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Outline
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• Perturbative gravity

• Classical physics from quantum amplitudes

• ℏ expansion – method of regions
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Introduction
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Motivation – GW physics

• GW discovery in 2015 by LIGO / VIRGO. Future ground-based and 
space-based detectors offer much higher sensitivity.
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Motivation – future detectors

• Theoretical predictions need orders of magnitude improvement!
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Post-Newtonian expansion
• Joint expansion in 𝐺𝑀/𝑅 and 𝑣2, locked together by Virial’s theorem.
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Post-Minkowskian expansion

• Expansion in coupling constant 𝐺𝑀/𝑅, exact velocity dependence.
[Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez, Martin,
Ledvinka, Schaefer, Bicak…]

• Most accurate PM scattering angle until ~2019 [Westpfahl, ‘85]
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New method: (multi-loop) scattering amplitudes

• In relativistic QFT, perturbative expansion in coupling constant, 
exactly analogous to post-Minkowskian expansion in GR.

• Effective field theory: when two black holes are at a large distance, 
approximated by point particles.

• For Schwarzschild BH, massive scalar particles coupled to gravity

• For Kerr BH, spin coupling captured by massive spin-1/2, spin-1, or higher spin
particle

• Many advanced loop amplitude techniques developed for particle 
physics – used to push calculations beyond best classical results!
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Previously: multi-loop amplitudes for gravity

• Ultraviolet behavior of 𝑁 = 8 supergravity at 5 loops.
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, MZ, '18]

• 2-loop 5-point amplitude of 𝑁 = 8 supergravity.
[Abreu, Dixon, Page, Herrmann, MZ, '19; Chicherin, Gehrmann, Henn, Wasser, Zhang, '19]

Many particle 
physics methods 
used for gravity!

Vacuum integrals at 
high loop orders

Same master 
integrals as e.g.
𝑝𝑝 → 3𝑗 for QCD.
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What amplitudes do we need?

• Φ+ 𝜙 → Φ+ 𝜙 via graviton exchange. Conservative potential.

• Φ+ 𝜙 → Φ+ 𝜙 + ℎ. Graviton emission / energy loss.

GW emission 
quanta
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Perturbative gravity

• Einstein-Hilbert Lagrangian, with additional massive scalar matter,

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 +
1

2
𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 +⋯

• Dynamic metric 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅 ℎ𝜇𝜈 , 𝜅2 = 8𝜋𝐺.

• Integration volume 𝑑4𝑥 −𝑔, 𝑔 ≡ det(𝑔𝜇𝜈).
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Perturbative gravity

• Einstein-Hilbert Lagrangian, with additional massive scalar matter,

• Dynamic metric 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅 ℎ𝜇𝜈 , 𝜅2 = 8𝜋𝐺.

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 +
1

2
𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 +⋯
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Perturbative gravity

• Einstein-Hilbert Lagrangian, with additional massive scalar matter,

• 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅 ℎ𝜇𝜈 .

= 𝑔𝜇𝜈
−1

= 𝜂𝜇𝜈 + 𝜅 ℎ𝜇𝜈
−1

= 𝜂𝜇𝜈 − 𝜅 ℎ𝜇𝜈 … .

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 +
1

2
𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 +⋯
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Perturbative gravity

• Einstein-Hilbert Lagrangian, with additional massive scalar matter,

• We showed −𝑔 = 1 +
1

2
𝜅 ℎ 𝜇

𝜇
… , 𝑔𝜇𝜈 = 𝜂𝜇𝜈 − 𝜅 ℎ𝜇𝜈 …

• Matter part of Lagrangian

1

2
−𝑔 𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 =

1

2
𝜕𝜇𝜙 𝜕𝜇𝜙 −𝑚2𝜙2

+
1

2
𝜅
1

2
ℎ 𝜇
𝜇
𝜕𝜈𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 − ℎ𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 + 𝒪(𝜅2)

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 +
1

2
𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 +⋯
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Scalar-graviton vertex

