# Particle physics methods for gravitational wave physics 

Mao Zeng, University of Oxford

Qingdao Summer School, 14/07/2021

## Outline

- Introduction
- Perturbative gravity
- Classical physics from quantum amplitudes
- $\hbar$ expansion - method of regions

Introduction

## Motivation - GW physics

- GW discovery in 2015 by LIGO / VIRGO. Future ground-based and space-based detectors offer much higher sensitivity.



## Motivation - future detectors

- Theoretical predictions need orders of magnitude improvement!




## Post-Newtonian expansion

- Joint expansion in $G M / R$ and $v^{2}$, locked together by Virial's theorem.



## Post-Minkowskian expansion

- Expansion in coupling constant $G M / R$, exact velocity dependence. [Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez, Martin, Ledvinka, Schaefer, Bicak...]
- Most accurate PM scattering angle until ~2019 [Westpfahl, '85]

Scattering angle of two black holes, as function of $m_{1}, m_{2}, b, E_{\mathrm{cm}}$.

$$
\begin{aligned}
2 \sin \left(\frac{\theta}{2}\right)= & \frac{4 G\left(m_{1}+m_{2}\right)}{b}\left(\frac{\hat{E}^{4}-2 m_{1}^{2} m_{2}^{2}}{\hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}\right. \\
& \left.+\frac{3 \pi}{16} \frac{G\left(m_{1}+m_{2}\right)}{b} \frac{5 \hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}{\hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}\right) \\
\text { where } \hat{E}^{2} \equiv & E_{\mathrm{cm}}^{2}-\left(m_{1}^{2}+m_{2}^{2}\right), c=1
\end{aligned}
$$



## New method: (multi-loop) scattering amplitudes

- In relativistic QFT, perturbative expansion in coupling constant, exactly analogous to post-Minkowskian expansion in GR.
- Effective field theory: when two black holes are at a large distance, approximated by point particles.
- For Schwarzschild BH, massive scalar particles coupled to gravity
- For Kerr BH, spin coupling captured by massive spin-1/2, spin-1, or higher spin particle
- Many advanced loop amplitude techniques developed for particle physics - used to push calculations beyond best classical results!


## Previously: multi-loop amplitudes for gravity

- Ultraviolet behavior of $N=8$ supergravity at 5 loops.
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, MZ, '18]

Vacuum integrals at high loop orders


- 2-loop 5-point amplitude of $N=8$ supergravity.

Many particle physics methods used for gravity! [Abreu, Dixon, Page, Herrmann, MZ, '19; Chicherin, Gehrmann, Henn, Wasser, Zhang, '19]

Same master integrals as e.g. $p p \rightarrow 3 j$ for QCD.


## What amplitudes do we need?

- $\Phi+\phi \rightarrow \Phi+\phi$ via graviton exchange. Conservative potential.

- $\Phi+\phi \rightarrow \Phi+\phi+h$. Graviton emission / energy loss.


GW emission quanta

Perturbative gravity c.f. $\operatorname{arX} X_{i v} / 1702.00319$

- Einstein-Hilbert Lagrangian, with additional massive scalar matter,

$$
S=\int d^{4} x \sqrt{-g}[-2 R+\underbrace{+\frac{1}{2}\left(g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right)}]+\cdots
$$

- Dynamic metric $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}, \kappa^{2}=8 \pi G .>$ Ricci curvature scalar
- Integration volume $d^{4} x \sqrt{-g}, g \equiv \operatorname{det}\left(g_{\mu \nu}\right)$.

$$
\begin{aligned}
d s=\sqrt{g_{\mu \nu} d x^{\mu} d x^{\nu}}, \quad V \sim(d s)^{4} & \sim\left|g_{\mu \nu}\right|^{2} d^{4} x \\
& \sim \sqrt{-g} d^{4} x
\end{aligned}
$$

Perturbative gravity

- Einstein-Hilbert Lagrangian, with additional massive scalar matter,

$$
S=\int d^{4} x \sqrt{-g}\left[-2 R+\frac{1}{2}\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right)\right]+\cdots
$$

