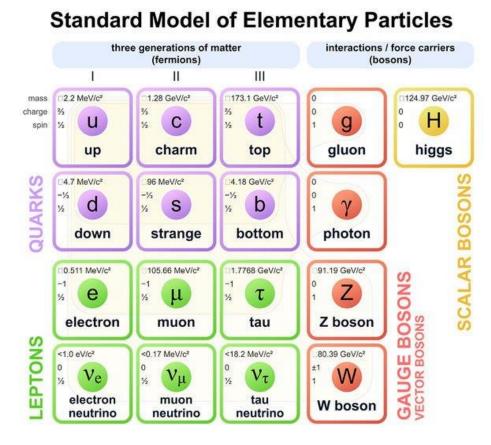
Beyond the Standard Model

1. Electroweak theories



The SM zoo is now complete

LHC discovered the Higgs boson

CMS Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) Stat. Only 🗕 Total 2016: 35.9 fb⁻¹ (13 TeV) Total (Stat. Only) 124.70 ± 0.34 (± 0.31) GeV Run 1 H $\rightarrow \gamma \gamma$ Bun 1 H \rightarrow ZZ \rightarrow 4I 125.59 ± 0.46 (± 0.42) GeV Run 1 Combined 125.07 ± 0.28 (± 0.26) GeV 2016 H→γγ 125.78 ± 0.26 (± 0.18) GeV 125.26 ± 0.21 (± 0.19) GeV $2016 H \rightarrow ZZ \rightarrow 4I$ 125.46 ± 0.16 (± 0.13) GeV 2016 Combined 125.38 ± 0.14 (± 0.11) GeV Run 1 + 2016 122 123 124 125 126 127 128 129 m_µ (GeV)

and so far h looks very SM-like

Go beyond the SM: where is the lead?

• Theory motivations

Hierarchy problem(s), origin of SM symmetries, unification, particle mass hierarchies, etc.

• Experimental `issues'

strong CP problem, neutrino oscillations, flavor `anomalies'

Astronomy/cosmology

Dark matter, dark energy, matter-antimatter asym.

• SM predictions

electroweak phase transition, precision tests,

Topics

- Higgs fine tuning problem (susy, composite, relaxation)
- BSM Exotics & collider search
- Neutrino mass (seesaw models)
- Strong CP problem & axion

Fine tuning issues

• Cosmological: $\rho_{\Lambda} \sim 10^{\text{-}122} \, \Lambda_{\text{Pl}}{}^4$

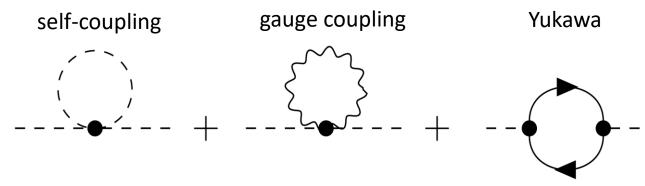
• Gauge: $\Lambda_{\rm EW} \sim 10^{-16} \Lambda_{\rm Pl}$

• Masses $m_e \sim 10^{-6} m_t$ $m_v \sim 10^{-(12+)} m_t$

The Higgs' fine tunning problem

• Large correction to the Higgs potential

$$V(H) = -\mu^2 |H|^2 + \lambda |H|^4 \qquad \langle H
angle = \begin{pmatrix} 0 \\ rac{v}{\sqrt{2}} \end{pmatrix}, \quad v^2 = rac{\mu^2}{\lambda}$$



Higgs mass correction has quadratic divergence with Λ , exceeds μ^2 for $\Lambda >>$ TeV

$$-\mu^2 \to -\mu^2 + \frac{\Lambda^2}{32\pi^2} \left[-6y_t^2 + \frac{1}{4}(9g^2 + 3g'^2) + 6\lambda \right]$$

1

Note: Quadratic divergence explained $\pi^0 \pi^+$ mass difference

- Veltman condition not easy: $\delta m_H^2 = \sum_i c_i \frac{g_{i,\star}^2}{16\pi^2} \Lambda_i^2 = 0$
- Unnatural if a new physics scale exists ($\Lambda^2_{UV} >> m_h^2$). Severe `tuning' must occur to guarantee a `small' Higgs boson mass
- Scalars generally not symmetry-protected against large corrections

$$\begin{array}{ll} \mbox{fermion}: & \delta m_{\rm f} \sim m_{\rm f} \log(\Lambda \,/m_{\rm f}) & \mbox{chiral sym.} \\ \mbox{gauge boson}: & \delta m_{\rm V}^2 \sim m_{\rm V}^2 \log(\Lambda /m_{\rm V}) & \mbox{gauge sym.} \\ \mbox{scalar(s):} & \lambda_S |H|^2 |S|^2 \longrightarrow \delta \mu^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{UV}^2 - m_S^2 \log \frac{\Lambda_{UV}^2}{m_S^2} + \mathcal{O}(m_S^2) \right] \end{array}$$

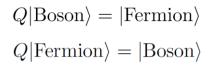
Many proposed solutions

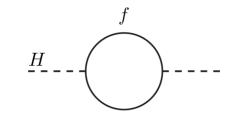
- Supersymmetry (cancellation by susy-partner)
- Composite Higgs (as a Nambu-Goldstone boson)
- Anthropics (give up)
- Warped extra dimension (dual to composite model)
- Relaxation (Dynamically rolling to bottom)
- + many others ...