𝑞

𝑝1 𝑝2

• Matter part of Lagrangian

1

2
−𝑔 𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 =

1

2
𝜕𝜇𝜙 𝜕𝜇𝜙 −𝑚2𝜙2

+
1

2
𝜅
1

2
ℎ 𝜇
𝜇
𝜕𝜈𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 − ℎ𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 + 𝒪(𝜅2)

=
𝑖𝜅

2
− 𝑝1

𝜇
𝑝2
𝜈 + 𝑝1

𝜇
𝑝2
𝜈 + 𝜂𝜇𝜈 𝑝1 ⋅ 𝑝2 −𝑚2
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Graviton propagtor

• Pure gravity part of Lagrangian, plus gauge-fixing term to make the
quadratic terms invertible.

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 + 𝒞𝜈𝒞𝜈 +⋯

𝒞𝜈 = 𝜕𝜇ℎ 𝜈
𝜇
−
1

2
𝜕𝜈ℎ 𝜇

𝜇 gauge fixing vector
for de-Donder gauge
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Graviton self-interactions

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 + 𝒞𝜈𝒞𝜈 +⋯
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3-graviton vertex

= −
1

2
𝑘1
2 𝜂𝜇1𝜈2𝜂𝜇2𝜈2𝜂𝜇3𝜈3 …

Modern simplifications: double copy, 
generalized unitarity, nonlinear gauge fixing…
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Classical phyics from quantum 
amplitudes
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Point particle effective theory

• Lagrangian: 𝑆 = 𝑆Einstein−Hilbert + 𝑆scalar + 𝑆finite−size

𝑆 = ∫ 𝑑4𝑥 −𝑔 −2𝑅 +
1

2
𝑔𝜇𝜈𝜕𝜇𝜙 𝜕𝜈𝜙 −𝑚2𝜙2 +⋯

• Perturbative expansion 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅 ℎ𝜇𝜈 , 𝜅
2 ≡ 8𝜋𝐺.

Tidal deformation.
Highly suppressed
effect.

Feynman diagrams,
generalized unitarity,
double copy…
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Classical from quantum – it’s subtle!

• Naïve ℏ expansion won’t work. Increasingly worse 1/ℏ divergences at 
each higher loop order, from (J)WKB approximation.

𝑀 ∼ exp
𝑖

ℏ
∫ 𝑉 𝑥 𝑑𝑥 “super-classical / classically divergent terms”

21



Intuition: Huygens principle

Conservative case: amplitude

Scattering angle ∝ phase gradient ∝ 𝜕𝜒 𝑏 /𝜕𝑏.
Time delay ∝ 𝜕𝜒(𝑏)/𝜕𝐸.

Logarithm + differentiation cancels 1/ℏ divergence and infrared divergence.
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Stationary phase – “eikonal approximation”

Conservative case: amplitude

𝑀 𝑞 = ∫ 𝑑2𝑏 ෩𝑀 𝑏 𝑒𝑖𝑞⋅𝑏= ∫ 𝑑2𝑏 exp 𝑖 𝜒 𝑏 + 𝑞 ⋅ 𝑏

Steepest descent / stationary phase approximation:

𝑞 = 𝜕𝜒 𝑏 /𝜕𝑏
23



Kinematic corrections for eikonal method

sin
𝜒

2
=

𝒒

|𝒑|
, 𝒒 =

𝜕𝜒

𝜕𝑏𝑒
, 𝑏𝑒 =

𝑏∞
cos(𝜒/2)

Needed at NNLO and beyond.

Incoming

Incoming

𝜒
|𝒑|

𝒒 = 𝒑 sin 𝜒/2

Picture: [Bern, Ita, Parra-Martniez, 
Ruf, arXiv:2002.02459]
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Collider-like observable from amplitudes

• Interested in observables in hyperbolic black hole scattering, such as 
the impulse on a black hole (deflection angle) and energy loss from 
GW emission.

• Measurements at fixed impact parameter, which is not integrated 
over, unlike collider observables.