- Dynamic metric $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}, \kappa^{2}=8 \pi G$.

$$
\begin{aligned}
-g & =-\operatorname{det}\left(g_{\mu \nu}\right)=\operatorname{det}\left(\eta_{\rho}^{\mu} g_{\rho \nu}\right) \\
& =\operatorname{det}\left(\mathbb{1}+k h^{H} \nu\right)=\exp \left[\operatorname{Tr} \log \left(\mathbb{1}+k h^{\mu} \nu\right)\right] \\
& =\exp \left[\operatorname{Tr}\left(k h^{\mu} \nu+\frac{k^{2}}{2} h^{\mu} \rho h^{\rho} \nu+\frac{k^{3}}{3} h^{\mu} h_{b}^{\rho} h_{\nu}^{\sigma} \ldots\right)\right] \\
& =1+k h^{\mu} \mu+\cdots \Rightarrow \sqrt{-g}=1+\frac{k}{2} h^{H} \mu
\end{aligned}
$$

## Perturbative gravity

- Einstein-Hilbert Lagrangian, with additional massive scalar matter,

$$
S=\int d^{4} x \sqrt{-g}\left[-2 R+\frac{1}{2}\left(g^{\mu v} \partial_{\mu} \phi \partial_{v} \phi-m^{2} \phi^{2}\right)\right]+\cdots
$$

- $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}$.

$$
\begin{aligned}
& =\left(g_{\mu \nu}\right)^{-1}=\left(\eta_{\mu \nu}+\kappa h_{\mu \nu}\right)^{-1} \\
& =\eta^{\mu \nu}-\kappa h^{\mu \nu} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { Matrix } \\
& (A+B)^{-1}=\left[A\left(\mathbb{1}+A^{-1} B\right)\right]^{-1}=A^{-1}-A^{-1} B A^{-1}+\frac{1}{2} A^{-1} B A^{-1} B A^{-1} \ldots
\end{aligned}
$$

## Perturbative gravity

- Einstein-Hilbert Lagrangian, with additional massive scalar matter,

$$
S=\int d^{4} x \sqrt{-g}\left[-2 R+\frac{1}{2}\left(g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right)\right]+\cdots
$$

- We showed $\sqrt{-g}=1+\frac{1}{2} \kappa h_{\mu}^{\mu} \ldots, g^{\mu \nu}=\eta^{\mu \nu}-\kappa h^{\mu \nu} \ldots$
- Matter part of Lagrangian

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-g} g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi=\frac{1}{2}\left(\partial^{\mu} \phi \partial_{\mu} \phi-m^{2} \phi^{2}\right) \\
& +\frac{1}{2} \kappa\left[\frac{1}{2} h_{\mu}^{\mu}\left(\partial^{v} \phi \partial_{v} \phi-m^{2} \phi^{2}\right)-h^{\mu v} \partial_{\mu} \phi \partial_{v} \phi\right]+\mathcal{O}\left(\kappa^{2}\right)
\end{aligned}
$$

## Scalar-graviton vertex

- Matter part of Lagrangian

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-g} g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-m^{2} \phi^{2} \\
& +\frac{1}{2} \kappa\left[\frac{1}{2} h_{\mu}^{\mu}\left(\partial^{v} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right)-h^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi\right]+\mathcal{O}\left(\kappa^{2}\right)
\end{aligned}
$$



## Graviton propagtor

- Pure gravity part of Lagrangian, plus gauge-fixing term to make the quadratic terms invertible.

