格点量子色动力学基础

冯旭

对撞机唯象学暑期学校 @ 青岛, 2021年7月14日-15日

课程目标

让大家了解量子色动力学(QCD)的非微扰定义

- 大部分场论课程的学习都是从微扰论出发的,本课程介绍QCD的非微扰定义
- 即使不用格点 QCD 去做数值模拟和计算,了解格点 QCD 也能帮助大家更好地理解 QCD

教材

- Quantum Chromodynamics on the Lattice: An Introductory Presentation, Gattringer & Lang
- Lattice Methods for Quantum Chrodynamics, Thomas DeGrand & Carleton DeTar
- 格点量子色动力学力学导论, 刘川

Lecture note

• PKU Summer School, 2019 - Frontiers in Lattice QCD

https://indico.ihep.ac.cn/event/9715/

• INT Summer School, 2012 - Lattice QCD for Nuclear Physics

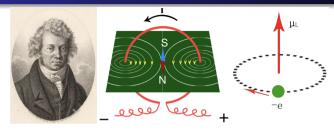
http://www.int.washington.edu/PROGRAMS/12-2c/Lectures.html

• Les Houches Summer School, 2009 - Mordern Perspectives in Lattice QCD

相关Lecture note已经结集出版

课程的引入-从缪子反常磁矩说开去

环形电流与磁矩



通电线圈与磁矩 - (安培实验, 1820)

$$\mu = I \cdot S$$

• 环形电流

$$I=rac{e}{T}, \quad T=rac{2\pi R}{v}, \quad S=\pi R^2 \quad o \quad \mu=rac{1}{2} Rev$$

• 角动量

$$L = Rmv$$

• 磁矩 μ 与角动量 L 之间的关系

$$\mu = g \frac{e}{2m} L$$

引入无量纲的系数 g=1,被称为朗德因子(Landé g factor)

狄拉克理论中的朗德因子

狄拉克方程

$$(p^{\mu}\gamma_{\mu} - eA^{\mu}\gamma_{\mu} - m)u = 0 \rightarrow \begin{pmatrix} E - m - e\phi & -\sigma \cdot (\mathbf{p} - e\mathbf{A}) \\ \sigma \cdot (\mathbf{p} - e\mathbf{A}) & -E - m + e\phi \end{pmatrix} \begin{pmatrix} u_{b} \\ u_{s} \end{pmatrix} = 0$$

取非相对论极限

$$(E-m)u_b = \left\{ rac{1}{E+m-e\phi} [oldsymbol{\sigma}\cdot(oldsymbol{p}-eoldsymbol{A})]^2 + e\phi
ight\} u_b$$

E-m 是非相对论性能量 → 非相对论性哈密顿量

$$H_{nr} = \frac{1}{2m} [\boldsymbol{\sigma} \cdot (\mathbf{p} - e\mathbf{A})]^2 + e\phi$$

利用等式 $[\sigma \cdot \mathbf{a}][[\sigma \cdot \mathbf{b}] = (\mathbf{a} \cdot \mathbf{b}) + i\sigma \cdot \mathbf{a} \times \mathbf{b}$, 可以得到

$$H_{nr} = \frac{1}{2m}(\mathbf{p} - e\mathbf{A})^2 + \frac{i}{2m}\boldsymbol{\sigma} \cdot \underbrace{[(\mathbf{p} - e\mathbf{A}) \times (\mathbf{p} - e\mathbf{A})]}_{ie\mathbf{B}} + e\boldsymbol{\phi}$$
$$= \frac{1}{2m}(\mathbf{p} - e\mathbf{A})^2 - g_e \frac{e}{2m}\mathbf{s} \cdot \mathbf{B} + e\boldsymbol{\phi}$$

这里 $g_e=2$, $\mathbf{s}=\frac{1}{2}\hbar\boldsymbol{\sigma}$

电子反常磁矩

• 对于一个电子,质量为m,电荷为e,自旋为s,它的磁矩μ为

$$\mu = g_e \frac{e}{2m} s$$

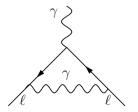
狄拉克理论预言朗德因子 g=2

• 量子涨落导致反常磁矩

$$a_e = \frac{g_e - 2}{2} \neq 0$$

其中最大贡献来源于量子电动力学(QED)

$$a_e pprox rac{lpha}{2\pi} pprox 0.001\,16$$



电子反常磁矩是奠定量子电动力学(QED)的基石

实验测量 (CODATA 2018)

$$a_e^{\rm exp} = 1\,159\,652\,181.28(18) \times 10^{-12}$$

标准模型理论预言 - including QED, $O(\alpha^5)$ (Aoyama, Kinoshita, Nio, 2018)

$$a_e^{\rm th} = 1\,159\,652\,181.61(23) \times 10^{-12}$$

实验和理论符合到10位有效数字,成功地验证了QED

朝永振一郎、施温格 & 费曼因建立量子电动力学获1965年诺贝尔奖

三代轻子的同与不同

e vs μ vs τ: 标准模型中,除了质量不一样,其他性质都一样

 $m_{\tau}: m_{\mu}: m_{e} \approx 3500: 200: 1$

缪子不稳定,实验测量电子反常磁矩的精度远好于缪子

那为什么对缪子反常磁矩感兴趣?

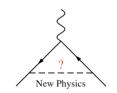
三代轻子的同与不同

e vs μ vs τ : 标准模型中,除了质量不一样,其他性质都一样

 $m_{\tau}: m_{\mu}: m_{e} \approx 3500:200:1$

缪子不稳定,实验测量电子反常磁矩的精度远好于缪子

那为什么对缪子反常磁矩感兴趣?



● 在最低阶,用一个能量标度为ANP的很重的虚粒子来表征新物理对轻子反常磁矩的贡献

$$a_\ell^{NP} \propto \frac{m_\ell^2}{\Lambda_{AP}^2} \quad o \quad \frac{a_\mu^{NP}}{a_\mu^{NP}} \propto \frac{m_\mu^2}{m_\pi^2} \approx 4 \times 10^4$$

- 尽管与 a_e 相比, a_u 的实验测量精度差了800倍 \rightarrow 但是 a_u 对新物理的敏感性依旧高出了50倍
- τ 虽然对新物理最为敏感,但实验太困难了,寿命比缪子短了 7×106 倍

缪子反常磁矩

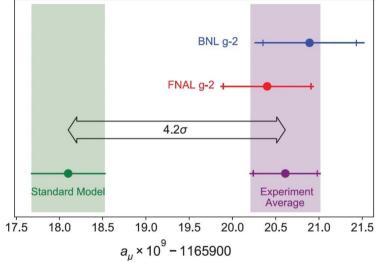
BNL实验测量与标准模型理论预言偏差3.7个标准差

BNL Exp. [0.54 ppm]	$a_{\mu}^{\text{exp}} = 116592080(63) \times 10^{-11}$	Muon g-2, PRD 2006
SM Total [0.32 ppm]	$a_{\mu}^{ m SM}=116591810(43) imes10^{-11}$	White paper 2020
Deviation [3.7 σ]	$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 279(76) \times 10^{-11}$	

费米实验室新实验:主要装置为一个直径15米的超导磁铁环

从BNL转移到FNAL ⇒ 把实验误差降低到BNL实验测量的1/4

实验上的进展: BNL 2006 → FNAL 2021



- FNAL实验只分析了最终采集数据量的很小一部分数据(< 6%)
- FNAL新实验结合BNL旧实验,实验-理论偏差从3.7变成4.2个标准差

Muon g - 2:标准模型各部分贡献

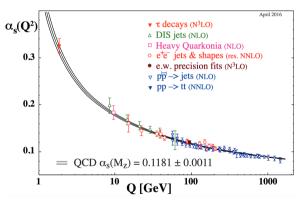
为什么HVP和HLbL的理论计算这么困难?