• Collider observables are usually quadratic in the amplitude,

𝑆 = 1 + 𝑖 𝑇, out = 𝑆|in⟩

expectation value of observable:  in 𝑆†𝒪 𝑆 in = ⟨in|𝑇†𝒪 𝑇|in⟩

[Kosower, Maybee, O’Connell (KMOC), ’18]

measurement operatorno contribution
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Collider-like observable from amplitudes

• Classical scattering observables can be linear in the amplitude.

• Consider fixed impact parameter, in ∼ ∫ 𝑑4𝑝 exp 𝑖𝑝 ⋅ 𝑏𝑇 𝜓1 𝑝

• Consider the impulse observable Δ𝑝𝜇, expectation value

in 𝑆†𝒪 𝑆 in , 𝑆 = 1 + 𝑖𝑇. Lowest order contribution

in 1 ⋅ 𝒪 ⋅ 𝑖𝑇 in .

[Kosower, Maybee, O’Connell (KMOC), ’18]

impact parameter wave packet;
detail not important
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LO impulse - Amplitude

Tree amplitude

=
−16𝜋𝐺

𝑞2
𝑚1

2𝑚2
2 − 2 𝑝1 ⋅ 𝑝2

2 − 𝑝1 ⋅ 𝑝2 𝑞2

𝑝1

𝑝2

cancels 1/𝑞2 pole ⇒ four-scalar
contact interaction, no long-range
classical effect.∼

𝑐

𝑞2
+ contract term.

𝑏 𝑞 ∼ ℏ/𝑏 ≪ |𝑝𝑖|, soft transverse momentum

We’ll be sloppy with constant factors
throughout this example.

(See later slides for derviation)
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LO impulse – Phase space

∼
𝑐

𝑞𝑇
2 + contract term.

Phase space ∫ 𝑑4𝑞 𝛿4 𝑝1 − 𝑞 2 −𝑚1
2 𝛿4 𝑝2 + 𝑞 2 −𝑚2

2

≈ 𝑑4𝑞 𝛿4 −2𝑝1 ⋅ 𝑞 𝛿4 2𝑝2 ⋅ 𝑞

𝑝1 − 𝑞

𝑝2

𝑞 ∼ ℏ/𝑏 ≪ |𝑝𝑖|𝑏

𝑝1

𝑝2 + 𝑞

Choose frame 𝑝1 = 𝑚1 1,0,0,0 , 𝑝2 = 𝑚2( 1 + 𝑣2, 0, 0, 𝑣).
Integrate 𝑞0 and 𝑞𝑧 against delta functions.

=
1

𝑚1𝑚2𝑣
𝑑2𝑞𝑇
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LO impulse - Expectation value

ҧ𝑝1 ∼ ∫ 𝑑4𝑝 exp 𝑖𝑝 ⋅ 𝑏 𝜓1 𝑝1 , ҧ𝑝2 ∼ ∫ 𝑑4𝑝 𝜓2 𝑝2

∼
𝑐

𝑞𝑇
2 + contract term.

Transverse impact parameter wavepacket at zero
impact parameter

Lowest order contribution in 1 ⋅ 𝒪 ⋅ 𝑖𝑇 in ∼ 𝑐/𝑞𝑇
2 𝑞𝜇 𝑒𝑖𝑞𝑇⋅𝑏

𝑝1 − 𝑞

𝑝2

𝑞 ∼ ℏ/𝑏 ≪ |𝑝𝑖|𝑏

𝑝1

𝑝2 + 𝑞

𝑒−𝑖 𝑝1−𝑞 ⋅𝑏 𝑒𝑖𝑝1⋅𝑏

impulse measurement
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LO impulse – Putting it together

𝑀 ∼
𝑐

𝑞𝑇
2 + contract term.