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g}\left[-2 R+\mathcal{C}^{v} \mathcal{C}_{v}\right]+\cdots \\
& \mathcal{C}_{v}=\partial_{\mu} h_{v}^{\mu}-\frac{1}{2} \partial_{v} h_{\mu}^{\mu} \quad \text { gauge fixing vector } \\
& \text { for de-Donder gauge }
\end{aligned}
$$

$$
\begin{array}{r}
\mu_{1}, \nu_{1} \underset{p}{\infty} \mu_{2}, \nu_{2}=\frac{i}{p^{2}}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\nu_{1} \nu_{2}}+\eta^{\mu_{1} \nu_{2}} \eta^{\nu_{1} \mu_{2}}\right. \\
\left.-\frac{2}{d-2} \eta^{\mu_{1}} \nu_{1} \eta^{\mu_{2} \nu_{2}}\right)
\end{array}
$$

Graviton self-interactions

$$
\begin{aligned}
& S=\int d^{4} x \sqrt{-g}\left[-2 R+\mathcal{C}^{\nu} C_{\nu}\right]+\cdots \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu} \\
& D_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \rho}^{\nu} V^{\rho}, \\
& \Gamma_{\mu \nu}{ }^{\lambda}=\frac{1}{2} g^{\lambda \epsilon}\left(\partial_{\mu} g_{\nu \sigma}+\partial_{\nu} g_{\delta \mu}-\partial_{\partial} g_{\mu \nu}\right) \sim \partial h \\
& R_{\mu \nu \alpha}^{\beta}=\partial_{\mu} \Gamma_{\nu \alpha}^{\beta}-\partial_{\nu} \Gamma_{\mu \alpha}^{\beta}+\Gamma_{\mu \rho^{\beta}}^{\beta} \Gamma_{\nu \alpha}^{e}-\Gamma_{\mu e^{\beta}} \Gamma_{\mu \alpha}^{\beta} \sim \partial^{2} h+(\partial h)^{2} \\
& R_{\nu \alpha}=R_{\mu \nu \alpha}^{\mu}, R=g^{\nu \alpha} R_{\nu \alpha}
\end{aligned}
$$

## 3-graviton vertex



Modern simplifications: double copy, generalized unitarity, nonlinear gauge fixing...


Classical phyics from quantum amplitudes

## Point particle effective theory



- Lagrangian: $S=S_{\text {Einstein-Hilbert }}+S_{\text {scalar }}+S_{\text {finite-size }} \longrightarrow$

$$
S=\int d^{4} x \sqrt{-g}\left[-2 R+\frac{1}{2}\left(g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right)\right]+\cdots
$$

- Perturbative expansion $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}, \kappa^{2} \equiv 8 \pi G$.

Feynman diagrams, generalized unitarity, double copy..

## Classical from quantum - it's subtle!


momentum transfer $q \sim \hbar / R \ll m_{1}, m_{2}$

[picture: LIGO]

- Naïve $\hbar$ expansion won't work. Increasingly worse $1 / \hbar$ divergences at each higher loop order, from (J)WKB approximation.

$$
M \sim \exp \left(\frac{i}{\hbar} \int V(x) d x\right) \quad \text { "super-classical / classically divergent terms" }
$$

## Intuition: Huygens principle



Conservative case: amplitude $\tilde{M}(b) \propto \exp [i \chi(b)]$

## Scattering angle $\propto$ phase gradient $\propto \partial \chi(b) / \partial b$.

Time delay $\propto \partial \chi(b) / \partial E$.
Logarithm + differentiation cancels $1 / \hbar$ divergence and infrared divergence.

## Stationary phase - "eikonal approximation"



Conservative case: amplitude $\tilde{M}(b) \propto \exp [i \chi(b)]$
$M(q)=\int d^{2} b \widetilde{M}(b) e^{i q \cdot b}=\int d^{2} b \exp [i(\chi(b)+q \cdot b)]$
Steepest descent / stationary phase approximation:

$$
|q|=\partial \chi(b) / \partial b
$$

## Kinematic corrections for eikonal method




Ruf, arXiv:2002.02459]

$$
\sin \frac{\chi}{2}=\frac{|\boldsymbol{q}|}{|\boldsymbol{p}|}, \quad|\boldsymbol{q}|=\frac{\partial \chi}{\partial b_{e}}, \quad b_{e}=\frac{b_{\infty}}{\cos (\chi / 2)}
$$

Needed at NNLO and beyond.

