
(�2✏)d space

abstract

lµ = 0, µ 2 (�2✏)d space l̃µ = 0, µ 2 4d spacetime

N(l̄, ✏) = N(l) + Ñ(l, l̃, ✏)

Suitable for numerical calc. Complement with special CT R2  
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D-DIMENSIONAL COMPLEX
• Compute the remaining loop part in terms of  rational 

functions of  external momentum invariants and masses

R2 = lim
✏!0

Z
dd l̄

(2⇡)d
Ñ(l, l̃, ✏)

D̄0D̄1 · · · D̄m�1

• For example, a gluon self-energy diagram:

• After performing some Dirac algebra, we have

• Using the integration
Z

dd l̄

(2⇡)d
l̃2�

l̄2 �m2
t

� �
(l̄ + pg)2 �m2

t

� = � i

32⇡2

 
2m2

t �
p2g
3

!
+O(✏)

• We have R2 term
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D-DIMENSIONAL COMPLEX
• It has been proven that R2 is only UV related. Therefore, 

like renormalisation counterterms, they can be 
reexpressed into R2 Feynman rules

Draggiotis, Garzelli, Papadopoulos, Pittau (JHEP’09); HSS, Zhang, Chao (JHEP’11)

QCD R2 Feynman Rules
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MCnet Beijing Hua-Sheng Shao41

D-DIMENSIONAL COMPLEX
• In integrand reduction, additional rational terms R1 are 

needed !

integration of this piece 
gives rise R1

• Can be included in OPP reduction

• Not needed in TIR reduction

Friday, June 11, 21
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Real

Generics
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NLO ANATOMY
• Three parts need to be computed in a NLO calculation

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

Born
cross section

Virtual
correction

Real
correction
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BRANCHING: TO BE OR NOT TO BE
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IR SAFETY
• In order to have meaningful fixed-order predictions in 

perturbation theory, observables must be IR-safe, i.e. not 
sensitive to the emission of  soft/collinear partons

• For example,

• The number of  gluons is NOT IR safe.

• The transverse energy sum is IR safe.

• The leading pT/energy particle is NOT IR safe (soft or collinear unsafe ?).

• The colour in a given cone is NOT IR safe (soft or collinear unsafe ?).

Friday, June 11, 21
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A TOY EXAMPLE
• Assuming the phase space integration can be casted into 

a one-dimensional case                   :

IR safety

R =
↵X

⇡

R(x)

x
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A TOY EXAMPLE

Dimensionally regularise in x !

• We have used:
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PHASE-SPACE SLICING
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Phase-space slicing
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PHASE-SPACE SLICING
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Phase-space slicing

Power    terms are suppressed !
Large numerical cancellations !
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• Find a generic simple function S has exactly same IR singularity as real matrix element

• ... but much easier to integrate analytically.
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• Find a generic simple function S has exactly same IR singularity as real matrix element

• ... but much easier to integrate analytically.

Finite Finite

Analytically known Integrating numerically 
in 4d 
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• In above toy example

• Let us use

No approximation !
Numerical cancellations mitigated !
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NLO SUBTRACTION

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

• Master formula:

• The subtraction counterterm S should be chosen:
• It exactly matches the singular behaviour of  real ME
• It can be integrated numerically in a convenient way
• It can be integrated exactly in d dimension
• It is process independent (overall factor times Born ME)

• In gauge theory, the singular structure is universal
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TWO WIDELY-USED SUBTRACTION METHODS
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FKS SUBTRACTION
• The real ME singular as

• Partition the phase space in order to have at most one soft 
and/or one collinear singularity

• Use plus prescriptions to subtract the divergences
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FKS SUBTRACTION
• Counterevents:
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A Few Advanced Topics
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More Interaction Is Different

A Few Advanced Topics
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�

Q
C

DLO NLO NNLO
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

Q
C

DLO NLO NNLO
�̂(↵s,↵, µF , µR) = [↵s(µR)]

n↵m


�̂(0,0) +

↵s

2⇡
�(1,0)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2,0)(µF , µR) + · · ·

+
↵

2⇡
�(0,1)(µF , µR) +

⇣ ↵

2⇡

⌘2
�̂(0,2)(µF , µR) + · · ·

E
W

+
X

i�1

X

j�1

⇣↵s

2⇡

⌘i ⇣ ↵

2⇡

⌘j
�̂(i,j)(µF , µR)

3

5
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
• Situation may be more complicated        