For exotics, see: N.Craig. "20 ways to solve the hierarchy problem", https://indico.cern.ch/event/550030/contributions/2417761/

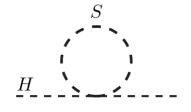
A supersymmetric solution

If some symmetry *requires* the presence of fermions and scalars, with correlated couplings $\lambda_S = |\lambda_f|^{2t}$ provide cancellation.





 $-\frac{|\lambda_f|^2}{8\pi^2}\Lambda_{\rm UV}^2$



 $\frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln(\Lambda_{\rm UV}/m_S) \right]$

fields of definite spin \rightarrow supermultiplets

$$\begin{split} \delta\phi_{i} &= \epsilon\psi_{i} \\ \text{chiral} & \delta\psi_{i\alpha} &= -i(\sigma^{\mu}\epsilon^{\dagger})_{\alpha} \nabla_{\mu}\phi_{i} + \epsilon_{\alpha}F_{i} \\ & \delta F_{i} &= -i\epsilon^{\dagger}\overline{\sigma}^{\mu}\nabla_{\mu}\psi_{i} + \sqrt{2}g(T^{a}\phi)_{i} \ \epsilon^{\dagger}\lambda^{\dagger a}. \\ & \delta A^{a}_{\mu} &= -\frac{1}{\sqrt{2}} \left(\epsilon^{\dagger}\overline{\sigma}_{\mu}\lambda^{a} + \lambda^{\dagger a}\overline{\sigma}_{\mu}\epsilon\right), \\ \text{gauge} & \delta\lambda^{a}_{\alpha} &= \frac{i}{2\sqrt{2}} (\sigma^{\mu}\overline{\sigma}^{\nu}\epsilon)_{\alpha} \ F^{a}_{\mu\nu} + \frac{1}{\sqrt{2}}\epsilon_{\alpha} \ D^{a}, \\ & \delta D^{a} &= \frac{i}{\sqrt{2}} \left(-\epsilon^{\dagger}\overline{\sigma}^{\mu}\nabla_{\mu}\lambda^{a} + \nabla_{\mu}\lambda^{\dagger a}\overline{\sigma}^{\mu}\epsilon\right). \end{split}$$

Supersymmetric Q are (1/2,0) or (0,1/2) operators under Lorentz algebra, as extension to CM- theorem

$$\begin{split} \{Q_{\alpha}, Q_{\dot{\beta}}^{\dagger}\} &= 2\sigma_{\alpha\dot{\beta}}^{\mu}P_{\mu} \quad \{Q_{\alpha}, Q_{\beta}\} = \{Q_{\dot{\alpha}}^{\dagger}, Q_{\dot{\beta}}^{\dagger}\} = 0\\ [Q_{\alpha}, P^{\mu}] &= [Q_{\dot{\alpha}}^{\dagger}, P^{\mu}] = 0\\ \{Q_{\alpha}, Q_{\beta}\} &= \{Q_{\dot{\alpha}}^{\dagger}, Q_{\dot{\beta}}^{\dagger}\} = 0\\ [Q_{\alpha}, J^{\mu\nu}] &= (\sigma^{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta} \quad \left[Q_{\dot{\alpha}}^{\dagger}, J^{\mu\nu}\right] = -Q_{\dot{\beta}}^{\dagger}(\overline{\sigma}^{\mu\nu})^{\dot{\beta}}{}_{\dot{\alpha}}\\ \text{Haag, J. Lopuszanski, and M. Sohnius, 75'} \end{split}$$

S. Coleman and J. Mandula, 67'

	ϕ	ψ	F
on-shell $(n_B = n_F = 2)$	2	2	0
off-shell $(n_B = n_F = 4)$	2	4	2
	A_{μ}	λ	D
on-shell $(n_B = n_F = 2)$	2	2	0

The supersymmetric Lagrangian.

chiral: fermions and scalars & susy partners gauge: gauge boson & susy partners

(cov. deriv. for gauged interaction)

Scalar-leriii011 iiileracti0115

scalar interactions

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + i\lambda^{\dagger a} \overline{\sigma}^{\mu} \nabla_{\mu} \lambda^a + \frac{1}{2} D^a D^a$$

 $\nabla_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} + gf^{abc}A^{b}_{\mu}\lambda^{c}$ covariant deriv.

The Superpotential (scalars)

 $W = L^i \phi_i + \frac{1}{2} M^{ij} \phi_i \phi_j + \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k.$

 $W^{ij} = \frac{\delta^2}{\delta\phi_i \delta\phi_i} W$

The scalar potential

$$\begin{split} V(\phi,\phi^{*}) &= W_{i}^{*}W^{i} + \frac{1}{2}\sum_{a}g_{a}^{2}(\phi^{*}T^{a}\phi)^{2}.\\ & \text{``F-term''} \qquad \text{``D-term'': ~ D^{a}D^{a}/2}\\ & \text{~ F^{*i}F_{i}} \qquad F_{i} = -W_{i}^{*} \qquad D^{a} = -g(\phi^{*}T^{a}\phi) \end{split}$$

Supersymmetric particle content

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(\ {f 3},\ {f 2},\ {1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{f 3},{f 1},-{2\over3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$({f 1}, {f 2}, + {1\over 2})$
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$(\ {f 1},\ {f 2},\ -{1\over 2})$

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1 , 3 , 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

Each SM chiral fermion component has a sfermion partner.