QCD 的特殊性质(一)

• 高能渐近自由与低能非微扰

$$lpha_s(\mu) = rac{1}{4\pi} rac{1}{eta_0 \ln rac{\mu^2}{N_{corp}^2}}, \quad eta_0 = \left(rac{11N_c - 2N_f}{3}
ight)/16\pi^2$$

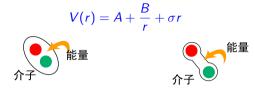
- ▶ 非微扰QCD能标A_{QCD} ~ 500 MeV
- 高能区, μ ≫ Λ_{QCD}, α_s(μ) → 0
 ⇒ 夸克和胶子渐近自由
- ► 低能区, $\mu \to \Lambda_{\rm QCD}$, $\alpha_s(\mu) \to \infty$ ⇒ 微扰论失效



需要从第一性原理出发进行非微扰计算

QCD 的特殊性质(二)

• 色禁闭



夸克受到 QCD 相互作用的强力束缚,带单个色荷的夸克不可能从核子中单个地分离出来

给研究强子结构造成了极大的困难

QCD 的特殊性质(三)

• 手征对称性自发破缺

$$\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0 \quad \Rightarrow \quad SU(N_f)_V \times SU(N_f)_A \rightarrow SU(N_f)_V$$

真空夸克凝聚 ⇒ 手征对称性自发破缺 ⇒ 粒子物理世界形形色色的强子谱

- ▶ Goldstone 定理指出,有 $N_f^2 1$ 个无质量 Goldstone 玻色子,比如 pion、kaon
- ▶ 矢量介子和轴矢介子的能谱表现出很大的差异

$$m_{
ho} = 0.770 \; {
m GeV}, \quad m_{a_1} = 1.26 \; {
m GeV}$$

探索 QCD 在低能区的性质、QCD 的真空结构 ⇒ 理解强子的质量来源和相互作用行为

格点 QCD 的应运而生

目标

- 非微扰地处理低能强相互作用,提供精确的低能QCD输入
- 研究强子谱学和结构信息
- 研究色禁闭的机制以及手征对称性自发破缺、QCD真空结构
- 极端条件下,有限温度、有限密度下的物态方程

. . . .

只要在一个物理过程里面,初态和末态是作为强子态出现

⇒ 夸克被禁闭在强子内部,计算相关强子矩阵元就需要非微扰的处理方式

Wilson 开创格点 QCD

1974年诺贝尔奖获得者 K. G. Wilson 开创格点 QCD

- Wilson 的开山之作: Confinement of quarks, PRD 10 (1974) 2445, 引用 > 5500
 - ho $lpha_s
 ightarrow \infty$,解析计算得到夸克间的势能随距离增加线性增长

K. G. Wilson

PHYSICAL REVIEW D

VOLUME 10, NUMBER 8

15 OCTOBER 1974

Confinement of quarks*

Kenneth G. Wilson

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
(Received 12 June 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice) joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

【作业:阅读 K. G. Wilson 这篇开创性的文章,了解格点非微扰正规化方案。】

格点 QCD 的发展——50年历程

- 计算机上的第一个数值计算由 M. Creutz 在 1979 年实现
- QCD 超级计算机 1983 2011

16-Node

256 Mflops 1985

1.0 Gflops 1987

16 Gflops 1989

600 Gflops 1998

20 Tflops 2005

20 Pflops 2011

● 未来几年内, QCD 计算机进入E级超算时代, 每秒进行10¹⁸浮点运算

低能强子谱

格点QCD的发展主要依靠

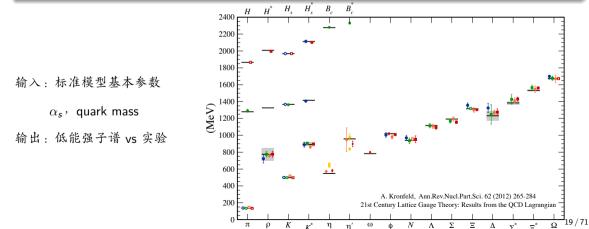
• 超算的发展

• 算法的改进

• 格点 QCD 研究手段的突破

进入到 2000 年以后

淬火近似(不含海夸克) \Rightarrow full QCD 模拟($N_f=2,2+1$) \Rightarrow 物理点模拟(物理的夸克质量)

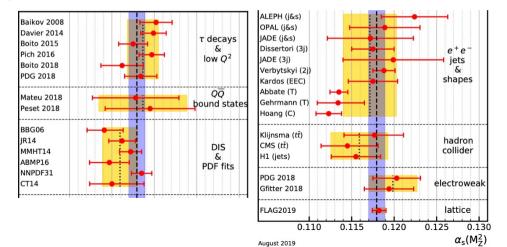


强相互作用耦合常数

高能区的深度非弹实验与微扰 QCD 印证 ⇒ 揭示了 QCD 是强相互作用背后最基本的理论

低能区的强子谱和强子结构与非微扰格点 QCD 的印证实际上起到了同样的作用

格点 QCD 给出了目前最为精确的强相互作用耦合常数



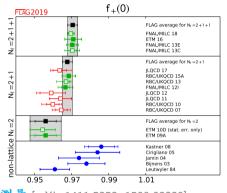
20 / 71

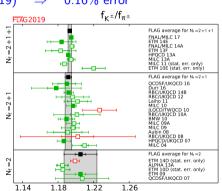
衰变常数与形状因子

Flavor Lattice Averaging Group (FLAG) —— FLAG Review 2019

$$f_{+}^{K\pi}(0) = 0.9706(27) \Rightarrow 0.28\% \text{ error}$$

 $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1932(19) \Rightarrow 0.16\% \text{ error}$





结合实验测量 [arXiv:1411.5252, 1509.02220]

$$K_{\ell 3} \Rightarrow |V_{us}|f_{+}(0) = 0.2165(4) \Rightarrow |V_{us}| = 0.2231(7)$$
 $K_{\mu 2}/\pi_{\mu 2} \Rightarrow \left|\frac{V_{us}}{V_{ud}}\right|\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) \Rightarrow \left|\frac{V_{us}}{V_{ud}}\right| = 0.2313(5)$

Flag average 2019

误差	<	1%

	N_f	FLAG average	Frac. Err.
f_K/f_{π}	2 + 1 + 1	1.1932(19)	0.16%
$f_{+}(0)$	2 + 1 + 1	0.9706(27)	0.28%
f_D	2 + 1 + 1	212.0(7) MeV	0.33%
f_{D_s}	2 + 1 + 1	249.9(5) MeV	0.20%
f_{D_s}/f_D	2 + 1 + 1	1.1783(16)	0.13%
f_B	2 + 1 + 1	190.0(1.3) MeV	0.68%
f_{B_s}	2 + 1 + 1	230.3(1.3) MeV	0.56%
f_{B_s}/f_B	2 + 1 + 1	1.209(5)	0.41%
	Nf	FLAG average	Frac. Err.

误差 < 5%

D_s/D_s		1.205(0)	0.11/0	
	N_f	FLAG average	Frac. Err.	
\hat{B}_{K}	2 + 1	0.7625(97)	1.3%	
$f_+^{D\pi}(0)$	2 + 1	0.666(29)	4.4%	
$f_{+}^{DK}(0)$	2 + 1	0.747(19)	2.5%	
\hat{B}_{B_s}	2 + 1	1.35(6)	4.4%	
B_{B_s}/B_{B_d}	2 + 1	1.032(28)	3.7%	

精度优于 1% \Rightarrow 需要加入 QED 效应 \Rightarrow QCD 中的 QED 修正:新的格点研究前沿

FLAG 组织

Flavor Lattice Averaging Group = FLAG

- 遴选格点QCD领域的专家组成工作组
- 对全球格点QCD计算的结果进行总结、评估,给出权威的全球平均结果
- 每3年1期,以 FLAG Review 的形式向格点QCD以外的领域公布结果
- 这些结果可用于微扰论、唯象学、手征有效理论、DS方程等多个领域的研究

FLAG 类似于格点 QCD 领域的 Particle Data Group

QCD 的格点非微扰定义

描述格点 QCD 的几个关键词

一句话概括:格点 QCD 是构建在分立的欧氏时空格子下的 QCD 理论

描述格点 QCD 的几个关键词

一句话概括:格点 QCD 是构建在分立的欧氏时空格子下的 QCD 理论

• 关键词一: 分立的时空格子

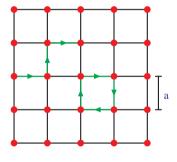
• 关键词二: 欧氏时空

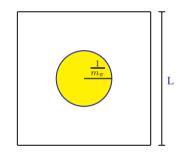
● 关键词三: QCD 理论

关键词一:分立的时空格子

QCD 格点离散化

- 夸克场位于格点上, $\psi(x)$, $x_{\mu} = n_{\mu}a$
- 胶子场由格点之间的链接来表示 $U_{\mu}(x) = e^{iagA_{\mu}(x)}$





- 计算机只能模拟有限的自由度 ⇒ 格距a不能是无穷小,格子长度L不能是无穷大
- $N = L/a \sim 32,48,64,\dots$,考虑到 4 维时空,总的格点数就是 N^4

紫外与红外截断

- 非零格距 a 引入的是紫外截断 ∧_{lat} ~ 1/2
 - ▶ 考察含粲系统,需要 $\frac{1}{2} \gg m_c$,否则格距误差太大 $\sim am_c$
 - ▶ 目前格点上模拟的 ultra-fine lattice spacing 在 0.04 fm,对应的能量标度是 5 GeV 左右
 - ▶ 格点上的裸算符经重整化后,不依赖于截断,在a→0时存在连续极限值
 - ▶ 强子能谱由 QCD 哈密顿量本征值给出,无需重整化