• There may present several order contributions in Born (e.g. dijet)
• The usually ignored off-shell effect may be important �/M ' ↵
• Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
• Photon and jet is not well separated (need fragmentation function or some approximations)
• If  phase space is enough, EW boson radiation will be quite often (do we need them ?)
• The general matching between matrix element and parton shower will be difficult 

Kallweit et al. JHEP’17
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• The usually ignored off-shell effect may be important �/M ' ↵
• Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
• Photon and jet is not well separated (need fragmentation function or some approximations)
• If  phase space is enough, EW boson radiation will be quite often (do we need them ?)
• The general matching between matrix element and parton shower will be difficult 

• Three     schemes are frequently used ↵

•           scheme: works good for internal photon
↵(0)•           scheme: appropriate for external final photon (see e.g., 2106.02059)

↵(MZ)
•           scheme: works good for weak bosons and well measuredGµ
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• Three     schemes are frequently used ↵

•           scheme: works good for internal photon
↵(0)•           scheme: appropriate for external final photon (see e.g., 2106.02059)

↵(MZ)
•           scheme: works good for weak bosons and well measuredGµ

Shall we use different scheme/renormalization for different vertices in one diagram ?
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

57

GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
• Situation may be more complicated        

• There may present several order contributions in Born (e.g. dijet)
• The usually ignored off-shell effect may be important �/M ' ↵
• Photon PDF will be quite relevant, which was usually poorly determined until LUXqed
• Photon and jet is not well separated (need fragmentation function or some approximations)
• If  phase space is enough, EW boson radiation will be quite often (do we need them ?)
• The general matching between matrix element and parton shower will be difficult 

• Three     schemes are frequently used ↵

•           scheme: works good for internal photon
↵(0)•           scheme: appropriate for external final photon (see e.g., 2106.02059)

↵(MZ)
•           scheme: works good for weak bosons and well measuredGµ

Shall we use different scheme/renormalization for different vertices in one diagram ?
• Use                                  to capture the missing higher order ?                                    KNLO QCD ⇥KNLO EW
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ENHANCE EW CORRECTIONS 
• Enhance EWC by Yukawa coupling
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ENHANCE EW CORRECTIONS 
• Enhance EWC by Yukawa coupling
• e.g. H+2jets at LHC, EWC  ~                  ~ 5%  ↵

⇡s2w

M2
t

M2
W

• Enhance EWC by electromagnetic logarithms
• Initial-state radiation at electron-positron collision, EWC ~                   ~ 3% ↵ log

M2
Z

m2
e

• Final-state radiation for exclusive muon, EWC ~                   ~ 2% ↵ log

M2
Z

m2
µ

• Enhance EWC by EW Sudakov logarithms
• EW Sudakov logarithms come from exchange of  virtual weak bosons

⇠ �cLL
↵

⇡s2w
log

2 Q2

M2
W

+ cNLL
3↵

⇡s2w
log

Q2

M2
W

+ · · ·

Leading Log Next-to-Leading Log

e.g.
Q = 1 TeV �cLL ⇥ 26% + cNLL ⇥ 16%
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• Initial-state radiation at electron-positron collision, EWC ~                   ~ 3% ↵ log
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• Final-state radiation for exclusive muon, EWC ~                   ~ 2% ↵ log

M2
Z
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µ

• Enhance EWC by EW Sudakov logarithms
• EW Sudakov logarithms come from exchange of  virtual weak bosons

• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
• One does not treat W/Z inclusively as they can be (at least partially) reconst.

• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet

⇠ (fu/p � fd/p) log
Q2

M2
W
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ENHANCE EW CORRECTIONS 
• Enhance EWC by Yukawa coupling
• e.g. H+2jets at LHC, EWC  ~                  ~ 5%  ↵

⇡s2w
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t

M2
W

• Enhance EWC by electromagnetic logarithms
• Initial-state radiation at electron-positron collision, EWC ~                   ~ 3% ↵ log

M2
Z

m2
e

• Final-state radiation for exclusive muon, EWC ~                   ~ 2% ↵ log

M2
Z

m2
µ

• Enhance EWC by EW Sudakov logarithms
• EW Sudakov logarithms come from exchange of  virtual weak bosons

• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
• One does not treat W/Z inclusively as they can be (at least partially) reconst.

• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet

• However, EW Sudakov logarithms is not always relevant in Sudakov regime

Kallweit et al. JHEP’17

Large +QCD corr. cancel 
with large -EW corr.