## Collider-like observable from amplitudes

[Kosower, Maybee, O’Connell (KMOC), '18]

- Interested in observables in hyperbolic black hole scattering, such as the impulse on a black hole (deflection angle) and energy loss from GW emission.
- Measurements at fixed impact parameter, which is not integrated over, unlike collider observables.
- Collider observables are usually quadratic in the amplitude,

$$
S=1+i T, \quad \mid \text { out }\rangle=S \mid \text { in }\rangle
$$

expectation value of observable: $\langle\mathrm{in}| S^{\dagger} \mathcal{O} S|\mathrm{in}\rangle=\langle\mathrm{in}| T^{\dagger} \mathcal{O} T|\mathrm{in}\rangle$

## Collider-like observable from amplitudes

[Kosower, Maybee, O'Connell (KMOC), '18]

- Classical scattering observables can be linear in the amplitude.
- Consider fixed impact parameter, $\mid$ in $\rangle \sim \int d^{4} p \exp \left(i p \cdot b_{T}\right) \psi_{1}(p)$

```
impact parameter wave packet; detail not important
```

- Consider the impulse observable $\Delta p^{\mu}$, expectation value $\langle\mathrm{in}| S^{\dagger} \mathcal{O} S \mid$ in $\rangle, S=1+i T$. Lowest order contribution $\langle\mathrm{in}| 1 \cdot \mathcal{O} \cdot i T|\mathrm{in}\rangle$.



## LO impulse - Amplitude

## Tree amplitude

We'll be sloppy with constant factors throughout this example.


## LO impulse - Phase space



Phase space $\int d^{4} q \delta^{4}\left[\left(p_{1}-q\right)^{2}-m_{1}^{2}\right] \delta^{4}\left[\left(p_{2}+q\right)^{2}-m_{2}^{2}\right]$
$\approx d^{4} q \delta^{4}\left[-2 p_{1} \cdot q\right] \delta^{4}\left[2 p_{2} \cdot q\right]$
Choose frame $p_{1}=m_{1}(1,0,0,0), p_{2}=m_{2}\left(\sqrt{1+v^{2}}, 0,0, v\right)$. Integrate $q^{0}$ and $q^{z}$ against delta functions.
$=\frac{1}{m_{1} m_{2} v} d^{2} q_{T}$

## LO impulse - Expectation value



$$
\left|\bar{p}_{1}\right\rangle \sim \int d^{4} p \exp (i p \cdot b) \psi_{1}\left(p_{1}\right)
$$

$$
\left|\bar{p}_{2}\right\rangle \sim \int d^{4} p \psi_{2}\left(p_{2}\right)
$$

wavepacket at zero impact parameter
impulse measurement
Lowest order contribution $\langle\mathrm{in}| 1 \cdot \mathcal{O} \cdot i T|\operatorname{in}\rangle \sim\left(c / q_{T}^{2}\right) q^{\mu} e^{i q_{T} \cdot b}$

$$
e^{-i\left(p_{1}-q\right) \cdot b} \quad e^{i p_{1} \cdot b}
$$

## LO impulse - Putting it together

$M \sim \frac{c}{q_{T}^{2}}+$ contract term. $\quad$ Phase space measure $=\frac{1}{m_{1} m_{2} v} d^{2} q_{T}$
impulse measurement
Lowest order contribution $\langle\mathrm{in}| 1 \cdot \mathcal{O} \cdot i T|\mathrm{in}\rangle \sim \mathcal{M} q^{\mu} e^{i q_{T} \cdot b}$ $\sum_{e^{-i\left(p_{1}-q\right) \cdot b}} e^{i p_{1} \cdot b}$

Expected impulse $=\frac{1}{m_{1} m_{2} v} \int d^{2} q_{T} M q^{\mu} e^{i q_{T} \cdot b}$
2D Fourier transform;
IR divergence has no $b$
dependence, disappears
after differentiation.
$=\frac{1}{m_{1} m_{2} v} \int d^{2} q_{T} \mathcal{M} q^{\mu} e^{i q_{T} \cdot b}=\frac{1}{m_{1} m_{2} v}\left(-i \frac{\partial}{\partial b^{\mu}}\right) \tilde{M}(b)$

