Introduction to e+e- Physics & Simulation

	To			+5					+10					+15	No.				+20				+26
ILC		0.5/ab 250 GeV				1.5/ab 250 GeV					1.0/ab 0.2/ab 2mtop			3/ab 500 GeV									
CEPC			5.6/ 240 (ab GeV			16/ N	/ab 1 _z	2.6 /ab 2M _W											SppC =>			
CLIC			1. 38	.0/ab 0 Ge	v							:	2.5/a 1.5 <u>Te</u>	b V						5.0/ab => until +28 3.0 <u>TeV</u>			
FCC		150/ab ee, M _z)	10, ee, 2	/ab 2M _w	ee,	5/ab 240 (GeV			1 ee	L.7/al e, 2m) top								Ľ	<u>h.eh</u> =>	
LHeC		0.0	6/ab		0.2/ab 0.72/ab																		
HE- LHC	10/ab per experiment in 20y																						
FCC eh/hh	20/ab per experiment in 25y																						

Junping Tian (U. Tokyo)

MCnet Beijing School for Event Generators, June 28-July 2, 2021

plan

(i) Mini-intro to future e+e- experiments

Lecture 1

(ii) Higgs Property Measurements

(iii) New Particle Searches

(iv) Top-quark & EW Measurements Lecture 2

(v) Global Interpretation in SM EFT

focus will be on experimental concepts "why / what / how" please learn theoretical concepts "why" from other lectures

(i) future e+e- collider proposals

	√s	beam polarisation	∫Ldt (baseline)	R&D phase
ILC	0.1 - 1 TeV	e-: 80% e+: 30% (20%)	2 ab ⁻¹ @ 250 GeV 0.2 ab ⁻¹ @ 350 GeV 4 ab-1 @ 500 GeV 8 ab-1 @ 1 TeV	TDR 2013
CLIC	0.35 - 3 TeV	e-: (80%) e+: 0%	1 ab ⁻¹ @ 380 GeV 2.5 ab ⁻¹ @ 1.5 TeV 5 ab ⁻¹ @ 3 TeV	CDR 2012
CEPC	90 - 240 GeV	e-: 0% e+: 0%	5.6 ab ⁻¹ @ 250 GeV 16 ab ⁻¹ @ M _Z 2.6 ab ⁻¹ @ 2M _W	CDR 2018
FCC-ee	90 - 350 GeV	e-: 0% e+: 0%	150 ab ⁻¹ @ Mz 10 ab ⁻¹ @ 2Mw 5 ab ⁻¹ @ 250 GeV 1.7 ab ⁻¹ @ 365 GeV	CDR 2018

(i) future e+e- collider proposals

	√s	beam polarisation	∫Ldt (baseline)	R&D phase
ILC	0.1 - 1 TeV	e-: 80% e+: 30% (20%)	2 ab ⁻¹ @ 250 GeV 0.2 ab ⁻¹ @ 350 GeV 4 ab-1 @ 500 GeV 8 ab-1 @ 1 TeV	TDR 2013
CLIC	0.35 - 3 TeV	e-: (80%) e+: 0%	1 ab ⁻¹ @ 380 GeV 2.5 ab ⁻¹ @ 1.5 TeV 5 ab ⁻¹ @ 3 TeV	CDR 2012
CEPC	90 - 240 GeV	e-: 0% e+: 0%	5.6 ab ⁻¹ @ 250 GeV 16 ab ⁻¹ @ M _Z 2.6 ab ⁻¹ @ 2M _W	CDR 2018
FCC-ee	90 - 350 GeV	e-: 0% e+: 0%	150 ab ⁻¹ @ Mz 10 ab ⁻¹ @ 2Mw 5 ab ⁻¹ @ 250 GeV 1.7 ab ⁻¹ @ 365 GeV	CDR 2018

- ▷ O(10⁶) Higgs; O(10⁹-10¹²) Z; O(10⁸) W; O(10⁶) t-quark; ? #BSM; etc
- ▶ What physics can be advanced? Roles played by \sqrt{s} , $\int L$, Polarisation?

what behind
$$\sqrt{s}$$
 $L\left(\int Ldt\right)$ P ?

what behind
$$\sqrt{s}$$
 $L\left(\int Ldt\right)$ P ?

Radio-Frequency acceleration

Electromagnetic fields oscillate at a perfect timing

$$l_i = \beta_i \frac{\lambda_{\rm RF}}{2}$$

Gradient: ILC 31.5 MV/m; CLIC 100 MV/m

what behind
$$\sqrt{s}$$
 $L\left(\int Ldt\right)$ P ?

Radio-Frequency acceleration

Electromagnetic fields oscillate at a perfect timing

Gradient: ILC 31.5 MV/m; CLIC 100 MV/m

Magnetic field (transverse acceleration)

 $R = \frac{E}{ecB}$

 $l_i = \beta_i \frac{\lambda_{\rm RF}}{2}$

SPPC / FCC-hh: E = 100TeV, R = 100km; B ~ 16T

what behind
$$\sqrt{s}$$
 $L\left(\int Ldt\right)$ P ?