Lowest order contribution in 1 ⋅ 𝒪 ⋅ 𝑖𝑇 in ∼ ℳ 𝑞𝜇 𝑒𝑖𝑞𝑇⋅𝑏

𝑒−𝑖 𝑝1−𝑞 ⋅𝑏 𝑒𝑖𝑝1⋅𝑏

impulse measurement

=
1

𝑚1𝑚2𝑣
𝑑2𝑞𝑇Phase space measure

Expected impulse =
1

𝑚1𝑚2𝑣
∫ 𝑑2𝑞𝑇 𝑀 𝑞𝜇 𝑒𝑖𝑞𝑇⋅𝑏

=
1

𝑚1𝑚2𝑣
∫ 𝑑2𝑞𝑇 ℳ 𝑞𝜇 𝑒𝑖𝑞𝑇⋅𝑏 =

1

𝑚1𝑚2𝑣
−𝑖

𝜕

𝜕𝑏𝜇
෩𝑀 𝑏

2D Fourier transform;
IR divergence has no 𝑏
dependence, disappears
after differentiation.
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LO impulse – Result

𝑀 ∼
1

𝑞𝑇
2 𝑚1

2𝑚2
2 − 2 𝑝1 ⋅ 𝑝2

2

+⋯

=
1

𝑚1𝑚2𝑣
−𝑖

𝜕

𝜕𝑏𝜇
෩𝑀 𝑏 =

𝐺𝑚1𝑚2

|𝑏|

2 2 𝑝1 ⋅ 𝑝2
2 −𝑚1

2𝑚2
2

𝑣
෠𝑏𝜇 ,Impulse

𝑝1 − 𝑞

𝑝2

𝑞 ∼ ℏ/𝑏 ≪ |𝑝𝑖|𝑏

𝑝1

𝑝2 + 𝑞

where 𝑣 = 𝑝1 ⋅ 𝑝2
2/ 𝑚1

2𝑚2
2 − 1, ෠𝑏𝜇 = 𝑏𝜇/ 𝑏 .

Zero velocity limit 𝑝1 ⋅ 𝑝2 = 𝑚1𝑚2 agrees with Newtonian hyperbolic orbit.
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LO impulse – compare with eikonal

𝑀 ∼
1

𝑞𝑇
2 𝑚1

2𝑚2
2 − 2 𝑝1 ⋅ 𝑝2

2

+⋯

=
1

𝑚1𝑚2𝑣
−𝑖

𝜕

𝜕𝑏𝜇
෩𝑀(0) 𝑏LO Impulse

𝑝1 − 𝑞

𝑝2

𝑞 ∼ ℏ/𝑏 ≪ |𝑝𝑖|𝑏

𝑝1

𝑝2 + 𝑞

, 𝑞 = 𝜕𝜒 𝑏 /𝜕𝑏Eikonal:

Agree if ෩𝑀 𝑏 = 𝑚1𝑚2𝑣 exp 𝑀 0 𝑏 / 𝑚1𝑚2𝑣 + higher orders . ✓
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ℏ expansion – method of regions
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Expanding Feynman integrals

• One loop correction to Φ+ 𝜙 → Φ+ 𝜙

34

𝑙 𝑞 − 𝑙

• External kinematics fixed, 𝑞 ∼ ℏ/𝑅 ≪ |𝑝|. But loop momentum 𝑙 is 

integrated over entire ℝ4 - can be small or large. How do we expand?



Method of regions

• Asymptotic series in 𝑞 /|𝑝|, to any order, is a sum of two regions:

35

1. Soft region, 𝑙 ∼ 𝑞 ≪ |𝑝|, expand in small 𝑞 / 𝑝 , |𝑙|/|𝑝|.

2. Hard region, 𝑙 ∼ 𝑝 ≫ |𝑞|, expand in small 𝑞 / 𝑝 , |𝑞|/|𝑙|, not 

needed for classical physics.

𝑙 𝑞 − 𝑙



Treatment of classical soft region

• Symmetric parametrization

36

[Parra-Martinez, Ruf, MZ, arXiv:2005.04236]

𝑙 𝑞 − 𝑙

𝑝1 = ഥ𝑚1𝑢1 − 𝑞/2 𝑝4 = ഥ𝑚1𝑢1 + 𝑞/2

𝑝2 = ഥ𝑚2𝑢2 + 𝑞/2 𝑝3 = ഥ𝑚2𝑢2 − 𝑞/2



Treatment of classical soft region

37

[Parra-Martinez, Ruf, MZ, arXiv:2005.04236]