Two Higgs multiplets with fermionic partners (ensures no gauge anomaly)

SM gauge boson acquires gaugino parnters

Minimal Supersymmetric Standard Model

The MSSM superpotential

$$W_{\rm MSSM} = \overline{u} \mathbf{y}_{\mathbf{u}} Q H_u - \overline{d} \mathbf{y}_{\mathbf{d}} Q H_d - \overline{e} \mathbf{y}_{\mathbf{e}} L H_d + \mu H_u H_d \,.$$

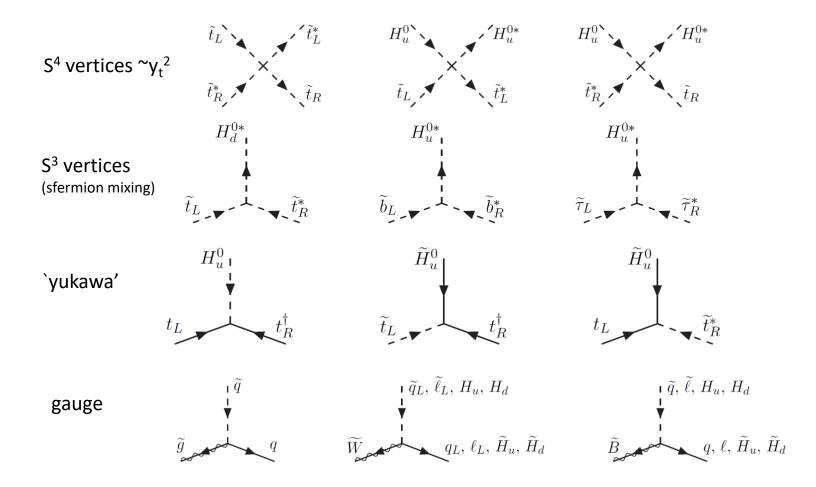
The μ term: gives higgs(ino) mass

$$-\mathcal{L}_{\text{higgsino}} = \mu (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) + \text{c.c.}$$

Higgs mass-square terms

$$= |\mu|^2 (|H_u^0|^2 + |H_u^+|^2 + |H_d^0|^2 + |H_d^-|^2).$$

H⁰: non-negative & min. at H⁰=0 Need additional (soft) terms to make non-zero min.



R-parity

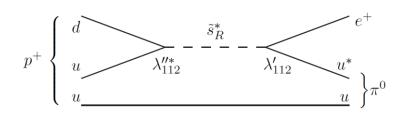
B, L # violating superpotential terms:

$$W_{\Delta L=1} = \frac{1}{2} \lambda^{ijk} L_i L_j \overline{e}_k + \lambda'^{ijk} L_i Q_j \overline{d}_k + \mu'^i L_i H_u$$
$$W_{\Delta B=1} = \frac{1}{2} \lambda''^{ijk} \overline{u}_i \overline{d}_j \overline{d}_k$$

Impose a U(1)_R that breaks to discrete Z₂

$$P_R = (-1)^{3(B-L)+2s}$$

proton decay:



$$\Gamma_{p \to e^+ \pi^0} \sim m_{\text{proton}}^5 \sum_{i=2,3} |\lambda'^{11i} \lambda''^{11i}|^2 / m_{\widetilde{d}_i}^4$$

 $R = \begin{cases} +1, & \text{for all SM particle particles}, \\ -1, & \text{for all superpartners}. \end{cases}$

Lightest Sparticle Particle (LSP), L=-1 becomes stable and can be dark matter (if neutral)

Susy is broken.

 Unbroken susy requires SM particle & partner have the same mass (unobserved)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SUSY}} + \mathcal{L}_{\mathrm{soft}}$$

Soft susy-breaking terms contain mass terms & positive dimensional coupling terms

$$\mathcal{L}_{\text{soft}} = -\left(\frac{1}{2}M_a \,\lambda^a \lambda^a + \frac{1}{6}a^{ijk}\phi_i\phi_j\phi_k + \frac{1}{2}b^{ij}\phi_i\phi_j + t^i\phi_i\right) + \text{c.c.} - (m^2)^i_j\phi^{j*}\phi_i,$$

$$\begin{array}{c} \text{gaugino} & \text{scalar} & \text{non-holomorphic} \\ \text{mass} & \text{cubic} \end{array}$$

• Susy restores m_{soft} ->0, expected contribution:

L_{soft} maintains quadratic div. cancellation Girardello & Grisaru, 82'

$$\Delta m_H^2 = m_{\rm soft}^2 \left[\frac{\lambda}{16\pi^2} \ln(\Lambda_{\rm UV}/m_{\rm soft}) + \ldots \right]$$

MSSM soft breaking terms

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}) .$$

$$\begin{array}{ll} M_1, \ M_2, \ M_3, \ \mathbf{a_u}, \ \mathbf{a_d}, \ \mathbf{a_e} \ \sim \ m_{\rm soft}, \\ \mathbf{m_Q^2}, \ \mathbf{m_L^2}, \ \mathbf{m_u^2}, \ \mathbf{m_d^2}, \ \mathbf{m_d^2}, \ m_{H_u}^2, \ m_{H_d}^2, \ b \ \sim \ m_{\rm soft}^2, \end{array} \begin{array}{ll} \text{105 new independent masses,} \\ \text{phases \& mixing angles in MSSM} \\ \text{Dimopoulos, Sutter, 95'} \end{array}$$

`soft susy-breaking universality'