## LO impulse - Result

$$
b \left\lvert\, \begin{array}{cc}
p_{1} \longrightarrow p_{1}-q \\
p_{2} \longrightarrow p_{2}+q & M \sim \frac{1}{q_{T}^{2}}\left[m_{1}^{2} m_{2}^{2}-2\left(p_{1} \cdot p_{2}\right)^{2}\right] \\
\} q \sim \hbar / b \ll\left|p_{i}\right| & +\cdots
\end{array}\right.
$$

$$
\text { Impulse }=\frac{1}{m_{1} m_{2} v}\left(-i \frac{\partial}{\partial b^{\mu}}\right) \widetilde{M}(b)=\frac{G m_{1} m_{2}}{|b|} \frac{2\left[2\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]}{v} \hat{b}^{\mu}
$$

$$
\text { where } v=\sqrt{\left(p_{1} \cdot p_{2}\right)^{2} /\left(m_{1}^{2} m_{2}^{2}\right)-1}, \quad \hat{b}^{\mu}=b^{\mu} /|b|
$$

Zero velocity limit $p_{1} \cdot p_{2}=m_{1} m_{2}$ agrees with Newtonian hyperbolic orbit.

LO impulse - compare with eikonal


LO Impulse $=\frac{1}{m_{1} m_{2} v}\left(-i \frac{\partial}{\partial b^{\mu}}\right) \widetilde{M}^{(0)}(b)$
Eikonal: $\tilde{M}(b)=\exp [i \chi(b)], \quad|q|=\partial \chi(b) / \partial b$
Agree if $\widetilde{M}(b)=\left(m_{1} m_{2} v\right) \exp \left[M^{(0)}(b) /\left(m_{1} m_{2} v\right)+\right.$ higher orders $]$.
$\hbar$ expansion - method of regions

## Expanding Feynman integrals

- One loop correction to $\Phi+\phi \rightarrow \Phi+\phi$

- External kinematics fixed, $q \sim \hbar / R \ll|p|$. But loop momentum $l$ is integrated over entire $\mathbb{R}^{4}$ - can be small or large. How do we expand?


## Method of regions

- Asymptotic series in $|q| /|p|$, to any order, is a sum of two regions:


1. Soft region, $|l| \sim|q| \ll|p|$, expand in small $|q| /|p|,|l| /|p|$.
2. Hard region, $|l| \sim|p| \gg|q|$, expand in small $|q| /|p|,|q| /|l|$, not needed for classical physics.

## Treatment of classical soft region

[Parra-Martinez, Ruf, MZ, arXiv:2005.04236]

- Symmetric parametrization

$u_{1} \cdot q=u_{2} \cdot q=0, \quad u_{1}^{2}=u_{2}^{2}=1, \quad q^{2}=t$,
$u_{1}, u_{2}=y \longleftarrow$ only nontrivial variable in expanded integrals.
Conversion: $m_{1}^{2}=p_{1}^{2}=\bar{m}_{1}^{2}+9^{2} / 4$.


## Treatment of classical soft region

[Parra-Martinez, Ruf, MZ, arXiv:2005.04236]


## Treatment of classical soft region



Soft expansion linearizes massive propagators.

Contact diagram irrelevant for long-range classical physics!

Certain subsectors are scaleless, vanish in dim. reg, for example, if we collapse $1 /(q-l)^{2}$ propagator.


Integration by parts (IBP)


$$
\begin{aligned}
& \int d^{d} l \partial_{\mu} \frac{l^{\mu}(\ldots)}{\rho_{1}^{n_{1}} \rho_{2}^{n_{2}} \rho_{3}^{n_{3}} \rho_{4}^{n_{4}}} \\
& =0
\end{aligned}
$$

Master integrals


Localization on matter poles

- Box and crossed box diagrams combine nontrivially into exponentiation of tree-level result.
$\frac{2 u_{2}, l+i 0}{2}$


$$
\frac{1}{2 u_{2}, l+i 0}+\frac{1}{-2 u_{2} \cdot l+i 0}=-2 \pi i \delta\left(2 u_{2}, \ell\right)
$$

Similar permutation sum localizes $2 \pi i \delta\left(2 u_{1}, l\right)$

## Differential equations

- Derivatives of masters reduced back to linear sum of masters, by IBP
- See external slides.