Radio-Frequency acceleration

Electromagnetic fields oscillate at a perfect timing

Gradient: ILC 31.5 MV/m; CLIC 100 MV/m

Magnetic field (transverse acceleration)

 $R = \frac{E}{ecB}$

 $l_i = \beta_i \frac{\lambda_{\rm RF}}{2}$

SPPC / FCC-hh: E = 100TeV, R = 100km; B ~ 16T

Plasma Wakefield acceleration (~10 GV/m) long way to go

Luminosity (beam dynamics)

Synchrotron Radiation

$$P = \frac{e^2 c}{6\pi\epsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2}$$

$$\Delta E[\text{keV}] = 88.5 \frac{E^4 [\text{GeV}]^4}{R[\text{m}]}$$

E loss per turn for electron (~3GeV! for R=100km E=240GeV)

Beam Polarisation

$$P = \frac{N_R - N_L}{N_R + N_L}$$

spinning particles precess around B-field direction hard to preserve longitudinal polarisation in a ring; transverse possible (i-2) basic concepts on detectors

what behind

Vertex / timing resolution Momentum / Jet Energy Resolution Flavor-tagging Efficiency Particle Identification Efficiency

?

what behind

Vertex / timing resolution Momentum / Jet Energy Resolution Flavor-tagging Efficiency Particle Identification Efficiency

passage of particles through matter

- ionization / atom excitation
- multiple scattering
- bremsstrahlung / pair production
- nuclear interaction
- Cherenkov radiation

?

what behind

Vertex / timing resolution Momentum / Jet Energy Resolution Flavor-tagging Efficiency Particle Identification Efficiency

passage of particles through matter

- ionization / atom excitation
- multiple scattering
- bremsstrahlung / pair production
- nuclear interaction
- Cherenkov radiation

type of detectors

- vertex / tracking
- sampling calorimeters
- homogeneous calorimeters
- timing detectors

?

(i-2) basic concepts on detectors

Particle Flow Detector

particle flow approach tries to reconstruct every individual particle produced in an event

key challenge is to separate the showers produced by particles from a same jet

--> highly granular calorimeters

Component	Detector	Energy Fract.	Energy Res.	Jet Energy Res.
Charged Particles (X^{\pm})	Tracker	$\sim 0.6E_j$	$10^{-4} E_{X^\pm}^2$	$< 3.6 imes 10^{-5} E_j^2$
Photons (γ)	ECAL	$\sim 0.3E_j$	$0.15\sqrt{E_{\gamma}}$	$0.08\sqrt{E_j}$,
Neutral Hadrons (h^0)	HCAL	$\sim 0.1E_j$	$0.55\sqrt{E_{h^0}}$	$0.17\sqrt{E_j}$

typical tracking performance

momentum resolution

$$\Delta_{1/P_t} = \frac{\Delta P_t}{P_t^2} \sim 2 \times 10^{-5} [\text{GeV}^{-1}]$$

~0.2% for Pt~100GeV

tracking efficiency

~100% for $P_T > 300 \text{ MeV}$

vertex / flavor-tagging performance

performance on jet energy resolution

hard interaction; ISR; beamstralung

parton showering; hadronization; decay

hard interaction; ISR; beamstralung

parton showering; hadronization; decay

detector simulation

full detector simulation; pile-up; (GEANT4) fast simulation; simple smearing; (DELPHES / SGV)

hard interaction; ISR; beamstralung

parton showering; hadronization; decay

detector simulation

full detector simulation; pile-up; (GEANT4) fast simulation; simple smearing; (DELPHES / SGV)

event reconstruction

digitization; tracking; particle flow analysis (PandoraPFA) vertex reconstruction; jet clustering; flavor tagging (LCFIPlus)

hard interaction; ISR; beamstralung

parton showering; hadronization; decay

detector simulation

full detector simulation; pile-up; (GEANT4) fast simulation; simple smearing; (DELPHES / SGV)

event reconstruction

digitization; tracking; particle flow analysis (PandoraPFA) vertex reconstruction; jet clustering; flavor tagging (LCFIPlus)

physics analysis

data say there are at least five missing pieces in the SM [H. Murayama] dark matter (2003) neutrino mass (1998) • dark energy (1998) • inflation (2003) matter anti-matter asymmetry (2003)

how can future e+e- colliders help?

$$V(|\Phi|) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

o H(125) discovery

- elementary or composite? any siblings?
- What is the origin of EWSB?
 - why μ²<0? underlying dynamics?</p>
- What BSM protects m_H ?
- Connection to big questions?

$$M_H^2 = M_{\text{tree}}^2 + \left(\underbrace{\bigcup_{H \to H}}_{H \to H}\right) + \left(\underbrace{\bigcup_{H \to H}}_{t}\right) + \left(\underbrace{\bigcup_{H \to H}}_{H}\right) + \left(\underbrace{\bigcup_{H \to H}}_$$

there must be BSM around EW scale, we just need to find it out

direct vs indirect searches: complementarity

17

opportunities from precision Higgs couplings

arXiv: 1306.6352

measuring deviation pattern will tell a lot about BSM

general guidelines for Higgs coupling meas. @ future e+e-

—in light of what have been found at LHC

o new particles are heavy, deviation is small, 1-10% for m_{BSM}~1TeV: need measurement with 1% precision or below so that deviations with SM can be discovered

 o measurement needs to be as model-independent as possible: so that the true BSM model can be discriminated from others, future HEP direction hence can be decided

statistics vs S/B: example on H \rightarrow bb discovery

LHC (super Higgs factory #10⁸)

of Higgs produced: ~4,000,000 significance: 5.4σ [ATLAS, 1808.08238; CMS, 1808.08242] e+e- (Higgs factory #10⁶)

statistics vs S/B: example on H \rightarrow bb discovery

LHC (super Higgs factory #10⁸)

significance: 5.4σ

[ATLAS, 1808.08238; CMS, 1808.08242]

e+e- (Higgs factory #10⁶)