 $\mathbf{m}_{\mathbf{Q}}^{2} = m_{Q}^{2} \mathbf{1}, \quad \mathbf{m}_{\overline{\mathbf{u}}}^{2} = m_{\overline{u}}^{2} \mathbf{1}, \quad \mathbf{m}_{\overline{\mathbf{d}}}^{2} = m_{\overline{d}}^{2} \mathbf{1}, \quad \mathbf{m}_{\overline{\mathbf{L}}}^{2} = m_{L}^{2} \mathbf{1}, \quad \mathbf{m}_{\overline{\mathbf{e}}}^{2} = m_{\overline{e}}^{2} \mathbf{1}. \quad \text{no flavor mixing} \\ \mathbf{a}_{\mathbf{u}} = A_{u0} \mathbf{y}_{\mathbf{u}}, \quad \mathbf{a}_{\mathbf{d}} = A_{d0} \mathbf{y}_{\mathbf{d}}, \quad \mathbf{a}_{\mathbf{e}} = A_{e0} \mathbf{y}_{\mathbf{e}}, \\ \mathrm{Im}(M_{1}), \, \mathrm{Im}(M_{2}), \, \mathrm{Im}(M_{3}), \, \mathrm{Im}(A_{u0}), \, \mathrm{Im}(A_{d0}), \, \mathrm{Im}(A_{e0}) = 0, \quad \text{no additional CPV}$

EWSB in MSSM

The MSSM Higgs potential (neutral fields, with soft terms)

b & vevs are chosen real and positive

$$\begin{split} V &= (|\mu|^2 + m_{H_u}^2) |H_u^0|^2 + (|\mu|^2 + m_{H_d}^2) |H_d^0|^2 - (b H_u^0 H_d^0 + \text{c.c.}) \\ &+ \frac{1}{8} (g^2 + g'^2) (|H_u^0|^2 - |H_d^0|^2)^2. \\ &\quad \text{`D-flat': quartic vanishes if } |H_u^0| = |H_d^0| \end{split}$$

Sensible EWSB requires:

Positive quadratic in D-flat:

$$2b < 2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2.$$

Existence of a negative square-mass at $H_u^0 = H_d^0 = 0$

$$b^2 > (|\mu|^2 + m_{H_u}^2)(|\mu|^2 + m_{H_d}^2).$$

 $m_{Hu}^2 \neq m_{Hd}^2$ at least @ EW scale

Potential minimization $\partial V / \partial H_u^0 = \partial V / \partial H_d^0 = 0$ gives

$$m_{H_u}^2 + |\mu|^2 - b \cot \beta - (m_Z^2/2) \cos(2\beta) = 0,$$

$$m_{H_d}^2 + |\mu|^2 - b \tan \beta + (m_Z^2/2) \cos(2\beta) = 0.$$

$$\sin(2\beta) = \frac{2b}{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}, \qquad 2m_Z^2/(g^2 + g'^2) = v_u^2 + v_d^2$$
$$m_Z^2 = \frac{|m_{H_d}^2 - m_{H_u}^2|}{\sqrt{1 - \sin^2(2\beta)}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2. \qquad \tan\beta \equiv v_u/v_d$$

large tan *b* limit:

$$m_Z^2 = -2(m_{H_u}^2 + |\mu|^2) + \frac{2}{\tan^2 \beta}(m_{H_d}^2 - m_{H_u}^2) + \mathcal{O}(1/\tan^4 \beta)$$

The Higgs masses (tree)

$$V = \frac{1}{2}m_{h^0}^2(h^0)^2 + \frac{1}{2}m_{H^0}^2(H^0)^2 + \frac{1}{2}m_{G^0}^2(G^0)^2 + \frac{1}{2}m_{A^0}^2(A^0)^2 + m_{G^{\pm}}^2|G^+|^2 + m_{H^{\pm}}^2|H^+|^2 + \dots,$$

$$\begin{pmatrix} H_u^+ \\ H_d^{-*} \end{pmatrix} = R_{\beta_{\pm}} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \begin{pmatrix} v_u \\ v_d \end{pmatrix} + \frac{1}{\sqrt{2}} R_{\alpha} \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} + \frac{i}{\sqrt{2}} R_{\beta_0} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix}$$

At tree level, $m_{G0}^2=0$, $\beta_0 = \beta_{\pm} = \beta$

Physical scalars: h^0 , H^0 , A^0 , H^+

generally heavy except h⁰. At tree-level:

 $m_{h^0} < m_Z |\cos(2\beta)|$

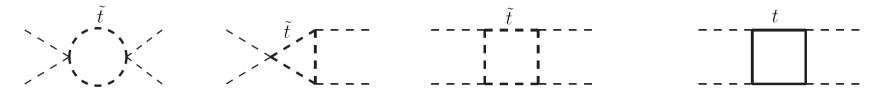
h^o mass needs a lift. (measured at 125 GeV)

$$\begin{split} m_{A^0}^2 &= \ 2b/\sin(2\beta) = \ 2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2 \\ m_{h^0,H^0}^2 &= \ \frac{1}{2} \Big(m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_Z^2 m_{A^0}^2 \sin^2(2\beta)} \Big), \\ m_{H^\pm}^2 &= \ m_{A^0}^2 + m_W^2. \\ \mu \, \& \, \text{soft masses} \end{split}$$

Loop correction

stop correction to h⁰ mass $\Delta(m_{h^0}^2) = \frac{h^0}{1 - 1} + \frac{h^0}{1 - 1} +$

stop correction to quartic



Large stop contribution limit:

$$\Delta(m_{h^0}^2) = \frac{3}{4\pi^2} \cos^2 \alpha \ y_t^2 m_t^2 \left[\ln(m_{\tilde{t}_1} m_{\tilde{t}_2} / m_t^2) + \Delta_{\text{threshold}} \right],$$