紫外与红外截断

- 非零格距 a 引入的是紫外截断 $\Lambda_{lat} \sim \frac{1}{a}$
 - ▶ 考察含粲系统,需要 $\frac{1}{a} \gg m_c$,否则格距误差太大 $\sim a m_c$
 - ▶ 目前格点上模拟的 ultra-fine lattice spacing 在 0.04 fm,对应的能量标度是 5 GeV 左右
 - ▶ 格点上的裸算符经重整化后,不依赖于截断,在a→0时存在连续极限值
 - ▶ 强子能谱由 QCD 哈密顿量本征值给出,无需重整化
- 格子长度 L 引入的是红外截断
 - ▶ QCD 系统中存在强子的产生和湮灭 ⇒ 最轻的强子为 pion 介子
 - ightharpoonup L 应该大于 pion 介子的康普顿波长, $L\gg \frac{1}{m}$,否则系统将受到显著有限体积影响
 - ▶ 经验上来讲,当m_πL>4时,对于某些物理量,有限体积效应不是那么重要
 - ▶ 对于稳定强子,有限体积效应随m_∞L增大指数压低
 - ight
 ight
 ight
 ho 对于多强子态和共振态,有限体积效应随 $m_\pi L$ 增大幂次压低 \Rightarrow Lüscher 公式

紫外与红外截断

- 非零格距 a 引入的是紫外截断 ∧_{lat} ~ 1/2
 - ▶ 考察含粲系统,需要 $\frac{1}{3} \gg m_c$, 否则格距误差太大 $\sim a m_c$
 - ▶ 目前格点上模拟的 ultra-fine lattice spacing 在 0.04 fm,对应的能量标度是 5 GeV 左右
 - ▶ 格点上的裸算符经重整化后,不依赖于截断,在a→0时存在连续极限值
 - ▶ 强子能谱由 QCD 哈密顿量本征值给出,无需重整化
- 格子长度 L 引入的是红外截断
 - ▶ QCD 系统中存在强子的产生和湮灭 ⇒ 最轻的强子为 pion 介子
 - ightharpoonup L 应该大于 pion 介子的康普顿波长, $L\gg \frac{1}{m}$,否则系统将受到显著有限体积影响
 - ▶ 经验上来讲,当m_∞L>4时,对于某些物理量,有限体积效应不是那么重要
 - ▶ 对于稳定强子,有限体积效应随m_∞L增大指数压低
 - ▶ 对于多强子态和共振态,有限体积效应随m_πL增大幂次压低 ⇒ Lüscher 公式
- $a \ll \frac{1}{m_c} \ll \frac{1}{m_\pi} \ll L$,同时兼顾最大的体积和最小的格距 $\Rightarrow N^4 \sim 150^4 \Rightarrow$ 艰巨的任务

小的格距 vs 大的体积 ⇒ 格点计算根据物理目标来进行参数选择

最大的格点体积

最大的格点simulation来自 M. Lüscher 在2017年的格点年会上的汇报 【1707.09758】

- N = 192的淬火格点系统,格距=0.1 fm,格子长度=19.2 fm
- 64节点、1536核、8.2TB内存的机器上花了10天的时间模拟出来
- QCD系统并非长程系统 ⇒ 如果体积很大,那么场变量在离得很远的时候的关联很弱

可以认为它们的涨落是独立的,这种性质也被称为"stochastic locality"

- 计算机可以模拟一个1924的格子或者256个484的格子
- 一个1924的大格子上做几百次测量,甚至优于几百个484的规范场组态做平均
- 超级计算机的发展更青睐并行化程度更高的大格子

关键词二: 欧氏时空

• Wick转动:从闵氏时空转换到欧氏时空

$$x_0 \equiv t \rightarrow -ix_4 = -i\tau, \quad p_0 \equiv E \rightarrow ip_4$$

• 在欧氏时空下, 度规取成(+,+,+,+), 有

$$x_E^2 = \sum_{i=1}^4 x_i^2 = \vec{x}^2 - t^2 = -x_M^2$$

$$p_E^2 = \sum_{i=1}^4 p_i^2 = \vec{p}^2 - E^2 = -p_M^2$$

• 从路径积分的角度来看一个2点格林函数,在闵氏时空下

$$\langle \hat{O}_1 \hat{O}_2 \rangle_M = \frac{1}{Z_M} \int \mathcal{D}[A_\mu] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] O_1 O_2 e^{-iS_M}$$

这里,配分函数Z由路径积分给出

$$Z_{M} = \int \mathcal{D}[A_{\mu}]\mathcal{D}[\psi]\mathcal{D}[\bar{\psi}] e^{-iS_{M}}$$

路径积分带有一个权重因子e-iSM, 这是一个震荡型的因子

欧氏时空路径积分

- 路径积分进行Monte Carlo数值模拟 ⇒ 需要一个高斯型的权重因子
- 在Wick 转动下 $t \to -i\tau$,权重因子变为 $e^{-iS_M} \to e^{-S_E}$
- 权重因子实际上相当于统计力学系统的玻尔兹曼因子
- 2点格林函数可以写成

$$\langle \hat{O}_1 \hat{O}_2 \rangle_E = rac{1}{Z_E} \int \mathcal{D}[A_\mu] \mathcal{D}[\psi] D \bar{\psi} O_1 O_2 e^{-S_E}$$

这里

$$Z_{E}=\int \mathcal{D}[A_{\mu}]\mathcal{D}[\psi]Dar{\psi}\,e^{-\mathcal{S}_{E}}$$

- 欧氏时空,作用量最小的路径对于路径积分的贡献最大,其它路径的贡献被指数压低了
- 闵氏时空,大作用量对应的路径有一个剧烈震荡的因子,在积分时贡献也会抵消掉

把欧氏时空的场论看成是量子场论的一种非微扰定义

欧氏时空场论 vs 经典统计力学

- 与场算符相关的格林函数用路径积分的形式表达出来 ⇒ 格点 QCD 模拟的基础
- 把欧氏时空路径积分系统类比为一个统计力学系统

欧氏时空场论

- 作用量: $S[\psi, \bar{\psi}, A]$
- 路径积分权重因子: e-S
- 真空到真空的振幅:

$$\int [d\psi][d\bar{\psi}][dA] e^{-S}$$

- 真空能量
- 真空期望值:⟨0|O|0⟩
- 格林函数:

$$\langle 0|T[O_1\cdots O_n]|0\rangle$$

经典统计力学

- 哈密顿量: H
- 玻尔兹曼因子: e^{-βH}
- 配分函数:

$$\sum_{conf} e^{-\beta H}$$

- 自由能
- 正则系综平均: ⟨O⟩
- 关联函数:

$$\langle O_1 \cdots O_n \rangle$$

闵氏时空下的关联函数

闵氏时空,2点函数

$$\Gamma_{M}(t,\vec{k}) = \int d^{3}\vec{x} \, e^{-i\vec{k}\cdot\vec{x}} \langle 0|T[\hat{O}_{M}(\vec{x},t)\hat{O}_{M}^{\dagger}(\vec{0},0)]|0\rangle$$

算符ÔM(x,t)在海森堡表象下可以写为

$$\hat{O}_M(\vec{x},t) = e^{i\hat{H}t - i\hat{p}x}\hat{O}_M(\vec{0},0)e^{-i\hat{H}t + i\hat{p}x}$$

不妨取t > 0

$$\Gamma_{M}(t,\vec{k}) = \int d^{3}\vec{x} \, e^{-i\vec{k}\cdot\vec{x}} \langle 0|e^{i\hat{H}t-i\hat{p}x} \hat{O}_{M}(\vec{0},0)e^{-i\hat{H}t+i\hat{p}x} \hat{O}_{M}^{\dagger}(\vec{0},0)|0\rangle$$

利用Hilbert空间的完备性,插入能量本征态 $1 = \sum_n \int \frac{d^3\vec{p}}{(2\pi)^3} |n,\vec{p}\rangle\langle n,\vec{p}|$

$$\Gamma_{M}(t,\vec{k}) = \sum_{n} \langle 0|\hat{O}_{M}(\vec{0},0)e^{-i\hat{H}t}|n,\vec{k}\rangle\langle n,\vec{k}|\hat{O}_{M}^{\dagger}(\vec{0},0)|0\rangle$$
$$= \sum_{n} \langle 0|\hat{O}_{M}(\vec{0},0)|n,\vec{k}\rangle e^{-iE_{n}t}\langle n,\vec{k}|\hat{O}_{M}^{\dagger}(\vec{0},0)|0\rangle$$

其中 $|n,\vec{k}\rangle$ 代表带动量 \vec{k} 的、量子数对应于 \hat{O}_M 算符的强子态的第n个激发态。

欧氏时空下的关联函数

欧氏时空,2点函数

$$\Gamma_E(\tau, \vec{k}) = \int d^3\vec{x} \, e^{-i\vec{k}\cdot\vec{x}} \langle 0|T[\hat{O}_E(\vec{x}, \tau)\hat{O}_E^{\dagger}(\vec{0}, 0)]|0\rangle$$