𝑙 𝑞 − 𝑙

𝑝1 = ഥ𝑚1𝑢1 − 𝑞/2 𝑝4 = ഥ𝑚1𝑢1 + 𝑞/2

𝑝2 = ഥ𝑚2𝑢2 + 𝑞/2 𝑝3 = ഥ𝑚2𝑢2 − 𝑞/2

𝑝1 − 𝑙

𝑝2 + 𝑙

1

𝑝1 − 𝑙 2 −𝑚1
2 =

1

−2𝑝1 ⋅ 𝑙 + 𝑙2
=

1

−2 ഥ𝑚1𝑢1 ⋅ 𝑙 + 𝑙2 + 𝑞 ⋅ 𝑙

=
1

ഥ𝑚1

1

−2𝑢1 ⋅ 𝑙
+

1

ഥ𝑚1
2

− 𝑙2 + 𝑞 ⋅ 𝑙

−2𝑢1 ⋅ 𝑙
2
…



Treatment of classical soft region

38

[Parra-Martinez, Ruf, MZ, arXiv:2005.04236]

𝑙 𝑞 − 𝑙

𝑝1 = ഥ𝑚1𝑢1 − 𝑞/2

𝑝2 = ഥ𝑚2𝑢2 + 𝑞/2 Soft expansion linearizes
massive propagators.

Certain subsectors are scaleless, 
vanish in dim. reg, for example, if 
we collapse 1/ 𝑞 − 𝑙 2 propagator.

Contact diagram irrelevant for
long-range classical physics!



Integration by parts (IBP)
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𝑙 𝑞 − 𝑙



Localization on matter poles

• Box and crossed box diagrams combine nontrivially into 
exponentiation of tree-level result.

40

𝑙 𝑞 − 𝑙
𝑙 𝑞 − 𝑙



Differential equations

• Derivatives of masters reduced back to linear sum of masters, by IBP

• See external slides.
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Example: 

Explains nontrivial magic cancellation at every higher order in v,
in direct expansion.

If working in soft region without truncation to potential region, RHS is a v-indep. constant,

leading order in v expansion
purely from potential region

−v +
v3

6
− 3v5

40
. . .

∂

∂v
v =

∂ log(
√
1 + v2 − v)

∂v
×

∂

∂v
v

∂

∂v
v = (−1)

∂ log(
√
1 + v2 − v)

∂v
×

=
∂ log(

√
1 + v2 − v)

∂v
×

Box + crossed box = const. in both potential region and full soft region. Can we see this
at the level of differential equaitons?

See also [Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21].
Combining in Feynman parametrization: Cristofoli, Damgaard, Di Vecchia, Heissenberg, '20]





Virtual diagram Real emission diagramM(2) M(1)M∗(1)

Phase space integrals and reverse unitarity

Setup: classical limit of observables from S-matrix. [Kosower, Maybee, O'Connell '18]

contributes to impulse on scattered
black hole (deflection angle)

contributes to impluse & energy loss

(uncut) Feynman propagator

cut propagtor for phase space 
2π θ(p0)δ(p2 −m2)

from picking up only the +ve energy residue
in Feynman propagator Re(p0)

Im(p0)

Only change boundary conditions for DEs, known as method
of Reverse Unitarity.

IBP & Differential equations unchanged!

1/(p2 −m2 + i0)

Important in perturbative QCD for Higgs cross sections at NNLO and N3LO, and
energy correlations in electron-positron collider event shapes.

First application of reverse unitarity to gravitational physics in [Herrmann, Parra Martinez,
Ruf, MZ, 2101.07255 (PRL), 2104.03957].

We re-used DEs in canonical basis for virtual integrals in [Parra-Martinez, Ruf, MZ, '20].

= 2 Im

(only one Cutkosky cut, optical
theorem enough)

(Virtual integrals computed via
differential equations)

Example use of reverse unitarity

More than one Cutkosky cut. Need serious
use of reverse unitarity, including DEs
on cut.



Result for radaiated energy at 3rd-post-Minkowskian order

talk by Enrico Herrmann & Michael Ruf