5.2σ

[Ogawa, PhD Thesis (Sokendai)]

"that is much much easier, infinitely easier, on a e+e- machine than on a proton machine"

youtube: Burton Richter #mylinearcollider, 2015

Higgs productions at e+e-

two apparent important thresholds: √s ~ 250 GeV for ZH,
~500 GeV for ZHH and ttH

• + another threshold for t t-bar, important for vacuum stability

Higgs properties: what we would like to measure

reconstruct the Higgs sector in a bottom-up and model independent way

Mass & J^{CP}
$$M_h$$
 Γ_h J^{CP}

new CP violating source?

$$L_{\text{Higgs}} \quad hhh: \quad -6i\lambda v = -3i\frac{m_h^2}{v}, \quad hhhh: \quad -6i\lambda = -3i\frac{m_h^2}{v^2}$$

probe Higgs potential, EWBG?

$$L_{Gauge} \begin{array}{c} W^{+}_{\mu}W^{-}_{\nu}h: \ i\frac{g^{2}v}{2}g_{\mu\nu} = 2i\frac{M_{W}^{2}}{v}g_{\mu\nu}, \quad W^{+}_{\mu}W^{-}_{\nu}hh: \ i\frac{g^{2}}{2}g_{\mu\nu} = 2i\frac{M_{W}^{2}}{v^{2}}g_{\mu\nu}, \\ Z_{\mu}Z_{\nu}h: \ i\frac{g^{2}+g'^{2}v}{2}g_{\mu\nu} = 2i\frac{M_{Z}^{2}}{v}g_{\mu\nu}, \quad Z_{\mu}Z_{\nu}hh: \ i\frac{g^{2}+g'^{2}}{2}g_{\mu\nu} = 2i\frac{M_{Z}^{2}}{v^{2}}g_{\mu\nu} \\ \end{array}$$

$$egin{aligned} & L_{ ext{Yukawa}} & har{f}f: & -irac{y^f}{\sqrt{2}} = -irac{m_f}{v} \ \end{bmatrix} \ egin{aligned} & L_{ ext{Loop}} & h\gamma\gamma & hgg & h\gamma Z \end{aligned}$$

m_f from Yukawa coupling? 2HDM?

new particles in the loop?

+ possible exotic/anomalous interactions of Higgs

what are the direct experimental observables

σ_{ZH}

- $\sigma_{ZH} \times Br(H \longrightarrow bb), \sigma_{\nu\nu H} \times Br(H \longrightarrow bb)$
- $\sigma_{ZH} \times Br(H \longrightarrow cc), \sigma_{\nu\nu H} \times Br(H \longrightarrow cc)$
- $\sigma_{ZH} \times Br(H \longrightarrow gg), \sigma_{\nu\nu H} \times Br(H \longrightarrow gg)$
- $\sigma_{ZH} \times Br(H \longrightarrow WW^*), \sigma_{\nu\nu H} \times Br(H \longrightarrow WW^*)$
- $\sigma_{ZH} \times Br(H \longrightarrow ZZ^*), \sigma_{\nu\nu H} \times Br(H \longrightarrow ZZ^*)$
- $\sigma_{ZH} \times Br(H \longrightarrow \tau \tau), \sigma_{\nu\nu H} \times Br(H \longrightarrow \tau \tau)$
- $\sigma_{ZH} \times Br(H \longrightarrow \mu\mu), \sigma_{\nu\nu H} \times Br(H \longrightarrow \mu\mu)$
- $\sigma_{ZH} \times Br(H \longrightarrow inv./exotic)$
- σ $\sigma_{ttH} \times Br(H \longrightarrow bb)$
- $\sigma_{ZHH} \times Br^2(H \longrightarrow bb), \sigma_{vvHH} \times Br^2(H \longrightarrow bb)$
what are the direct experimental observables

note the important complementarity with LHC

I will explain in fare details for 1-2 analyses, talk very briefly in other ones; mainly focus on physics issues instead of analysis techniques, which are important as well and can be learned from the references.

(1) Higgs self-coupling analysis

- (2) recoil mass analysis
- (3) Higgs CP
- (4) H->bb/cc/gg
- (5) Higgs total width
- (6) top-Yukawa coupling

(7) ...

as usual, selection is always biased

(ii-1) Higgs self-coupling

- direct probe of the Higgs potential
- large deviation (> 20%) motivated by electroweak baryogenesis, could be ~100%
- √s>=500 GeV, e+e- —> ZHH
- ▶ $\sqrt{s} = 1$ TeV, e+e- —> vvHH (WW-fusion)

physics issues: diagrams for double Higgs production

$$\sigma = S\lambda^2 + I\lambda + B$$
(signal diagram) (interference) (background diagram)

- the sensitivity of λ is determined not just by the apparent total cross section, in fact is determined by S and I term;
- if B term dominates, measurement would be very difficult

double Higgs x-section: breakdown for each diagram

$$\sigma = S\lambda^2 + I\lambda + B$$

Higgs self-coupling: from σ to λ

expected precision of λ : impact from analysis & \sqrt{s}

ZHH

- for ZHH: 500 GeV is optimal, δλ/λ ~ 6% : 30%, mild dependence between around 500-600 GeV, significantly worse at much lower or higher √s
- huge room for improvement (waiting for you to narrow down the gap)

expected precision of λ : impact from analysis & \sqrt{s}

[%] イ / VQ -→v**⊽HH (100% Eff., no Bkg.**) $e^++e \rightarrow \sqrt{\nu}HH$ (full simulation) 10 1

1000

ννΗΗ

500

for vvHH: significantly better going from 500 GeV to 1 TeV, δλ/λ~10% achievable when $\sqrt{s} \ge 1$ TeV;

1500

better at higher \sqrt{s} , not drastically, from 1 TeV to 3 TeV, improved by 50%

2000

2500

3000

√s [GeV]

one limiting factor: jet-clustering algorithm

ZHH->vvbbbb (BG: ZZH and ZZZ)

scatter plot of two Higgs masses

- the mis-clustering of particles degrades significantly the separation between signal and BG.
- it is studied that using perfect color-singlet jet-clustering can improve δλ/λ by 40%!