算符写为

$$\hat{O}_E(\vec{x}, au) = e^{\hat{H} au - i\hat{p}x} O_E(\vec{0}, 0) e^{-\hat{H} au + i\hat{p}x}$$

在 $t = \tau = 0$ 的时间上,有

$$\hat{O}_M(\vec{x},0) = \hat{O}_E(\vec{x},0)$$

当 $t = \tau \neq 0$ 时

$$\hat{O}_{\mathsf{M}}(ec{x},t)
eq \hat{O}_{\mathsf{E}}(ec{x}, au)$$

在Wick转动下, $t \rightarrow -i\tau$, 但哈密顿量算符 \hat{H} 保持不变

$$\Gamma_E(\tau,\vec{k}) = \sum \langle 0|\hat{O}_E(\vec{0},0)|n,\vec{k}\rangle e^{-E_n\tau} \langle n,\vec{k}|\hat{O}_E^{\dagger}(\vec{0},0)|0\rangle$$

- 对于闵氏和欧氏时空,哈密顿量一样 ⇒ 对应的能谱都一样,能量本征态也一样
- 不含时的强子矩阵元,比如说 $\langle 0|\hat{O}(\vec{0},0)|n,\vec{k}
 angle$,欧氏和闵氏时空得到的也是一样的

闵氏时空和欧氏时空物理的不同

• 传统的含时物理量,比如质子的部分子分布函数(parton distribution function)

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^-P^+} \langle N(P)|\bar{\psi}(\xi^-)\gamma^+ \exp\left(-ig\int_0^{\xi^-} d\eta^-A^+(\eta^-)\right) \psi(0)|N(P)\rangle$$

- ▶ 质子的动量 P^{μ} 可以取为z方向, $P^{\mu} = (P^{0}, 0, 0, P^{z})$
- ▶ $\xi^{\pm} = (t \pm z)/\sqrt{2}$ 是光锥坐标
- ► t是闵氏时间

由于算符明显含时,没法在欧氏时空直接计算

解决方案:大动量有效理论(季向东)【1305.1539、1404.6680】等一系列文章。

闵氏时空和欧氏时空物理的不同

• 传统的含时物理量,比如质子的部分子分布函数(parton distribution function)

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^-P^+} \langle N(P)|\bar{\psi}(\xi^-)\gamma^+ \exp\left(-ig\int_0^{\xi^-} d\eta^-A^+(\eta^-)\right) \psi(0)|N(P)\rangle$$

- ▶ 质子的动量 P^{μ} 可以取为z方向, $P^{\mu} = (P^{0}, 0, 0, P^{z})$
- ▶ $\xi^{\pm} = (t \pm z)/\sqrt{2}$ 是光锥坐标
- ▶ t是闵氏时间

由于算符明显含时,没法在欧氏时空直接计算

解决方案:大动量有效理论(季向东)【1305.1539、1404.6680】等一系列文章。

- 含共振态和多粒子态的物理量
- ▶ 通过构造关联函数,可以提取出哈密顿量的本征态,对应的是粒子的能谱
 - ▶ 共振态、多粒子态,对应的是branch cut ⇒ 当能量大于两粒子阈值,能量是连续的
 - ▶ 在格点上,由于整个物理体积是有限的,在有限的体积中能谱必然是分立的

解决方案:有限体积方法⇒有限体积中的离散能谱,转变为无穷体积中的粒子-粒子散射振幅

[M. Lüscher, Commun.Math.Phys. 105 (1986) 153, NPB 354 (1991) 531]

34 / 71

time-like 和 space-like 区域的差别

以真空极化函数为例,在闵氏时空,可以定义为

$$\Pi^{(M)}_{\mu
u} = \int d^4x_M\, e^{iqx_M} \langle 0|J_\mu(x_M)J_
u(0)|0
angle, \quad \Pi^{(M)}_{\mu
u} = (q_\mu q_
u - g_{\mu
u}q^2)\cdot\Pi^{(M)}(q^2)$$

- 真空极化函数对应于 $e^+e^- \rightarrow \gamma^* \rightarrow hadrons$ 的过程
- $s = q^2 > 0$, 对应time-like区域,这里s可以认为是末态强子的不变质量平方
- 真空极化函数的虚部,与强子谱密度(spectral density)成正比
- 可以由BESIII实验的R值测量来给出

Im
$$\Pi^{(M)}(s) = 2\pi \rho(s) = \frac{R(s)}{6\pi}$$
, $R(s) \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{4\pi\alpha(s)^2/(3s)}$

time-like 和 space-like 区域的差别

以真空极化函数为例,在闵氏时空,可以定义为

$$\Pi_{\mu
u}^{(M)} = \int d^4 x_M \, e^{iqx_M} \langle 0 | J_\mu(x_M) J_
u(0) | 0
angle, \quad \Pi_{\mu
u}^{(M)} = (q_\mu q_
u - g_{\mu
u} q^2) \cdot \Pi^{(M)}(q^2)$$

- 真空极化函数对应于 $e^+e^- \rightarrow \gamma^* \rightarrow hadrons$ 的过程
- $s = q^2 > 0$, 对应time-like区域,这里s可以认为是末态强子的不变质量平方
- 真空极化函数的虚部,与强子谱密度(spectral density)成正比
- 可以由BESIII实验的R值测量来给出

Im
$$\Pi^{(M)}(s) = 2\pi \rho(s) = \frac{R(s)}{6\pi}$$
, $R(s) \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{4\pi\alpha(s)^2/(3s)}$

对于欧氏时空, 真空极化函数

$$\Pi^{(E)}_{\mu
u} = \int d^4x_E \ e^{iQx_E} \langle 0|J_\mu(x_E)J_
u(0)|0
angle, \quad \Pi^{(E)}_{\mu
u}(Q^2) = (Q_\mu Q_
u - \delta_{\mu
u}Q^2) \cdot \Pi^{(E)}(Q^2)$$

- $q^2 = -Q^2 < 0$,对应space-like区域
- 通过欧氏时空傅里叶变换,格点上计算得到的是space-like区域的真空极化函数

R值与强真空极化的关系

强真空极化(Hadronic vacuum polarization, HVP)

$$V_{\mu} \quad v_{\nu} = (q^2 g_{\mu\nu} - q_{\mu} q_{\nu}) \Pi_V(q^2)$$

• 光学定理

• 色散关系

$$\Pi_V(q^2) - \Pi_V(0) = \frac{q^2}{\pi} \int_{4\pi^2}^{\infty} ds \, \frac{\operatorname{Im} \Pi_V(s)}{s(s - q^2 - i\varepsilon)}$$

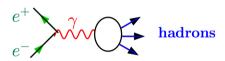
凡是物理过程中包含单个虚光子的,都可以从R值得到真空极化修正

高能区的R值

R是个比值

$$R = \frac{\sigma(e^+e^- \to \gamma^* \to \text{hadrons})}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

• 由于 $\sigma(e^+e^-\to\gamma^*\to\mu^+\mu^-)=\frac{4\pi\alpha^2}{3s}$ 是一个可计算的物理量,R值测量的本质是对 $\sigma(e^+e^-\to\gamma^*\to {\rm hadrons})$ 的测量



在高能区,由于QCD渐近自由,可以用微扰论计算R值

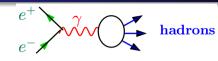
$$R(s)^{\text{pert}} = \frac{N_c}{N_c} \sum_f Q_f^2 \frac{v_f}{2} (3 - v_f^2) \Theta(s - 4m_f^2) \times (1 + \alpha_s c_1 + \alpha_s^2 c_2 + \cdots)$$

• Nc = 3为早期人们认识到三种不同的色荷提供了直接的实验依据

现今的实验更关注低能区R值的测量

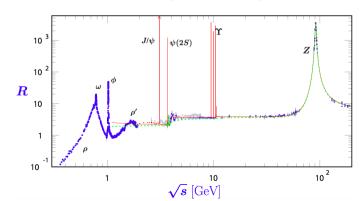
BES 实验

北京正负电子对撞机 BES III 实验



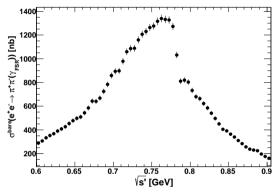
• 为低能强子物理和味物理提供了大量珍贵的实验数据

$$R = rac{\sigma(e^+e^- o {\sf hadrons})}{\sigma(e^+e^- o \mu^+\mu^-)}$$



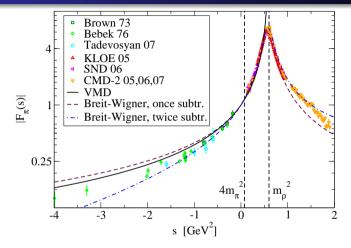
$e^+e^- ightarrow \pi^+\pi^-$

 $\sigma(e^+e^- o \pi^+\pi^-)$ at 0.6 - 0.9 GeV, from [BES III, Phys. Lett. B753 (2016) 629]