QCDxEW differs 
significantly wrt QCD+EW
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• e.g. H+2jets at LHC, EWC  ~                  ~ 5%  ↵
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• Enhance EWC by electromagnetic logarithms
• Initial-state radiation at electron-positron collision, EWC ~                   ~ 3% ↵ log
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e

• Final-state radiation for exclusive muon, EWC ~                   ~ 2% ↵ log

M2
Z

m2
µ

• Enhance EWC by EW Sudakov logarithms
• EW Sudakov logarithms come from exchange of  virtual weak bosons

• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
• One does not treat W/Z inclusively as they can be (at least partially) reconst.

• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet

• However, EW Sudakov logarithms is not always relevant in Sudakov regime

• e.g. Drell-Yan at large invariant mass receives large contributions from small t Dittmaier et al. ’10 
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EW IN HIGH-ENERGY SCATTERINGS

Plot by M. Schonherr at Durham U.

• BSM effects are expected to 
be enhanced in the high-
energy scatterings 

• -> motivated BSM search go to 
the tail

• EW corr. increase up to tens of 
percent due to EW Sudakov 
logs

• The EW log resummation is still 
not mandatory@ (HL-)LHC as 

↵L ⌧ 1
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MADGRAPH5_AMC@NLO IN A NUTSHELL
Alwall et al. (JHEP’14)

4 commands for a NLO calculation

> ./bin/mg5_aMC
> generate process [QCD]
> output
> launch
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MADGRAPH5_AMC@NLO IN A NUTSHELL
Alwall et al. (JHEP’14)

4 commands for a NLO calculation

> ./bin/mg5_aMC
> generate process [QCD]
> output
> launch

complete automation for 
QCD+EW

> ./bin/mg5_aMC
> generate process [QCD QED]
> output
> launch

Frederix et al. (JHEP’18)
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MADGRAPH5_AMC@NLO: COMPLETE NLO
• Generation syntax for any LO and NLO (in v3.X):

Frederix et al. (JHEP’18)

Caveat: new generation syntax  at http://amcatnlo.web.cern.ch/amcatnlo/co.htm
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MADGRAPH5_AMC@NLO: NLO EW
• Examples:

LO1

NLO2

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

e+νe e+νej e+νejj e+e- e+e-j e+e-jj e+e-µ+µ- e+νeµ
-ν-µ

Ma
dG
ra
ph
5_
aM
C@
NL
O

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

He+νe He+e- Hjj W+W-W+ ZZW+ ZZZ HZZ HZW+

Ma
dG
ra
ph
5_
aM
C@
NL
O

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

HHW+ HHZ tt-W+ tt-Z tt-H jjj tj tt-j

Ma
dG
ra
ph
5_
aM
C@
NL
O

�EW =
NLO2

LO1

Frederix et al. (JHEP’18)
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MADGRAPH5_AMC@NLO: NLO EW
• Examples:
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NL
O

�EW =
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LO1

Frederix et al. (JHEP’18)
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MADGRAPH5_AMC@NLO: COMPLETE NLO
• Examples: Frederix et al. (JHEP’18)
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AUTOMATION TOOLS FOR EW CORRECTIONS 
• Automation tools for QCD+EW on the market (so far)

• MadGraph5_aMC@NLO

• Openloops+Sherpa/Munich

• Recola+Sherpa/BBMC/MoCaNLO

• GoSam+Sherpa

Les Houches SM report 2017 (1803.07977)

• NLOX (only an one-loop provider)

• Extensive validation among various tools is extremely important
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More Particle Is Different

A Few Advanced Topics
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BSM TH/EXP INTERACTIONS: THE OLD WAY

Idea

TH PHENO

Lagrangian

EXP

PGS

Pythia

Paper

Feyn. Rules

Amplitudes

x secs

Paper

New MC

Paper

New Pythia

Amps  2→2

Aut. Feyn. Rules

Any amplitude

Any x-sec

partonic events

Pythia

Detec. Sim.

Data
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Any amplitude
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BSM TH/EXP INTERACTIONS AUGMENTED

TH EXP

Idea

Lagrangian

FeynRules/LanHEP/Sarah

ME Generator

Signal & Bkg

Events

PS+Had

Delphes/Sim

Data

DM tools
Jet tools

Friday, June 11, 21



MCnet Beijing Hua-Sheng Shao67

BSM TH/EXP INTERACTIONS AUGMENTED

TH EXP

Idea

Lagrangian

FeynRules/LanHEP/Sarah

ME Generator

Signal & Bkg

Events

PS+Had

Delphes/Sim

Data

DM tools

๏ One path for all 
๏ Physics and software validations streamlined
๏ Robust and efficient Th/Exp communication
๏ It works top-down and bottom-up

Jet tools
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BSM TH/EXP INTERACTIONS AUGMENTED

TH EXP

Idea

Lagrangian

FeynRules/LanHEP/Sarah

ME Generator

Signal & Bkg

Events

PS+Had

Delphes/Sim

Data

DM tools

๏ One path for all 
๏ Physics and software validations streamlined
๏ Robust and efficient Th/Exp communication
๏ It works top-down and bottom-up

Jet tools

Focus in this lecture !
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NEW ISSUES WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?
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NEW ISSUES WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?