Last term from stop mixing, maximize with large $\tilde{t}_L \ \tilde{t}_R$ mixing. For TeV sparticles, $m_{h^0} \leq 135 \text{ GeV}$ $\Delta_{\text{threshold}} = c_{\tilde{t}}^2 s_{\tilde{t}}^2 [(m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)/m_t^2] \ln(m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2) + c_{\tilde{t}}^4 s_{\tilde{t}}^4 \left[(m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)^2 - \frac{1}{2} (m_{\tilde{t}_2}^4 - m_{\tilde{t}_1}^4) \ln(m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2) \right] /m_t^4$

For review, see P. Draper and H. Rzehak, 1601.01890

`Next to' MSSM (NMSSM)

Addition of a singlet to the MSSM. SH_uH_d term + self couplings Nilles, Srednicki, Wyler, 83', Fr`ere, Jones, Raby, 83' Derendinger,Savoy, 84'

$$W_{\rm NMSSM} = W_{\rm MSSM} + \lambda SH_u H_d + \frac{1}{3}\kappa S^3 + \frac{1}{2}\mu_S S^2$$

and extra soft-terms

$$\mathcal{L}_{\text{soft}}^{\text{NMSSM}} = \mathcal{L}_{\text{soft}}^{\text{MSSM}} - (a_{\lambda}SH_{u}H_{d} - \frac{1}{3}a_{\kappa}S^{3} + \frac{1}{2}b_{S}S^{2} + tS + \text{c.c.}) - m_{S}^{2}|S|^{2}$$

A solution to the mu-problem:

in the limit of $\mu_{MSSM} = \mu_S = 0$, $b_{MSSM} = b_S = 0$, t=0 (can be enforced by a Z₃ on all chiral multiplets) Spontaneous EWSB occurs at nonzero <s>= v_s `Dynamically' generating an effective $\mu_{eff} = \lambda v_s$.

tree level correction to h⁰ mass (via singlet |F|²)

$$\Delta(m_{h^0}^2) \leq \lambda^2 v^2 \sin^2(2\beta)$$

Bonus: a global U(1)_{PQ} emerges when setting μ =0. EWSB \leftrightarrow Strong CP

some features in NMSSM...

• Additional (to MSSM) singlet H,A and singlino

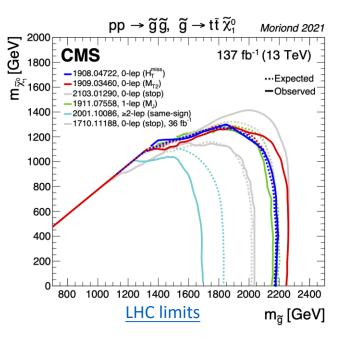
→Self-interacting DM

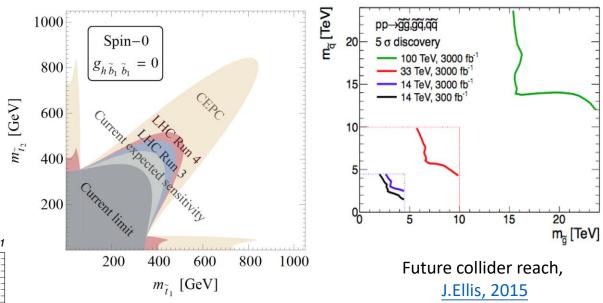
light as $\kappa \rightarrow 0$, dark as $\lambda \rightarrow 0$ (S decouples)

- Large λ gets a Landau pole $\lambda \sim 0.7$ for $\Lambda_{pole} \sim \Lambda_{GUT}$ $\lambda \sim 2$ for $\Lambda_{pole} \sim 10$ TeV " λ -susy"
- Singlet scalar may give mass to neutrinos (via seesaw)
- Higgs coupling to SM (g_{hVV}, g_{hff}) , suppressed by doublet-singlet mixing.

Where is susy?

- Lots of sparticles.
- Extra (pseudo)/scalars.
- Dark matter candidate?
- Virtual corrections? (g-2, Higgs precisions, etc.)



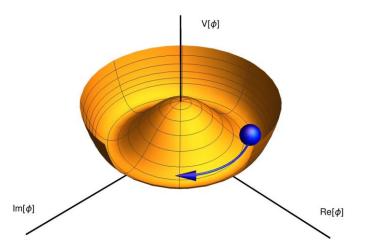


CEPC: stop correction to effective hgg, hγγ couplings. Essig,Meade,Ramani, Zhong, 1707.03399

The composite Higgs solution

```
Georgi, Kaplan `84
```

- A global symmetry **G** breaks to a subgroup **H** at some scale f , the Higgs boson lives in the coset **G/H**.
- h is a Nambu-Goldstone boson, shift symmetry protects m_h.
- $m_h \neq 0$ requires breaking of **G**.