- 能量小于0.9 GeV,强子末态由 $\pi^+\pi^-$ 主导 ⇒ R值由timelike pion form factor 给出
- ρ 共振态的峰出现在0.77 GeV
 - $e^+e^-
 ightarrow \pi^+\pi^-$ 在 0.6 GeV 和在 0.77 GeV 时并没有本质区别
 - ho 共振态本质上是 $\pi\pi$ 散射在0.77 GeV能量区域的特殊表现

类时和类空区域的关联



- 在time-like区域,通过实验测量,获得共振态的峰
- space-like区域,真空极化函数随能量的变化是平滑的

time-like 和 space-like区域的物理通过色散关系连接

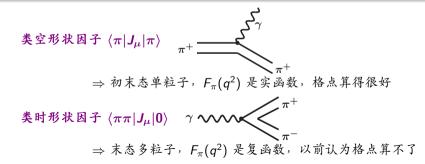
π类时形状因子

• 得到了 $\sigma(e^+e^- \to \pi^+\pi^-)$,可以从中提取 π 类时(timelike)形状因子

$$\sigma(e^+e^- \to \pi^+\pi^-) = \sigma^0(e^+e^- \to \pi^+\pi^-)|F_{\pi}(s)|^2$$

- $\triangleright \sigma^0$: 假设 π^{\pm} 是点粒子,在树图水平下计算的散射截面
- ▶ $|F_{\pi}(s)|^2$ 描绘了 π 内部的电磁结构

$\pi\pi$ 散射、ho共振态、 π 类时形状因子 \Rightarrow 三位一体的物理量



从ππ散射开始说起

欧氏时空关联函数是格点计算的主要对象

- 欧氏时空下,算符的时间依赖关系可以写成 $O(t) = e^{Ht}O(0)e^{-Ht}$
- 以 π 算符为例 $\pi(t) = \sum_{\mathbf{x}} \bar{u} \gamma_5 d(\mathbf{x}, t)$, 可以构造关联函数

$$C_{\pi}(t) = \langle 0|\pi^{\dagger}(t)\pi(0)|0\rangle = \sum_{n} e^{-E_{\pi}^{n}t}|\langle n|\pi|0\rangle|^{2}$$

- ▶ t很大时, $C_{\pi}(t)$ 的时间依赖关系由基态 $|n\rangle = |\pi\rangle$ 给出 $\Rightarrow \pi$ 能谱
- 如果构造 $\pi\pi$ 算符,那么由关联函数能得到 $\pi\pi$ 的能谱

$$C_{\pi\pi}(t) = \langle 0|(\pi\pi)^{\dagger}(t)(\pi\pi)(0)|0\rangle = \sum_{n} e^{-E_{\pi\pi}^{n}t}|\langle \pi\pi, n|\pi\pi|0\rangle|^{2}$$

▶ 格点计算的空间物理尺寸是有限的~几个fm, 所以得到ππ的能谱是离散的

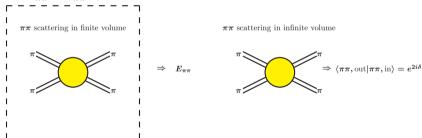
ππ散射相移

从离散的能量 $E_{\pi\pi}$ 能得到什么?

• 如果 $\pi\pi$ 之间没有相互作用,那么 $E_{\pi\pi}$ 可以由格点有限尺寸L直接给出的

$$E_{\pi\pi}^{
m free} = \sqrt{m_{\pi}^2 + ec{p}_1^2} + \sqrt{m_{\pi}^2 + ec{p}_2^2} \;, \quad ec{p}_{1,2} = rac{2\pi}{I} ec{n}_{1,2}$$

- 有相互作用的情况下, $E_{\pi\pi}$ 和 $E_{\pi\pi}^{\text{free}}$ 有所不同
 - $\triangle E = E_{\pi\pi}^n E_{\pi\pi}^{\text{free}} \neq 0$ 包含了QCD相互作用的信息



• Lüscher 构建了 $E_{\pi\pi}$ 和 $\delta(E)$ 之间的关系式, 充分利用了有限体积效应

$$n\pi - \delta(k) = \phi(q), \quad n \in \mathbb{Z}, \quad q = \frac{k}{2\pi/L}, \quad E_{\pi\pi} = 2\sqrt{m_{\pi}^2 + k^2}$$

类时形状因子

$$\int_{V} d^{3}x \langle 0|J_{\mu}(x,t)J_{\mu}(0)|0\rangle_{V} = \sum_{n} |\langle \pi\pi, n|J_{\mu}|0\rangle_{V}|^{2} e^{-E_{\pi\pi}^{n}t}$$

从矢量流算符的关联函数中,可以得到

- · E_{TT}: 从中获得了散射相移δ的信息
- $|\langle \pi\pi, n|J_{\mu}|0\rangle_{V}|^{2}$: 能给我们什么信息?

回想: 无穷空间类时形状因子的定义

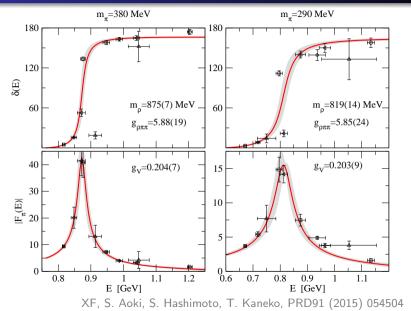
$$\langle \pi(p_1)\pi(p_2), \text{out} | J_{\mu} | 0 \rangle = \sqrt{2}i(p_1 - p_2)_{\mu}F_{\pi}(s)$$

格点QCD得到有限体积下的振幅 $|\langle \pi\pi, n|J_{\mu}|0\rangle_{V}|^{2}$

弄清楚有限体积修正效应,就能从 $|\langle \pi\pi, n|J_{\mu}|0\rangle_{V}|^{2}$ 得到 $|F_{\pi}(s)|^{2}$

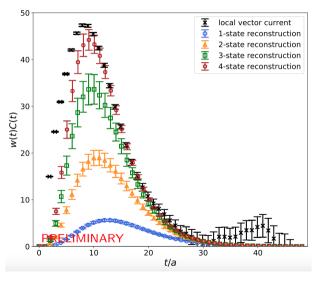
Lellouch-Lüscher 公式:连接有限体积和无穷体积下的含多强子态矩阵元

散射相移与类时形状因子的格点数据



$\pi\pi$ 对 spacelike 关联函数的重要性

即使在spacelike 区域,也需要系统地研究 $\pi\pi$ 散射



RBC-UKQCD 合作组的研究结果

关键词三: QCD 理论

在格点上构建 QCD 理论,需要做到

- 构建格点离散化的费米子场和规范场,这是格点正规化所必须的
- 构建作用量的时候要尽可能保证原有的对称性不被破坏

在格距趋于0的时候要保证能回到连续时空的QCD理论

• 需要做路径积分,就要明确定义费米子场和规范场积分测度

给路径积分一个严格的非微扰的定义

格点自由费米子场作用量

• 费米子场定义在欧氏4维时空格子

$$\psi(n)$$
, $\bar{\psi}(n)$, $n_{\mu} = 0, 1, \dots, L-1$, $\mu = 1, 2, 3, 4$

• 连续时空的自由费米子场作用量的表达式给出如下

$$S_F^0[\psi,ar{\psi}]=\int d^4x\,ar{\psi}(x)(\gamma_\mu\partial_\mu+m)\psi(x)$$

格点自由费米子场作用量

• 费米子场定义在欧氏4维时空格子

$$\psi(n), \quad \bar{\psi}(n), \quad n_{\mu} = 0, 1, \cdots, L-1, \quad \mu = 1, 2, 3, 4$$

• 连续时空的自由费米子场作用量的表达式给出如下

$$S_F^0[\psi,ar{\psi}]=\int d^4x\,ar{\psi}(x)(\gamma_\mu\partial_\mu+m)\psi(x)$$

● 在分立的时空里面,把求导替换为差分算符,可以有向前、向后差分

$$\partial_{\mu}\psi(n)=rac{1}{2}(\psi(n+\hat{\mu})-\psi(n)),\quad \partial_{\mu}^{*}\psi(n)=rac{1}{2}(\psi(n)-\psi(n-\hat{\mu}))$$

或者两者求平均

$$ar{\partial}_{\mu}\psi(n)=rac{\psi(n+\hat{\mu})-\psi(n-\hat{\mu})}{2\pi}$$

● 格点上给出的自由费米子场作用量为

$$S_F^0[\psi,\bar{\psi}] = a^4 \sum_n \bar{\psi}(n) \left(\sum_n^4 \gamma_\mu \frac{\psi(n+\hat{\mu}) - \psi(n-\hat{\mu})}{2a} + m\psi(n) \right)$$