Higgs self-coupling: when $\lambda_{HHH} \neq \lambda_{SM}$?

- constructive interference in ZHH, while destructive in vvHH (& LHC): complementarity between ILC & LHC, between √s ~500 GeV and >1TeV
- if λ_{HHH} / λ_{SM} = 2, Higgs self-coupling can be measured to ~15% using ZHH at 500 GeV e+e-

references for large deviations

e.g.

Grojean, et al., PRD71, 036001; Kanemura, et al., 1508.03245; Kaori, Senaha, PHLTA, B747, 152; Perelstein, et al., JHEP 1407, 108

Higgs self-coupling: indirect determination

McCullough, arXiv:1312.3322

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

- ▶ if only δh is deviated —> $\delta h \sim 28\%$
- ▶ if both δz and δh deviated —> $\delta h \sim 90\%$
- δσ could receive contributions from many other sources
- open question: what happens after taking into account all possible modifications? (Lecture 2)

can we measure quartic Higgs self-coupling?

(ii-2) inclusive σ_{ZH} : unique key @ e+e-

- well defined initial states at e+e-
- recoil mass technique —> tag Z only
- Higgs is tagged without looking into H decay
- absolute cross section of e+e- -> ZH

for Z->II (leptonic recoil), Yan et al, arXiv:1604.07524; for Z->qq (hadronic recoil), Thomson, arXiv:1509.02853

what does model independence mean?

- ▶ meas. of σ_{ZH} doesn't depend on how Higgs decays
- ▶ meas. of σ_{ZH} doesn't depend on underlying HZZ vertex

is it really possible?

independent of H decay modes?

$$e^+ + e^- \rightarrow ZH \rightarrow l^+l^-/q\bar{q} + X$$

- this question is almost equivalent to whether we can tag the Z decay products unambiguously
- ▶ might be easy in Z->II, certainly not trivial in Z->qq
- even in Z->II mode, we know there can be isolated leptons from Higgs decay, e.g. H->WW*/τ τ/ZZ, which get mis-identified as leptons from Z decay
- ▶ keep in mind we are targeting 0.1-1% precision measurement

efficiencies breakdown (leptonic recoil)

$H \rightarrow XX$	bb	cc	gg	au au	WW*	ZZ^*	$\gamma\gamma$	γZ
BR (SM)	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.23%	0.16%
Lepton Finder	93.70%	93.69%	93.40%	94.02%	94.04%	94.36%	93.75%	94.08%
Lepton ID+Precut	93.68%	93.66%	93.37%	93.93%	93.94%	93.71%	93.63%	93.22%
$M_{ m l^+l^-} \in [73, 120] \; { m GeV}$	89.94%	91.74%	91.40%	91.90%	91.82%	91.81%	91.73%	91.47%
$p_{\mathrm{T}}^{\mathrm{l^+l^-}} \in [10, 70] \; \mathrm{GeV}$	89.94%	90.08%	89.68%	90.18%	90.04%	90.16%	89.99%	89.71%
$ \cos \theta_{ m miss} < 0.98$	89.94%	90.08%	89.68%	90.16%	90.04%	90.16%	89.91%	89.41%
$\mathrm{BDT}>$ - 0.25	88.90%	89.04%	88.63%	89.12%	88.96%	89.11%	88.91%	88.28%
$M_{\rm rec} \in [110, 155] \text{ GeV}$	88.25%	88.35%	87.98%	88.43%	88.33%	88.52%	88.21%	87.64%

- every cut is applied very carefully to avoid large bias, still ~1%
- nevertheless, it becomes almost a paradox:
 - ✓ no cut, no bias; looser cuts, less bias
 - ✓ extremely tighter cuts, less bias;
 - ✓ too loose or too tight cuts -> remain too much background or too little signal -> bad precision measurement

efficiencies breakdown (hadronic recoil)

Decay mode	$\overline{oldsymbol{arepsilon}^{\mathrm{vis.}}_{\mathscr{L}>0.65}}$	$\overline{oldsymbol{arepsilon}_{\mathscr{L}>0.60}^{ ext{invis.}}}$	$arepsilon^{\mathrm{vis.}}+arepsilon^{\mathrm{invis.}}$
$H \rightarrow invis.$	<0.1 %	23.5 %	23.5 %
${ m H} ightarrow { m q} { m q} { m g} { m g}$	22.6 %	<0.1 %	22.6 %
$\mathrm{H} ightarrow \mathrm{W} \mathrm{W}^*$	22.1 %	0.1~%	22.2%
${ m H} ightarrow { m ZZ}^*$	20.6 %	1.1 %	21.7~%
$H\to\tau^+\tau^-$	25.3 %	0.2~%	25.5 %
$H ightarrow \gamma \gamma$	25.7 %	<0.1 %	25.7 %
$H \rightarrow Z\gamma$	18.6~%	0.3 %	18.9~%
$H \rightarrow WW^* \rightarrow q \overline{q} q \overline{q}$	20.8~%	<0.1 %	20.8~%
${ m H} ightarrow { m W} { m W}^* ightarrow { m q} \overline{ m q} \ell u$	23.3 %	<0.1 %	23.3 %
${ m H} ightarrow { m W}{ m W}^* ightarrow q\overline{\overline{q}} au{ m v}$	23.1 %	<0.1 %	23.1 %
${ m H} ightarrow { m W}{ m W}^* ightarrow \ell ar{ u}\ell u$	26.5 %	0.1~%	26.5 %
${ m H} ightarrow { m W} { m W}^* ightarrow \ell u au u$	21.1 %	0.5~%	21.6 %
${ m H} ightarrow { m W} { m W}^* ightarrow au { m v} au { m v}$	16.3 %	2.3 %	18.7~%