Sketch of (Goldstone) mode in degenerate vacua (C.Csáki 18)

A toy composite scenario

SU(3)/SU(2) : Global SU(3) breaks into SU(2) by a vac. condensate Σ_0

$$\Sigma_0 = \begin{pmatrix} 0\\ 0\\ f \end{pmatrix}$$

One NGB for each broken generator:

 $SU(3): 8 \rightarrow SU(2): 3$

5 NGBs π^a (a=1~5) \rightarrow one SU(2) doublet H and one singlet S Dynamics below Λ =4 π f described a nonlinear sigma model (nlsm)

$$\Sigma(x) = \frac{1}{f} \exp\left(\frac{2i\pi^a(x)X^a}{f}\right) \Sigma_0$$
 X^a: broken generators

 $2\pi^{a}(x)X^{a} = \begin{pmatrix} 0 & H(x) \\ H^{\dagger}(x) & 0 \end{pmatrix} + \frac{s(x)}{2\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$

Has only derivatives if the global SU(3) is exact. Leading term contains lowest derivative terms:

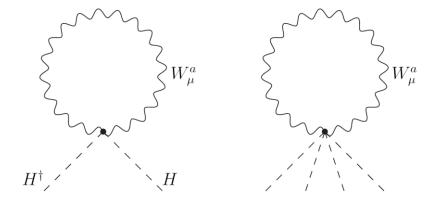
$$\mathcal{L}_{\rm kin} = f^2 \,\partial_\mu \Sigma^\dagger \partial^\mu \Sigma$$

see M.Perelstein, 05'

• Gauging the SU(2) subgroup to break global SU(3)

$$\partial_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} - igW^a_{\mu}(x)Q^a$$

Now the SU(3)/SU(2) effective nlsm Lagrangian contains SU(2) gauge interactions for H, and derives quadratic and quartic diagrams **at loop level**



 W^{a}_{μ} are the SU(2) gauge fields, Q^a (a=1...3) are gauged generators:

$$Q^a = \left(\begin{array}{cc} \sigma^a/2 & 0\\ 0 & 0 \end{array}\right)$$

Both diagrams are quadratic with cut-off $\Lambda^{\sim}4\pi f$

$$\mu^{2} = c \frac{g^{2}}{16\pi^{2}} \Lambda^{2} \sim cg^{2}f^{2}, \quad \lambda = c' \frac{g^{2}}{f^{2}} \frac{1}{16\pi^{2}} \Lambda^{2} \sim c'g^{2} \longrightarrow$$

EWSB induced by physics at scale f.

$$m_H = \sqrt{2}|\mu| \approx \sqrt{c}gf$$

for large f, natural Higgs mass seems heavy. $m_H = \sqrt{2}|\mu| \approx \sqrt{c}gf$

$$\mathcal{O}_1 = \frac{1}{\Lambda^2} \left| H^{\dagger} D_{\mu} H \right|^2, \quad \mathcal{O}_2 = \frac{1}{\Lambda^2} \left(H^{\dagger} \sigma^a H \right) W^a_{\mu\nu} B^{\mu\nu}$$

+ Problem terms:

EW precision test: $\Lambda > O(10)$ TeV

The `little hierarchy' problem

Collective Symmetry Breaking:

Consider a product of multiple global $G_1 x G_2 x...$, each has an SU(2)xU(1) subgroup. Each G_i commutes with one subgroup of G that acts nonlinearly on the Higgs.

- → All G_i subgroups must be **collectively gauged** to avoid leaving an unbroken global symmetry that makes the Higgs massless.
- \rightarrow Non-derivative terms proportional to the product of all G_i's gauge subgroup couplings
- → Can also fix the fermion contribution: must involve all Yukawa(s) if each preserves some global symmetry.

The littlest Higgs model SU(5)/SO(5)

N. Arkani-Hamed, A.Cohen, E.Katz and A.E.Nelson, 2002'

• An SU(5)/SO(5) non-linear sigma model, SU(5) spontaneoulsy breaks to SO(5) by

$$\Sigma_0 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

24 – 10 = 14 broken generators, thus 14 NGBs,

$$\Sigma(x) = e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f} = e^{2i\Pi/f} \Sigma_0$$
$$\Pi(x) = \sum_{a=1}^{14} \pi^a(x) X^a \qquad Q$$

global symmetry is explicitly broken by gauging $[SU(2) \times U(1)]^2$ subgroup of the SU(5)

$$\mathcal{L}_{\rm kin} = \frac{f^2}{8} \mathrm{Tr}(D_{\mu}\Sigma) (D^{\mu}\Sigma)^{\dagger}$$

$$\partial_{\mu}\Sigma \to D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\sum_{j=1}^{2} \left[g_{j}W^{a}_{j\mu}(Q^{a}_{j}\Sigma + \Sigma Q^{aT}_{j}) + g'_{j}B_{j\mu}(Y_{j}\Sigma + \Sigma Y_{j}) \right]$$

$$Q_1^a = \begin{pmatrix} \sigma^a/2 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
$$Q_2^a = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -\sigma^{a*}/2 \end{pmatrix}$$

[SU(2)xU(1)]² first breaks into diagonal SU(2)xU(1). Then the latter breaks at EW scale.

$$g = \frac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}, \quad g' = \frac{g'_1 g'_2}{\sqrt{g'_1^2 + g'_2^2}} \qquad \qquad \tan \psi = \frac{g_2}{g_1}, \quad \tan \psi' = \frac{g'_2}{g'_1}$$

One copy of heavy gauge bosons acquire f-scale masses (B_H and W_H)

$$M(W_H) = \frac{g}{\sin 2\psi} f, \quad M(B_H) = \frac{g'}{\sqrt{5}\sin 2\psi'} f$$