计算机处理的都是无量纲的数,把格距a吸收到费米子场和质量中,构成无量纲的量 $a^{\frac{3}{2}}\psi(\mathbf{n})$ 、am

格点自由费米子场作用量

对于费米子场的路径积分来讲,格点上的费米子场依然可以用Grassmann数来表示,对费米子场的积分依然满足 Grassmann数积分

$$\int d\psi dar{\psi} = \int d\psi dar{\psi} \, \psi = \int d\psi dar{\psi} \, ar{\psi} = 0$$
 $\int d\psi \, \psi = \int dar{\psi} \, ar{\psi} = 1$
 $\int d\psi dar{\psi} \, ar{\psi} \psi = 1$

由于我们在欧氏时空选择了度规(+,+,+,+),那么我们的 γ 矩阵选择的也是欧氏时空的 γ 矩阵,其中一种手征表示是

$$ec{\gamma} = egin{pmatrix} 0 & iec{\sigma} \ -iec{\sigma} & 0 \end{pmatrix}, \quad \gamma_4 = egin{pmatrix} 0 & I \ I & 0 \end{pmatrix}$$

它们具有厄米性 $\gamma_{\mu}^{\dagger} = \gamma_{\mu}$,并且满足反对易关系

$$\{\gamma_{\mu},\gamma_{
u}\}=2\delta_{\mu
u}$$
 I

这里,我们得到的是 $2\delta_{\mu\nu}$,而不是 $2g_{\mu\nu}$ 。在欧氏时空中, γ_5 矩阵定义为

$$\gamma_5 = \gamma_1 \gamma_2 \gamma_3 \gamma_4 = \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}$$

规范对称性

• 对费米子场做规范变换

$$\psi(n) \rightarrow V(n)\psi(n), \quad \bar{\psi}(m) \rightarrow \bar{\psi}(m)V^{\dagger}(m)$$

● 要使得正反夸克构成的算符规范不变,可以引进一个规范场链接(link),连接正反夸克场

$$\bar{\psi}(m)U(m,n)\psi(n)\equiv\bar{\psi}(m)\left(\mathcal{P}e^{\int_{n}^{m}igA_{\mu}(x)dx_{\mu}}\right)\psi(n)$$

这里P表示积分和路径有关。链接U(m,n)满足规范变换

$$U(m,n) \rightarrow V(m)U(m,n)V^{\dagger}(n)$$

有了这个链接以后,整个夸克bilinear算符是规范不变的

费米子作用量中只有相邻的正反夸克场发生耦合,可以引进长度为1的链接,刚好连接这样的两个夸克场

$$U_{\mu}(n) \equiv U(n, n + \hat{\mu}) = e^{iagA_{\mu}(n + \frac{\hat{\mu}}{2})}$$

从这个定义可以看出, $U_{\mu}(n)$ 并非定义在n上,而是定义在从n出发向四个方向的链接上

简单费米子(Naive fermion)

有了 $U_{\mu}(n)$ 以后,也可以定义一个反向的link

$$U_{-\mu}(n) \equiv U(n, n - \hat{\mu}) = U(n - \hat{\mu}, n)^{\dagger} = U_{\mu}(n - \hat{\mu})^{\dagger} = e^{-iagA_{\mu}(n - \frac{\hat{\mu}}{2})}$$

它满足规范变换

$$U_{-\mu}(n) \rightarrow V(n)U_{-\mu}(n)V(n-\hat{\mu})^{\dagger}$$

把规范场加入到费米子场作用量里面去,得到

$$S_{F}[\psi, \bar{\psi}] = a^{4} \sum_{n} \bar{\psi}(n) \left(\sum_{\mu=1}^{4} \gamma_{\mu} \frac{U_{\mu}(n)\psi(n+\hat{\mu}) - U_{-\mu}(n)\psi(n-\hat{\mu})}{2a} + m\psi(n) \right)$$

定义向前、向后协变差分

$$D_{\mu}\psi(n) = \frac{1}{a}(U_{\mu}(n)\psi(n+\hat{\mu}) - \psi(n)), \quad D_{\mu}^*\psi(n) = \frac{1}{a}(\psi(n) - U_{-\mu}(n)\psi(n-\hat{\mu}))$$

【作业:对费米子场作用量进行格距a的微扰展开,给出O(a)和 $O(a^2)$ 项的表达式,并确认,O(1)这一项和连续时空的形式是一致的。】

规范不变的算符

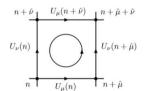
构造规范不变的算符有两种方式

• 一种是正反夸克场之间用gauge link来连接,形如

$$ar{\psi}(\mathsf{m})U_{\mu}(\mathsf{m})U_{
u}(\mathsf{m}+\hat{\mu})\cdots U_{
ho}(\mathsf{n}-\hat{
ho})\psi(\mathsf{n})$$

• 另一种是由纯规范场构成,由gauge linke形成一个闭合的圈,最简单的例子是小方块

$$P_{\mu
u}(n) = \operatorname{\mathsf{Re}}\operatorname{\mathsf{Tr}}(U_{\mu}(n)U_{
u}(n+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{
u})U_{
u}^{\dagger}(x))$$



- ▶ 由于U_u(n)是个SU(3)的矩阵,小方块求迹之后是个复数
- ▶ 可以证明,如果小方块的4个链接反着走,与正着走刚好形成复共轭
- ▶ 取实部实际上是把这两种路径做了平均

【作业:请确认对于规范场的闭合圈,正着走和反着走刚好形成复共轭。另外,请确认对于规范

不变的算符,只有上述两种构造方式。】

规范场作用量

• 在连续极限下,可以把一个闭合圈上的规范场乘积写为

$$G(x,y) = \mathcal{P} \exp \left(ig \int_{\mathcal{C}_{x,y}} A \cdot dr \right) = \exp \left(ig \int_{\mathcal{S}_{x,y}} \nabla \times A \cdot ds \right)$$

第二个式子,由Stokes公式得到

• 对于一个 μ, ν 方向的小方块 $P_{\mu\nu}(n) = \exp\left(ia^2gF_{\mu\nu} + O(a^4)\right)$

【作业:请从小方块 $P_{\mu\nu}(n)$ 的定义出发,验证这个式子,先考虑U(1)规范场,再考虑更为复杂的SU(3)非阿贝尔规范场。提示:在 $n+\frac{\hat{\mu}+\hat{\nu}}{2}$ 处做展开】

规范场作用量

• 在连续极限下,可以把一个闭合圈上的规范场乘积写为

$$G(x,y) = \mathcal{P} \exp \left(ig \int_{\mathcal{C}_{x,y}} A \cdot dr \right) = \exp \left(ig \int_{\mathcal{S}_{x,y}} \nabla \times A \cdot ds \right)$$

第二个式子,由Stokes公式得到

• 对于一个 μ, ν 方向的小方块 $P_{\mu\nu}(n) = \exp\left(ia^2gF_{\mu\nu} + O(a^4)\right)$

【作业:请从小方块 $P_{\mu\nu}(n)$ 的定义出发,验证这个式子,先考虑U(1)规范场,再考虑更为复杂的SU(3)非阿贝尔规范场。提示:在 $n+\frac{\hat{\mu}+\hat{\nu}}{2}$ 处做展开】

- $P_{\mu\nu}(n)$ 对a做泰勒展开 $P_{\mu\nu}(n) = 1 + i a^2 g F_{\mu\nu} \frac{1}{2} a^4 g^2 F_{\mu\nu} F_{\mu\nu} + O(g^6)$
- 为了消去第一项和第二项,将规范场作用量定义为

$$S_G[U] = \frac{2}{g^2} \sum_{n} \sum_{n \in \mathbb{N}} \operatorname{Re} \operatorname{Tr}[1 - P_{\mu\nu}(n)]$$

在 $a \to 0$ 的极限下, $a^4 \sum_n \to \int d^4 x$, 回复到 $S_G[U] = S_G[A]$

格点版本的作用量中,耦合常数出现在了分母上 ⇒ 强耦合极限下可以解析处理

对称性

- 在欧氏时空下Lorentz 对称性变成了SO(4)对称性
- 格点离散化与有限体积下 ⇒ 对称性会进一步破缺为hypercubic 群
 - ▶ 原本任意的旋转变换现在只能允许转90°
 - ▶ 平移不变性这件事情,只能以格距为单位进行平移,才能保证
 - ▶ 在周期性边界条件下,格点上的动量只能允许取

$$k = \frac{2\pi n}{La}, \quad n = 0, 1, 2, \cdot L - 1$$

这些对称性的破缺,在格点正规化这个框架下,几乎是不可避免的

对称性

• 格点QCD尽可能地保留了其它的对称性,比方说字称(P)、电荷共轭(C)和时间反演(T)。费米子场和规范场在P、C、T变换下满足

	\mathcal{P}	\mathcal{C}	\mathcal{T}
$U_4(\vec{x}, au)$	$U_4(-\vec{x}, au)$	$U_4^*(ec{x}, au)$	$U_{-4}(ec{x},- au)$
$U_i(\vec{x}, au)$	$U_{-i}(-\vec{x}, au)$	$U_i^*(ec{x}, au)$	$U_i(\vec{x}, - au)$
$\psi(\vec{x}, au)$	$\gamma_4\psi(-ec{x}, au)$	$Car{\psi}^{ au}(ec{x}, au)$	$\gamma_4\gamma_5\psi(ec{x},- au)$
$\bar{\psi}(ec{x}, au)$	$\bar{\psi}(-\vec{x}, au)\gamma_4$	$-\psi^T(\vec{x},\tau)C^{-1}$	$ar{\psi}(ec{x},- au)\gamma_5\gamma_4$