NLO diagram for gluino-pair LO diagram for gluino-squark
with squark decay

Simplified Treatments of Resonances

Frixione et al. (JHEP’19)

• Let us consider gluino pair production in SUSY

Friday, June 11, 21



MCnet Beijing Hua-Sheng Shao69

SIMPLIFIED TREATMENTS OF RESONANCES
• The formulation of the problem is:

LO:
NLO(Real): with/without

non-resonance
resonance

• No fully satisfactory solutions but a few proposals:

• DR: remove the resonance diagrams/amplitude
• DRI: remove the resonance amplitude squared

Diagram Removal

Diagram Subtraction

DS subtraction term

• DS-finalresh-runBW:P (FS momenta reshuffling), f  (ratio of  two BWs with running width)
• DS-initresh-runBW:P (IS momenta reshuffling), f  (ratio of  two BWs with running width)

• DS-finalresh-stdBW:P (FS momenta reshuffling), f  (ratio of  two standard BWs)
• DS-initresh-stdBW:P (IS momenta reshuffling), f  (ratio of  two standard BWs)

Frixione et al. (JHEP’19)

istr=1
istr=2

istr=6
istr=4
istr=5
istr=3
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• The formulation of the problem is:

LO:
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non-resonance
resonance

• No fully satisfactory solutions but a few proposals:

• DR: remove the resonance diagrams/amplitude
• DRI: remove the resonance amplitude squared

Diagram Removal

Diagram Subtraction

DS subtraction term

• DS-finalresh-runBW:P (FS momenta reshuffling), f  (ratio of  two BWs with running width)
• DS-initresh-runBW:P (IS momenta reshuffling), f  (ratio of  two BWs with running width)

• DS-finalresh-stdBW:P (FS momenta reshuffling), f  (ratio of  two standard BWs)
• DS-initresh-stdBW:P (IS momenta reshuffling), f  (ratio of  two standard BWs)

Frixione et al. (JHEP’19)

Not gauge invariantistr=1
istr=2

istr=6
istr=4
istr=5
istr=3
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione et al. (JHEP’19)
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione et al. (JHEP’19)

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Friday, June 11, 21
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione et al. (JHEP’19)

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Sensitive to large x PDF due 
to initial momenta 

reshuffling !
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione et al. (JHEP’19)

Important to check the 
systematic dependencies !

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Sensitive to large x PDF due 
to initial momenta 

reshuffling !
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More Operator Is Different

A Few Advanced Topics

LSMEFT = LSM

+
X

i

C
(6)
i O

(6)
i

⇤2

+
X

i

C
(8)
i O

(8)
i

⇤4
+ . . .
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AN ISSUE FOR SMEFT@NLO
Slide by C. Zhang at 
QCD@LHC-X 2020
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NLO HELPS SMEFT@LHC

• Precision and accuracy

Degrande et al. (PRD’21) Degrande et al. (JHEP’18)
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NLO HELPS SMEFT@LHC

• Precision and accuracy

Degrande et al. (PRD’21) Degrande et al. (JHEP’18)

SM

SMEFT

Large, negative K factors: Non-interference/cancellation at LO breaks at NLO

Different and non-uniform K factors
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NLO HELPS SMEFT@LHC

• Improved sensitivity
• New operators opening up at NLO Degrande et al. (PRD’21)
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NLO HELPS SMEFT@LHC

• Improved sensitivity
• New operators opening up at NLO Degrande et al. (PRD’21)

• Breaking degeneracies at NLO

O8
tu =

�
t̄�µT

At
�
(ūi�

µT aui)

O8
Qu =

�
Q̄�µT

AQ
�
(ūi�

µT aui)

Brivio et al. (JHEP’20)

Forward
Backward
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NLO HELPS SMEFT@LHC

• Impact on the global fit
Ethier et al. (2105.00006)
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In Memory of Cen Zhang

• A great organiser of  the school !
• A talent physicist with several groundbreaking research works
• A very good collaborator and friend
• Our last meeting in person in Beijing (Oct 2019, before Covid confinement)
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