 $W_H^a = -\cos\psi W_1^a + \sin\psi W_2^a, \quad B_H = -\cos\psi' B_1 + \sin\psi' B_2$

and a copy of light gauge bosons

$$W_L^a = \sin \psi W_1^a + \cos \psi W_2^a, \quad B_L = \sin \psi' B_1 + \cos \psi' B_2$$

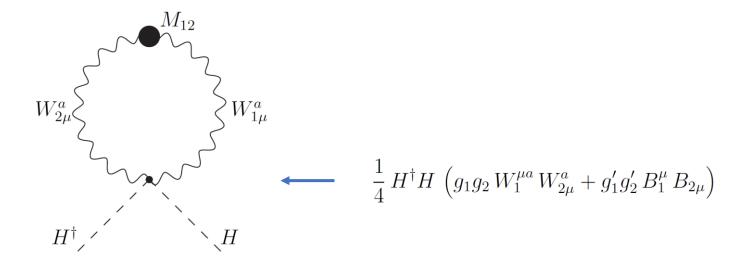
The pNGBs:

$$\Pi = \begin{pmatrix} -\frac{\omega^0}{2} - \frac{\eta}{\sqrt{20}} & -\omega^+/\sqrt{2} & H^+/\sqrt{2} & -i\phi^{++} & -i\frac{\phi^+}{\sqrt{2}} \\ -\omega^-/\sqrt{2} & \omega^0/2 - \eta/\sqrt{20} & H^0/\sqrt{2} & -i\frac{\phi^+}{\sqrt{2}} & \frac{-i\phi^0+\phi_p^0}{\sqrt{2}} \\ H^-/\sqrt{2} & H^{0*}/\sqrt{2} & \sqrt{4/5\eta} & H^+/\sqrt{2} & H^0/\sqrt{2} \\ i\phi^{--} & i\frac{\phi^-}{\sqrt{2}} & H^-/\sqrt{2} & -\omega^0/2 - \eta/\sqrt{20} & -\omega^-/\sqrt{2} \\ i\frac{\phi^-}{\sqrt{2}} & \frac{i\phi^0+\phi_p^0}{\sqrt{2}} & H^{0*}/\sqrt{2} & -\omega^+/\sqrt{2} & \frac{\omega^0}{2} - \frac{\eta}{\sqrt{20}} \end{pmatrix},$$

	SU(2)	U(1)
η*	1	0
ω*	3	0
н	2	1/2
φ	3	1

Collective breaking:

each Q_{i}^{a} , Y_{i} (i=1,2) generator commutes with an SU(3) inside SU(5).

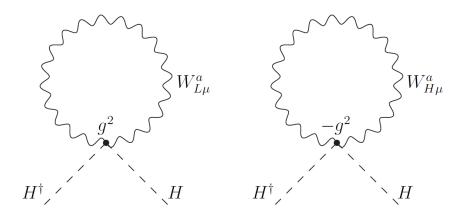


 \sim log divergence with Λ

Any diagram renormalizing the Higgs mass vanishes unless involves both g_1 and g_2 .

Couplings written in mass eigenstates W_L , W_H :

$$\frac{1}{4} H^{\dagger} H \Big(g^2 (W_{L\mu}^a W_L^{\mu a} - W_{H\mu}^a W_H^{\mu a} - 2 \cot 2\psi W_{H\mu}^a W_L^{\mu a}) + g'^2 (B_{L\mu} B_L^{\mu} - B_{H\mu} B_H^{\mu} - 2 \cot 2\psi' B_{H\mu} B_L^{\mu}) \Big).$$



 $\begin{array}{l} \mbox{quadratic} \sim \Lambda^2 \mbox{ cancel} \\ \mbox{due to removal of diagonal } (W_i W_i) \\ \mbox{couplings by collecting breaking} \end{array}$

Extend top Yukawa to incorporate CSB.

$$q_{3L} = (u_L, b_L)^T \quad \chi_L = \left(\begin{array}{c} \sigma_2 q_{3L} \\ U_L \end{array}\right)$$

$$\mathcal{L}_{\rm top} = -\frac{\lambda_1}{2} f \, \chi_{Li}^{\dagger} \epsilon_{ijk} \epsilon_{mn} \Sigma_{jm} \Sigma_{kn} u_{3R} - \lambda_2 f \, U_L^{\dagger} U_R + \text{h.c.}$$

 Σ_{im} denotes the 3×2 upper-right block of Σ , (i, j, k =1,2,3; m,n = 4,5),

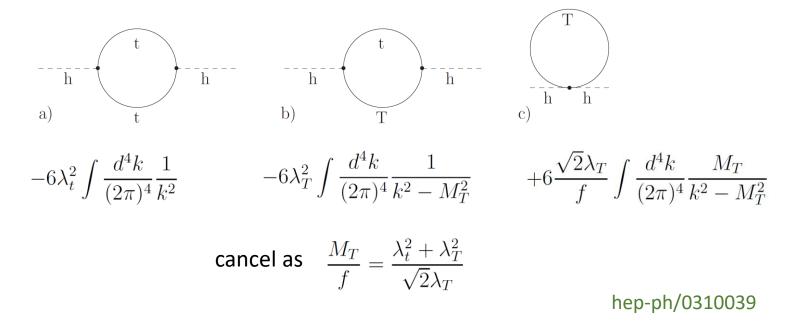
T acquires f scale mass. Higgs decouples if $\lambda_1=0$; Higgs is NGB if $\lambda_2=0$