这里电荷共轭矩阵C可以写成 $C = \gamma_4 \gamma_2$ 的形式,它满足关系式

$$C\gamma_{\mu}C^{-1} = -\gamma_{\mu}^{T} = -\gamma_{\mu}^{*}$$

- 还有一个保存下来的对称性的是规范不变性
- 对于naive费米子来讲,手征对称性也是满足的,但是naive 费米子会有doubling的问题 ⇒ Wilson的解决方案是引进了Wilson项,但这一引进项破坏了手征对称性

格点 QCD 依赖的参数

- α_s: 在格点作用量里面由裸的参数g²来给出
- 夸克质量:包括up, down, strange三个较轻的夸克,以及比较重的charm和bottom quark
 - ▶ top夸克寿命太短,也不形成强子态,所以不在格点QCD的研究范畴
 - ▶ charm夸克目前是直接可以像三个较轻的夸克一样进行simulation的
 - ▶ bottom quark的引入一般要借助于重夸克有效理论、或者Non-relativistic QCD等手段
- 格点作用量里的夸克质量也是裸参数,是在格点正规化下引入的,会依赖于截断,也即a
- 要调节裸参数g(a), mi(a), 使得格点计算出来的物理量和实验符合

$$O(g(a), m_i(a), a) = O_{\text{phys}}$$

- ▶ 调节裸夸克的质量,使得格点QCD计算出来的π介子质量等于实验的测量值 ⇒ u/d夸克参数可以认为是物理的参数
- ▶ 让kaon或者Ω重子的质量也等于实验测量值,那么这个时候的s夸克也调到了物理值

一旦用几个物理量把QCD的参数定下来以后,其它的物理量全是格点QCD的理论预言

从无量纲到有量纲

计算机上得到的数全是无量纲的数

- 以pion介子质量为例,计算得到的实际是无量纲量am_∞的值
- 要与PDG上物理的值进行比较,首先要知道,格距a到底是多大?
- 由于格距a的存在,粗看起来,好像在格点QCD里面多引进了一个参数,这是怎么回事?

从无量纲到有量纲

计算机上得到的数全是无量纲的数

- \bullet 以pion介子质量为例,计算得到的实际是无量纲量 am_{π} 的值
- 要与PDG上物理的值进行比较,首先要知道,格距a到底是多大?
- 由于格距a的存在,粗看起来,好像在格点QCD里面多引进了一个参数,这是怎么回事?为了回答这几个问题,先考虑一个没有相互作用的系统
 - 格距a = 0.1 fm, 物理尺寸L = 1 fm, 对应于一个 $(L/a)^4 = 10^4$ 的立方格子
 - 格距a = 0.2 fm,物理尺寸L = 2 fm,对应于一个 $(L/a)^4 = 10^4$ 的立方格子

从无量纲到有量纲

计算机上得到的数全是无量纲的数

- ullet 以pion介子质量为例,计算得到的实际是无量纲量 am_{π} 的值
- 要与PDG上物理的值进行比较,首先要知道,格距a到底是多大?
- 由于格距a的存在,粗看起来,好像在格点QCD里面多引进了一个参数,这是怎么回事?
- 为了回答这几个问题, 先考虑一个没有相互作用的系统
 - 格距a = 0.1 fm,物理尺寸L = 1 fm,对应于一个 $(L/a)^4 = 10^4$ 的立方格子
 - 格距a = 0.2 fm,物理尺寸L = 2 fm,对应于一个 $(L/a)^4 = 10^4$ 的立方格子
 - 在无相互作用的时候,两者完全没有区别
- 当引进了相互作用以后,实际上低能QCD是存在一个非微扰的haronic scale, Λ_{QCD}
 - 裸的耦合常数g²和截断a之间满足重整化群耦合常数跑动

$$g^2(a) = \frac{1}{\beta_0 \ln \frac{1}{a^2 \Lambda^2}} \quad \Rightarrow \quad \Lambda = \frac{1}{a} \exp(-\frac{1}{2\beta_0 g^2})$$

- ▶ 由于Λ这个scale的存在,使得我们输入的裸耦合常数和格距a是不独立的
- ▶ 格点上最后定格距a并不是通过上式 ← Λ是个非微扰的scale, 而等式左边来自微扰论

纯规范场分析

纯规范场

在纯规范场下,物理量O的期望值可以由路径积分

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[U] O[U] e^{-S_G[U]}$$

给出。这里配分函数7定义为

$$Z = \int \mathcal{D}[U] e^{-S_G[U]},$$

积分测度定义为

$$\mathcal{D}[U] = \prod_{x \in L^3 T} \prod_{\mu=1}^4 \int dU_{\mu}(x)$$

- $U_{\mu}(x)$ 的取值都是SU(3)群的群元 ⇒ 矩阵元素的取值范围在0到1之间,compact gauge field
- ullet 微扰论常用的规范场 A_{μ} ,通过SU(3)群的生成元来构造,称为non-compact gauge field
- 在一个连续的紧致群(compact group)上进行积分,积分测度在数学上被称为 Haar 测度

规范场的作用量定义为

$$S_G[U] = \frac{\beta}{N_c} \sum_{x \in I^3} \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr}[1 - P_{\mu\nu}(x)], \quad \beta = \frac{2N_c}{g^2}$$

Haar 测度的一些性质

在规范变化下, $U_{\mu}(x)$ 变为

$$U_{\mu}(x) \rightarrow U'_{\mu}(x) = V(x)U_{\mu}(x)V(x+\hat{\mu})^{\dagger}$$

要满足规范不变性, 我们要求积分测度

$$dU_{\mu}(x) = dU'_{\mu}(x) = d(V(x)U_{\mu}(x)V(x+\hat{\mu})^{\dagger})$$

因为群元V(x)的选取具有任意性,这等价于

$$dU = d(UW) = d(WU)$$

在做路径积分的时候,积分测度会在分子、分母里抵消掉一个因子,不妨引入归一化条件

$$\int dU \, 1 = 1$$

利用这两个条件,可以得到一系列SU(3)积分

SU(3)群元积分

$$\begin{split} &\int_{SU(3)} dU \, U_{ab} = 0 \\ &\int_{SU(3)} dU \, U_{ab} U_{cd} = 0 \\ &\int_{SU(3)} dU \, U_{ab} (U^\dagger)_{cd} = \frac{1}{3} \delta_{ad} \delta_{bc} \\ &\int_{SU(3)} dU \, U_{ab} U_{cd} U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bdf} \end{split}$$

导出这几个积分的思路如下:

$$\int dU f(U) = \int d(VU) f(VU) = \int dU f(VU)$$

以第一个积分为例

$$\int dU \, U_{ab} = \int dU \, (VU)_{ab} = V_{ac} \, \int dU \, U_{cb}$$

由于 V_{ac} 可以取任意SU(3)群元,只能让 $\int dU U_{ab} = 0$

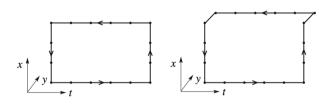
● 在SU(1)情况下, U取在单位圆上, ſdU U 等价于对单位圆是矢量求平均, 也为0

Wilson 圈

对于由纯规范场构成的规范不变量来讲,它是由规范场链接构成的闭合圈来给出的

$$L(U) = \operatorname{\mathsf{Tr}} \left[\prod_{(\mathsf{x},\mu) \in \mathcal{L}} U_{\mu}(\mathsf{x})
ight]$$

这里L是个闭合圈



Wilson 圈是其中最有名的一种闭合圈

$$S(ec{x},ec{y};t) = \prod_{(ec{z},j) \in C_{ec{x},ec{y}}} U_j(ec{z},t)$$

● 时间线T(x; t₀, t₁)定义为

$$T(\vec{x}; t_0, t_1) = \prod_{i=1}^{t_1-1} U_4(\vec{x}, t).$$

静态夸克势

Wilson圈的值通过求迹来得到

$$W_{\mathcal{L}}[U] = \text{Tr}[S(\vec{x}, \vec{y}; t_1) T(\vec{y}; t_0, t_1)^{\dagger} S(\vec{x}, \vec{y}; t_0)^{\dagger} T(\vec{x}; t_0, t_1)]$$