relative bias can be as large as ~15%

a nice trick: categorization

$$\sigma_{ZH} = \sigma^{cat1} + \sigma^{cat2} + \sigma^{cat3} + \sigma^{cat4} + \cdots$$

- ▶ if we have a complete list of categories
- then we only need to keep all selection cuts independent of decay mode in each category;
- selections cuts among categories can be very different

for example

$$\sigma_{ZH} = \sigma^{H \to \text{invisible}} + \sigma^{H \to \text{visible}}$$

a realistic solution: make use of individual BR measurement

$$\sigma_{ZH} = \frac{N_S}{R_f L\bar{\epsilon}} \qquad \bar{\epsilon} \equiv \sum_i B_i \epsilon_i$$

- N_S: # of signal R_f: BR of Z->ff L: int. luminosity Bi: BR of H decay mode i εi: efficiency of mode i
- ▶ if every ε_i is same -> $\Sigma B_i = 1$; no need for any knowledge about B_i
- ▶ nevertheless, we can measure many of the σxB_i; assume i=1..n is known with ∆Bi; i=n+1,... is unknown, sum up to Bx;

known modessystematic error to
$$\sigma_{ZH}$$
unknown modes $\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}} = \frac{\Delta \overline{\varepsilon}}{\overline{\epsilon}} = \sqrt{\sum_{i=1}^{n} \Delta B_i^2 \left(\frac{\varepsilon_i}{\varepsilon_0} - 1\right)^2}$ $\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}} = \frac{\Delta \overline{\varepsilon}}{\overline{\epsilon}} < \sum_{i=n+1}^{n} B_i \frac{\delta \varepsilon_{max}}{\varepsilon_0} = B_x \frac{\delta \varepsilon_{max}}{\varepsilon_0}$

- ▶ leptonic recoil, demonstrated possible $\delta \sigma_{ZH} \sim 0.1\%$ for Bx<10%
- ▶ hadronic recoil, still need more work for $\delta\sigma_{ZH}$ <1% for Bx<10%

independent of HZZ vertex?

- different HZZ vertex might change angular distributions of Z
- hence, this question is equivalent to whether the selections cuts are democratic for all production angles of Z

open question, this is not sufficiently studied yet

(ii-3) Higgs CP in $H - > \tau^+\tau^-$

CP is essential to understand structures of all Higgs couplings

$$L_{Hff} = -\frac{m_f}{v} H\bar{f}(\cos \Phi_{CP} + i\gamma^5 \sin \Phi_{CP})f$$

$$= -\frac{m_f}{v} H\bar{f}(\cos \Phi_{CP} + i\gamma^5 \sin \Phi_{CP})f$$

is it good enough for discovering EW Baryogengesis?
 large room to improve in experiment

[Ogawa et al, arXiv:1712.09772]

(ii-4) Higgs direct couplings to bb, cc and gg

clean environment at e+e-; excellent b- and c-tagging performance

bb/cc/gg modes can be separated simultaneously by template fitting

e+e- -> ZH -> ff(jj): b-likeness .vs. c-likeness

[Ono, et. al, Euro. Phys. J. C73, 2343; F.Mueller, PhD thesis (DESY)]

(ii-5) WW-fusion channel & Higgs total width Γ_{H}

very different at √s=250 GeV

(ii-6) Top-Yukawa coupling

- largest Yukawa coupling; crucial role
- non-relativistic tt-bar bound state correction: enhancement by ~2 at 500 GeV
- Higgs CP measurement

$\Delta g_{ttH}/g_{ttH}$	500 GeV	+ 1 TeV
ILC	6.3%	1.5%

Yonamine, et al., PRD84, 014033; Price, et al., Eur. Phys. J. C75 (2015) 309

Top-Yukawa coupling: impact of √s

lactor of 2 increase \sqrt{s} slightly by 50GeV can improve δy_t by a factor of 2

(ii-7) how do we actually determine Higgs couplings?

suppose we discover a deviation in, e.g. cross section of $e+e- -> ZH -> (\mu\mu)$ (bb)

then we would like to know which coupling is deviated:

- hbb coupling?
- hZZ coupling?
- Zµµ coupling?
- Zee coupling?
- new diagrams?

h

From observables to couplings — Global Fit

$$\chi^{2} = \sum_{i=1}^{n} (\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}})^{2}$$

Yi: measured values by experiments
Yi': predicted values by underlying theory
ΔYi: measurement uncertainty
n: number of independent observables

kappa formalism

$$Y'_{i} = F_{i} \cdot \frac{g_{HA_{i}A_{i}}^{2} \cdot g_{HB_{i}B_{i}}^{2}}{\Gamma_{0}} \qquad (A_{i} = Z, W, t)$$
$$(B_{i} = b, c, \tau, \mu, g, \gamma, Z, W : decay)$$

$$g_{HXX} = \kappa_X \cdot g_{HXX}^{SM}$$

effective field theory formalism (Lecture 2)