Example:


If working in soft region without truncation to potential region, RHS is a v-indep. constant,

$$
\pm=-\frac{1}{\varepsilon}\left[i \pi^{k^{\prime}}+\log \left(\sqrt{1+v^{2}}-v\right)\right]
$$

Box + crossed box $=$ cost. in both potential region and full soft region. Can we see this at the level of differential equaitons?

See also [Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21].
Combining in Feynman parametrization: Cristofoli, Damgaard, Di Vecchia, Heissenberg, '20]

$\frac{\partial}{\partial v}(v \overline{\bar{Y}})=(-1) \frac{\partial \log \left(\sqrt{1+v^{2}}-v\right)}{\partial v} \times$

$$
\Rightarrow \frac{\partial}{\partial v}(\underbrace{v \cdot I_{b o x}+v \cdot I_{x b o x}}_{\text {constant, due to localization on }})=0
$$

## NEW RESULTS FOR CONSERVATIVE DYNAMICS


$G^{6}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \quad$ Breathrough after 30+ [adapted from Mikhail Solon's slide] year hiatus.

## Phase space integrals and reverse unitarity

Setup: classical limit of observables from S-matrix. [Kosower, Maybee, O'Connell '18]

(uncut) Feynman propagator $1 /\left(p^{2}-m^{2}+i 0\right)$
cut propagtor for phase space
$2 \pi \theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$
from picking up only the +ie energy residue in Feynman propagator

## IBP \& Differential equations unchanged!

Only change boundary conditions for PEs, known as method
 of Reverse Unitarity.

Important in perturbative QCD for Riggs cross sections at NNLO and N3LO, and energy correlations in electron-positron collider event shapes.

First application of reverse unitarity to gravitational physics in [Herrmann, Mara Martinez, Ruf, MZ, 2101.07255 (PRL), 2104.03957].

We re-used LEs in canonical basis for virtual integrals in [Parra-Martinez, Ruf, MZ, '20].

## Example use of reverse unitarity


(only one Cutkosky cut, optical theorem enough)

(Virtual integrals computed via differential equations)


- Simpler integrals

More than one Cutkosky cut. Need serious use of reverse unitarity, including BEs on cut.
 etc.

## Result for radiated energy at 3rd-post-Minkowskian order

talk by Enrico Herman \& Michael Ruff

$p_{1}=m_{1} u_{1}, \sigma \equiv u_{1} \cdot u_{2}$
$\Delta R^{\mu}=\frac{G^{3} m_{1}^{2} m_{2}^{2}}{|b|^{3}} \frac{u_{1}^{\mu}+u_{2}^{\mu}}{\sigma+1} \mathcal{E}(\sigma)+\mathcal{O}\left(G^{4}\right)$.
$\mathcal{E}(\sigma)=f_{1}+f_{2} \log \left(\frac{\sigma+1}{2}\right)+f_{3} \frac{\sigma \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}$,
$f_{1}=\frac{210 \sigma^{6}-552 \sigma^{5}+339 \sigma^{4}-912 \sigma^{3}+3148 \sigma^{2}-3336 \sigma+1151}{48\left(\sigma^{2}-1\right)^{3 / 2}}$,
$f_{2}=-\frac{35 \sigma^{4}+60 \sigma^{3}-150 \sigma^{2}+76 \sigma-5}{8 \sqrt{\sigma^{2}-1}}, \quad f_{3}=\frac{\left(2 \sigma^{2}-3\right)\left(35 \sigma^{4}-30 \sigma^{2}+11\right)}{8\left(\sigma^{2}-1\right)^{3 / 2}}$