取时间规范,这种规范固定是将所有时间方向上的规范场链接都设成单位矩阵

$$U_0(x) = 1, \quad \forall x, \quad \Rightarrow \quad A_0(x) = 0$$

Wilson圈在路径积分下的期望值可以写成

$$\langle W_{\mathcal{L}}[U] \rangle = \langle \mathsf{Tr}[S(\vec{x}, \vec{y}; t_1)S(\vec{x}, \vec{y}; t_0)^{\dagger}] \rangle$$

在无穷重夸克极限下,x和y两点存在一对静态正反夸克的源,传播子可以由Wilson线给出

$$Q(\vec{x},t;\vec{y},t) \equiv \Psi(\vec{x},t)_{\alpha,a} \bar{\Psi}(\vec{y},t)_{\beta,b} \propto S(\vec{x},\vec{y};t)_{a,b}$$

从Wilson圈可以得到

$$\langle W_{\mathcal{L}}(r,t) \rangle \quad \rightarrow \quad \langle \mathsf{Tr}[Q(\vec{x},t_1;\vec{y},t_1)Q(\vec{x},t_0;\vec{y},t_0)^\dagger] \rangle \quad \rightarrow \quad \langle [\Psi(\vec{x},t_1)\bar{\Psi}(\vec{y},t_1)][\Psi(\vec{x},t_0)_{\alpha,a}\bar{\Psi}(\vec{y},t_0)]^\dagger \rangle$$

格林函数在 t_0 这个时间片产生一对距离为r的正反夸克和在 t_1 这个时间片上湮灭一对正反夸克

静态夸克势

插入纯规范场哈密顿量的本征态

$$\langle W_{\mathcal{L}}(r,t) \rangle = \langle [S(\vec{x},\vec{y};0)]_{ab} | n \rangle \langle n [S(\vec{x},\vec{y};0)^{\dagger}]_{ba} \rangle e^{-E_n t}$$

这里的基态能量对应的是正反夸克对的能量,可以表述为空间距离为r的静态夸克势

$$E_1 = V(r) = \lim_{t \to \infty} -\frac{1}{t} \log \langle W_{\mathcal{L}}(r, t) \rangle$$

考察带色荷的正反夸克之间的势能V(r)随着距离是如何变化的

- 强耦合极限下, Wilson 证明了 V(r)随着r增加是线性增长的
- 在小耦合常数下,QCD两个色荷之间的势很类似于QED的库伦势,都是1/r的形式

V(r)表述为

$$V(r) = A + \frac{B}{r} + \sigma r$$

这种静态夸克势的表达方式,也被称为Cornell势,其中 σ 称为弦张量

Wilson 的开创性工作

强耦合极限下,σ的计算。用路径积分来表达Wislon圈的期望值

$$\langle W_{\mathcal{L}}[U]
angle = rac{1}{Z} \int \mathcal{D}[U] \, \exp \left(-rac{eta}{N_c} \sum_P \mathsf{Re} \, \mathsf{Tr}[1-U_P]
ight) \mathsf{Tr} \left[\prod_{I \in \mathcal{L}} U_I
ight]$$

其中分子、分母可以消去一个 $\exp(-\beta/N_c\sum_P \operatorname{Re}\operatorname{Tr}[1])$ 。约化以后得到

$$\langle W_{\mathcal{L}}[U] \rangle = \frac{1}{Z'} \int \mathcal{D}[U] \exp\left(\frac{\beta}{N_c} \sum_{P} \operatorname{Re} \operatorname{Tr}[U_P]\right) \operatorname{Tr}\left[\prod_{I \in \mathcal{L}} U_I\right]$$
$$= \frac{1}{Z'} \int \mathcal{D}[U] \exp\left(\frac{\beta}{2N_c} \sum_{P} \left(\operatorname{Tr}[U_P] + \operatorname{Tr}[U_P^{\dagger}]\right)\right) \operatorname{Tr}\left[\prod_{I \in \mathcal{L}} U_I\right]$$

强耦合极限 $g^2 \to \infty$ 对应于 $\beta \to 0$ 极限,对于配分函数,我们有

$$Z' = \int \mathcal{D}[U] \exp\left(\frac{\beta}{2N_c} \sum_{P} \left(\mathsf{Tr}[U_P] + \mathsf{Tr}[U_P^{\dagger}]\right)\right) = \int \mathcal{D}[U] \left(1 + O(\beta)\right) = 1 + O(\beta)$$

Wilson 的开创性工作

对玻尔兹曼因子 $\exp\left(rac{eta}{2N_c}\sum_P\left(\mathrm{Tr}[U_P]+\mathrm{Tr}[U_P^\dagger]
ight)
ight)$ 这项做Taylor展开,只保留与 $\mathrm{Tr}[U_P^\dagger]$ 有关的项

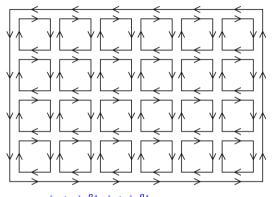
$$\langle W_{\mathcal{L}}[U] \rangle = \int \mathcal{D}[U] \frac{1}{n_{\mathcal{A}}!} \left(\frac{1}{2N_{c}} \right)^{n_{\mathcal{A}}} \left(\sum_{P} \text{Tr}[U_{P}^{\dagger}] \right)^{n_{\mathcal{A}}} \text{Tr} \left[\prod_{I \in \mathcal{L}} U_{I} \right]$$
$$= \left(\frac{1}{2N_{c}} \right)^{n_{\mathcal{A}}} \int \mathcal{D}[U] \prod_{P \in \mathcal{A}_{\mathcal{L}}} \text{Tr}[U_{P}^{\dagger}] \text{Tr} \left[\prod_{I \in \mathcal{L}} U_{I} \right]$$

考察路径积分中有贡献的项,利用

$$\int_{SU(3)} dU \ U_{ab}(U^\dagger)_{cd} = rac{1}{3} \delta_{ad} \delta_{bc}, \quad \Rightarrow \quad \int dU \ {
m Tr}[VU] \ {
m Tr}[U^\dagger W] = rac{1}{3} \ {
m Tr}[VW]$$

Wilson 的开创性工作

最经济的方式是根据面积铺满整个Wilson圈



$$\langle W_{\mathcal{L}}[U] \rangle = \left(\frac{1}{2N_c}\right)^{n_A} \left(\frac{1}{N_c}\right)^{n_A} \mathsf{Tr}[1] = 3 \exp(n_A \log \frac{\beta}{2N_c^2})$$

 n_A 可取的最小数值为 $n_A = (r/a) \times (t/a) \Rightarrow$ 面积法则

$$V(r) \sim -\frac{r}{a^2} \log \frac{\beta}{2N^2} \left(1 + O(\beta)\right) \quad \Rightarrow \quad \sigma = -\frac{1}{a^2} \log \frac{\beta}{2N^2} \left(1 + O(\beta)\right)$$

Sommer parameter

从静态夸克势中,可以提取一个和距离有关的量,叫做Sommer parameter,它定义为

$$r^2 \frac{\partial V(r)}{\partial r}\big|_{r=r_0} = 1.65$$

这个量可以认为是个物理量。因为Cornell势可以很成功地用于预言charmonium和Upsilon系统的能级,通过和实验数据做对比,可以得到

$$r_0 = 0.49 \text{ fm}$$

n这个量可以帮助我们来确定格距a的大小

- 用格点上计算出来的ro/a的值
- 通过和n的物理值比较,马上可以定出格距大小

采用加来定标有几个好处

- 对于势模型的选取很不敏感,所以模型依赖性可忽略
- no这个距离取得比较适中,保证了静态夸克势可以很好地由cē或者bb的谱来确定下来
- 格点QCD能够给出很精确的ro的值
- 它对海夸克的依赖很不敏感,不需要我们先把u/d夸克参数调到物理值 ⇒ r₀这个量对于full QCD和淬火QCD都适用

定格距

确定格距的方法不只一种,比方说可以用某个强子H的质量。我们有

$$a = \frac{(am_H)^{\text{lat}}}{m_H^{\text{exp}}}$$

这里常用的物理量有 Ω -重子的质量以及 Ω pion介子衰变常数等

两个最基本的要求

- 该物理量在格点上的计算结果很精确(当然实验值也要足够精确)
- 该物理量对于轻夸克的依赖关系比较小
 - ⇒ 因为夸克质量也是QCD的参数,不希望同时调两个参数来和实验进行比对

无论采取哪种方法,得到的格距的值应该是自洽的,这是对于格点QCD simulation结果的一个highly non-trivial的检验。

一期一会

Email: xu.feng@pku.edu.cn