From observables to couplings — Global Fit

in case there are correlated observables

$$\chi^2 = \sum_{i=1}^n \left(\frac{Y_i - Y'_i}{\Delta Y_i}\right)^2 + \left(Y_j - Y'_j\right)^T C_j^{-1} \left(Y_j - Y'_j\right)$$

Y_j: column vector of correlated observables

C_j: covariance matrix for those observables

Higgs coupling determination — kappa formalism

1) recoil mass technique —> inclusive **o**zh

2) σ_{Zh} --> **K**_Z --> Γ(h->ZZ*)

- 3) W-fusion $v_e v_e h \longrightarrow \mathbf{K}_{\mathbf{W}} \longrightarrow \Gamma(h \rightarrow WW^*)$
- 4) total width $\Gamma_h = \Gamma(h \rightarrow ZZ^*)/BR(h \rightarrow ZZ^*)$
- 5) or $\Gamma_h = \Gamma(h \rightarrow WW^*)/BR(h \rightarrow WW^*)$
- 6) then all other couplings BR(h->XX) $^{*}\Gamma_{h} \rightarrow K_{X}$

question in kappa formalism:

$$\frac{\sigma(e^+e^- \to Zh)}{SM} = \frac{\Gamma(h \to ZZ^*)}{SM} = \kappa_Z^2 \qquad ?$$

- BSM territory: can deviations be represented by single κ_Z?
- How to include radiative corrections in kappa formalism?

plan

(i) Mini-intro to future e+e- experiments Lecture 1

(ii) Higgs Property Measurements

(iii) New Particle Searches

(iv) Top-quark & EW Measurements Lecture 2

(v) Global Interpretation in SM EFT

focus will be on experimental concepts "why / what / how" please learn theoretical concepts "why" from other lectures

supplementary reading for accelerator & detector concepts

(i) introduction to accelerators

what behind
$$\sqrt{s}$$
 $L\left(\int Ldt\right)$ P

(i.1) basic principles for acceleration(i.2) luminosity & a little beam dynamics(i.3) beam polarizations(i.4) ILC & its specifications

electrostatic accelerator

early development: mainly about generating high voltage

Cockcroft-Walton cascade generator

based on a system with multiple rectifiers reached ~O(1) MV
Cockcroft-Walton cascade generator

• Van de Graaff generator

an isolating belt continuously transports charge to a conducting dome: O(1-1000) MeV • Van de Graaff generator

Westinghouse Atom Smasher (1937) 5MV

high-voltage limitation

corona discharge: ionization avalanche near electrode

high-voltage limitation

high-voltage limitation

electrostatic accelerator

played crucial role for the nuclear physics

still used nowadays as pre-injector

@ CERN Exhibition

Radio-Frequency (RF) accelerator

crucial: synchronization of particle motion & RF field

$$L_i = v_i \frac{\tau_{\text{RF}}}{2} = \frac{v_i \lambda_{\text{RF}}}{c 2} = \beta_i \frac{\lambda_{\text{RF}}}{2} \qquad \text{for 10 MHz} \\ \lambda_{\text{RF}} = 30 \text{m}$$

• RF cavity

a metal resonator that can store electromagnetic fields

• RF cavity

a metal resonator that can store electromagnetic fields

RF cavity

a metal resonator that can store electromagnetic fields

most important performance:

Acceleration Gradient [MeV/m] Q0 (quality factor)~Peak Energy / Energy Loss • Klystron: produce the RF for cavity

$$L_i = v_i \frac{\tau_{\rm RF}}{2} = \frac{v_i}{c} \frac{\lambda_{\rm RF}}{2} = \beta_i \frac{\lambda_{\rm RF}}{2}$$

e.g. if for 10 MHz RF, $\lambda_{RF} = 30m$

it is crucial to develop high frequency & high power Klystron

was highly developed during WW II for radar system

Cyclotron

fixed frequency (for non-relativistic particle)

$$w = \frac{e}{m}B_z$$
 matched exactly by RF

Betatron

raw of induction -> no need any extra acceleration section

$$\oint \vec{E} \cdot d\vec{r} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{s}$$

Widerøe's betatron condition: $|B(t)| = 1/2 < |B(t)| > + |B_0|$

synchrotron

fixed orbit; magnet only around orbit; RF acc. section; synchronizing magnetic field with energy

Luminosity

$$L = f_{coll} \frac{n_1 n_2}{4\pi \sigma_x^* \sigma_y^*} F$$

n1, n2: # particles in a bunch f_{coll}: average collision frequency F: ~1, geometric effect (crossing angle, etc)

 σ_x , σ_y : bunch size in the transverse direction most non-trivial part

• emittance & beta function

beam dynamics

in an accelerator, by construction particles follow a nominal trajectory (obit)

but particles in a beam will always have certain angular divergence, if not steered, after a long travel will hit the accelerator wall

beam steering is necessary

Lorentz force:

$$\boldsymbol{F} = \boldsymbol{e}(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

v=c, for B=1T, E would be 300 MV/m to compete beam steering is almost always done by magnets

linear beam optics

co-moving coordinate system (x,y,s) s: along the nominal trajectory

$$x''(s) + (\frac{1}{R^2} - k(s))x(s) = 0$$
$$y''(s) + k(s)y(s) = 0$$

(betatron oscillations)

back to luminosity

back to luminosity

back to luminosity

propagation of distorted electromagnetic field = synchrotron radiation (was first seen by eye at a synchrotron) $\frac{1}{76}$

• qualitatively: linear vs circular

synchrotron radiation depends on size of acceleration |a|

at a linear accelerator

for E=100GeV, G=30MeV/m; |**a**|=1.4x10³ m/s²

at a circular accelerator

for E=100GeV, R=100km; |**a**|=9x10¹¹ m/s²

a differ enormously

synchrotron radiation power

at a circular accelerator

$$P = \frac{e^2 c}{6\pi\epsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2}$$

energy loss per turn (for electron)

$$\Delta E[\text{keV}] = 88.5 \frac{E^4 [\text{GeV}]^4}{R[\text{m}]}$$

E.O.M. frame

Lab frame

crucial for linear colliders as well

damping ring: synchrotron radiation can reduce emittance

crucial for linear colliders as well

damping ring: synchrotron radiation can reduce emittance

definitions

$$P = \frac{N_R - N_L}{N_R + N_L}$$

N_{R/L}: number of R/L-handed e-(e+) can be longitudinal or transverse

polarized electron source:

a polarized laser to hit a photocathode P=80% demonstrated at SLC

polarized positron source:

undulator @ ILC; P=30%

precession of particle spin under B-field

at a linear collider, to preserve longitudinal beam polarizations, spin rotators are needed before & after damping ring at a circular collider, transverse beam polarizations are possible International Linear Collider (ILC)

key technologies

Superconducting RF: 1.3GHz; ~31.5MeV/m Nano beam: σ_y ~8nm; σ_x ~500nm

SRF technology: mature & robust

~800 cavities installed & running @ E-XFEL

SRF technology: potential for further improvement

Nano beam: demonstration @ ATF2, KEK

37nm @ 1.3 GeV ~ 5.7nm @ 250 GeV

(ii) introduction to detectors

(ii.1) passage of particles through matter
(ii.2) type of detectors
(ii.3) detector concepts @ ILC
(ii.4) detector simulation / reconstruction
electronic energy loss by charged particles (m>m_e)

from ionization, atomic excitation

Bethe's equation:

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

mass stoping power

linear stoping power: x p

logarithmic increase for relativistic particles

electronic energy loss by charged particles

concept of MIP

1 MIP: an energy deposition of one minimum ionizing particle

dE/dx fluctuations: Landau distribution

experimentally, the most probable energy loss should be used

multiple scattering

a charged particle is deflected by many small scatters

most due to Coulomb scattering from nuclei

important for detector design: material budget

electromagnetic shower (electron / photon)

electron at rest can't radiate a photon: violate 4-p conservation

$$e^{-}(P) \rightarrow e^{-}(p') + \gamma(q)$$

$$\gtrsim \frac{m_e^2}{E}$$

at relativistic regime, it becomes possible by requiring a small amount of energy transfer from nuclei

for a GeV electron, ~keV transfer

this is Bremsstrahlung

similarly, photon can convert to e+e-: pair production

- radiation length X₀
- to characterize energy loss from bremsstrahlung or pair production use the averaged effects like <dE/dx> is not proper since they occur infrequently but can loose energy significantly
- properer characterization
- radiation length (X₀): the mean distance an electron loses all but 1/e

$$E = E^{-d/X_0}$$

critical energy E_c

bremsstrahlung energy loss ~ ionization loss

• hadronic shower ($\pi/K/p/n$)

strong interaction with nuclei; more complicated shower structure characterize by interaction length λ_{l} (in a way similar to X_{0})

	$X_0~({ m cm})$	$E_c \; ({\rm MeV})$	$\lambda_I~({ m cm})$
Be	35.3	114	59.5
\mathbf{C}	18.9	82	38.2
Fe	1.76	22	20.4
W	0.35	8	11.3
Pb	0.56	7	19.9

Cherenkov radiation

when particles move faster than light in the matter

n: index of refraction

similar transition radiation happens when particles move across a border of two different index of refraction

basic types

tracker

calorimeter

(ii.2) types of detectors

basic types

tracker

•	ca	or	im	let	er

34.1 Introduction	2
34.2 Photon detectors \ldots \ldots \ldots \ldots \square \square \square \square \square \square \square	3
34.2.1 Vacuum photodetectors \ldots \ldots \ldots \ldots \ldots \ldots \ldots	4
34.2.2 Gaseous photon detectors	6
34.2.3 Solid-state photon detectors	7
34.3 Organic scintillators	8
34.3.1 Scintillation mechanism	9
34.3.2 Caveats and cautions	10
34.3.3 Scintillating and wavelength-shifting fibers	11
34.4 Inorganic scintillators	11
34.5 Cherenkov detectors	16
34.6 Gaseous detectors	21
34.6.1 Energy loss and charge transport in gases	21
34.6.2 Multi-Wire Proportional and Drift Chambers	26
34.6.3 High Rate Effects	29
34.6.4 Micro-Pattern Gas Detectors	30
34.6.5 Time-projection chambers	34
34.6.6 Transition radiation detectors (TRD's)	39
34.6.7 Resistive-plate chambers	42
34.7 Semiconductor detectors	45
34.7.1 Materials Requirements	45
34.7.2 Detector Configurations	46
34.7.3 Signal Formation	47
34.7.4 Radiation Damage	47
34.8 Low-noise electronics	49
34.9 Calorimeters	54
34.9.1 Introduction	54
34.9.2 Electromagnetic calorimeters	55
34.9.3 Hadronic calorimeters	57
34.9.4 Free electron drift velocities in liquid ionization chambers	65
34.10 Accelerator-based neutrino detectors	66
34.10.1 Introduction	66
34.10.2 Signals and Backgrounds	66
34.10.3 Instances of Neutrino Detector Technology	67
34.10.4 Outlook	72
34.11 Superconducting magnets for collider detectors	73
34.11.1 Solenoid Magnets	73
34.11.2 Properties of collider detector magnets	75
34.11.3 Toroidal magnets	76
34.12 Measurement of particle momenta in a uniform magnetic field	77
-	

(ii.2) types of detectors

 basic types 	$ \begin{array}{r} 34.1 \\ 34.2 \\ 34 \\ $	Introduction	· · · F	PDG	$2 \\ 3 \\ 4 \\ 6 \\ 7$
35.1 Introduction			1		8
35.2 High-energy cosmic-ray hadron and gamma-ra	ay det	tectors	2		9 10
35.2.1 Atmospheric fluorescence detectors			2		11
25.2.2 Atmospherie Charankow tologeones for hi	ich or	orgu gommo rou ostronomu	5		11 16
55.2.2 Atmospheric Cherenkov telescopes for m	.ign-en	lergy gamma ray astronomy	5		21
35.3 Large neutrino detectors			8		21
35.3.1 Deep liquid detectors for rare processes			8		26 20
35.3.2 Neutrino telescopes			12		$\frac{29}{30}$
25.2.2 Padia amiggian from (ultra) high anargu	, norti	alo showors	20		34
55.5.5 Radio emission nom (utra-)ngn energy	parti		20		39
35.4 Large time-projection chambers for rare event	t dete	ection	27	••••••	$\frac{42}{45}$
35.4.1 Dark matter and other low energy signal	ıls	$\cdot P \cap G \cdot \cdot$	28		45
35.4.2 $0\nu\beta\beta$ Decay			31		46
35.5 Sub Kelvin detectors $100-20$		lerator detectors	20		47 47
	JU.U		32		49
35.5.1 Equilibrium thermal detectors			32		54
35.5.2 Nonequilibrium Detectors			34		54 55
35.6 Low-radioactivity background techniques			36		$55 \\ 57$
25.6.1. Defining the much land			97	$1 \ \mathrm{chambers} \ \ \ldots $	65
35.6.1 Defining the problem			37		66
35.6.2 Environmental radioactivity			37		66 66
35.6.3 Radioactive impurities in detector and sh	shieldi	ng components	39		67
35.6.4 Radon and its progeny			40		72
			40		$73 \\ 72$
$35.6.5 \text{Cosmic rays} \dots \dots \dots \dots \dots \dots \dots \dots \dots $			41		75
$35.6.6$ Neutrons \ldots \ldots \ldots \ldots \ldots			42		76
				motio field	77

an example: various high energy particles in ATLAS

two detector concepts; push-pull mechanism in IP

ILD: International Large Detector

concept of Particle Flow

particle flow approach tries to reconstruct every individual particle produced in an event

key challenge is to separate the showers produced by particles from a same jet -> highly granular calorimeters

Component	Detector	Energy Fract.	Energy Res.	Jet Energy Res.
Charged Particles (X^{\pm})	Tracker	$\sim 0.6E_j$	$10^{-4} E_{X^{\pm}}^2$	$< 3.6 imes 10^{-5} E_j^2$
Photons (γ)	ECAL	$\sim 0.3E_j$	$0.15\sqrt{E_{\gamma}}$	$0.08\sqrt{E_j}$.
Neutral Hadrons (h^0)	HCAL	$\sim 0.1 E_j$	$0.55\sqrt{E_{h^0}}$	$0.17\sqrt{E_j}$

typical performance

tracking

momentum resolution

$$\Delta_{1/P_t} = \frac{\Delta P_t}{P_t^2} \sim 2 \times 10^{-5} [\text{GeV}^{-1}]$$

tracking efficiency

~100% for $P_T > 300 \text{ MeV}$

typical performance

vertexing

typical performance

jet energy resolution

(ii.4) tools for event simulation & reconstruction

including effects from ISR & beamstralung

parton showering & hadronization by Pythia

including effects from ISR & beamstralung parton showering & hadronization by Pythia

detector simulation: GEANT4

full detector simulation; including pile-up events one can also use fast simulation (DELPHES, SGV)

including effects from ISR & beamstralung parton showering & hadronization by Pythia

detector simulation: GEANT4

full detector simulation; including pile-up events one can also use fast simulation (DELPHES, SGV)

event reconstruction

digitization; tracking; particle flow analysis (PandoraPFA) vertex reconstruction; jet clustering; flavor tagging (LCFIPlus)

including effects from ISR & beamstralung parton showering & hadronization by Pythia

detector simulation: GEANT4

full detector simulation; including pile-up events one can also use fast simulation (DELPHES, SGV)

event reconstruction

digitization; tracking; particle flow analysis (PandoraPFA) vertex reconstruction; jet clustering; flavor tagging (LCFIPlus)

physics analysis

• question: why quadrupole magnets are always placed as a pair?

famous "FODO" structure

• question: why quadrupole magnets are always placed as a pair?

famous "FODO" structure

$$\begin{vmatrix} x''(s) + (\frac{1}{R^2} - k(s))x(s) = 0 \\ y''(s) + k(s)y(s) = 0 \end{vmatrix}$$

(betatron oscillations)