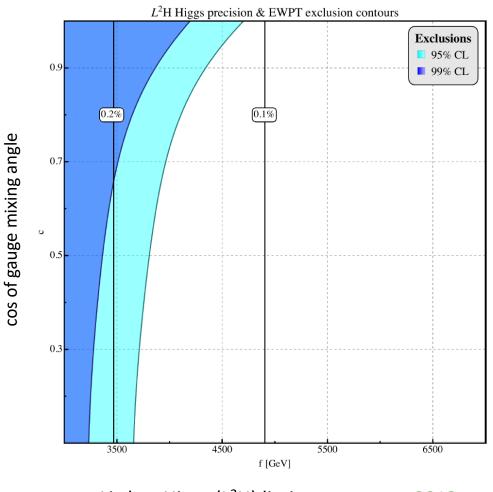
$$t_L = u_L, \qquad t_R = \frac{\lambda_2 u_{3R} - \lambda_1 U_R}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$
$$T_L = U_L, \qquad T_R = \frac{\lambda_1 u_{3R} + \lambda_2 U_R}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$

Top Yukawas, etc.

$$\begin{split} \lambda_1 \left(\sqrt{2} q_L^{\dagger} \tilde{H} - \frac{1}{f} H^{\dagger} H U_L^{\dagger} \right) u_{3R} + \text{h.c.} & \lambda_t = \frac{\sqrt{2} \lambda_1 \lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}, \quad \lambda_T = \frac{\sqrt{2} \lambda_1^2}{\sqrt{\lambda_1^2 + \lambda_2^2}} \\ = \lambda_t q_L^{\dagger} \tilde{H} t_R + \lambda_T q_L^{\dagger} \tilde{H} T_R - \frac{1}{\sqrt{2} f} (H^{\dagger} H) T_L^{\dagger} (\lambda_T T_R + \lambda_t t_R) + \text{h.c.} \end{split}$$

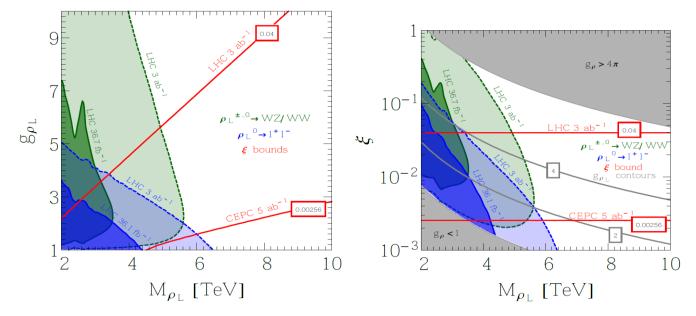
Mass eigenstate diagrams





Littlest Higgs (L²H) limits, snowmass 2013 Less constrained in LH with T-parity

- For composite Higgs reviews, see <u>1512.00468</u>, <u>2002.04914</u>, etc
- Intriguing application of the pion's success story for the EW sector
- as a pNGB, generally not too far below Λ . (LHC: $m_h = 125 \text{ GeV}$)
- New physics at Λ: Heavy composites, heavy gauge bosons, etc. 1805.01476
- EW precision tests. (LEP: typically $\Lambda > 5-10 \text{ TeV}$) \rightarrow less with discrete T-parity
- Higgs precision tests? (coming with future lepton colliders) <u>1709.06103</u>, <u>1502.01701</u>



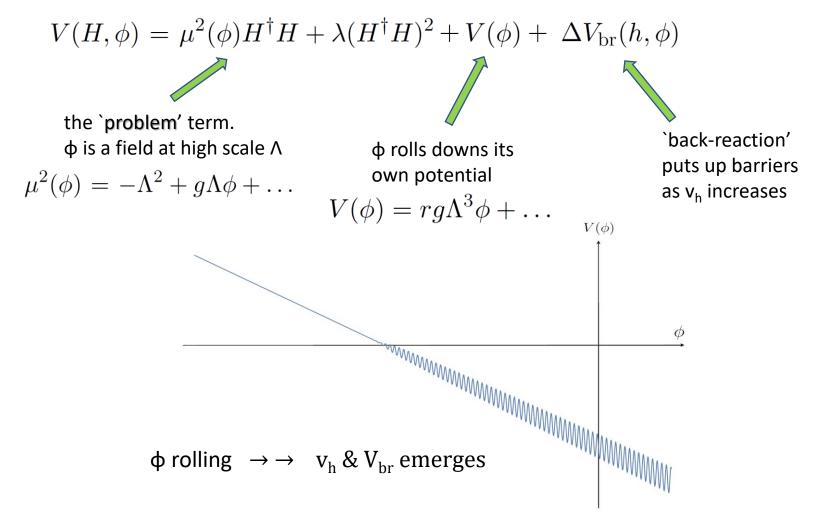
minimal SO(5)/SO(4) coset

$$\xi = \frac{g_{\rho}^2}{m_{\rho}^2} v^2$$
$$m_{\rho} \sim g_{\rho} f$$

from <u>CEPC whitepaper</u>

A cosmic relaxation of hierarchy?

Graham, Kaplan, Rajendran, 15'



SSB: Rolling of ϕ makes quadratic term more negative and causes Higgs vev $\neq 0$.

Why EW scale: V_{br} must `know' exactly where to hit brake.

$$\Delta V_{\rm br}(h,\phi) = -\tilde{M}^{4-j}\hat{h}^j \cos\left(\frac{\phi}{f}\right)$$

 ϕ gets an axionic potential from a strong sector (QCD or new physics), where the fermions get mass from v_h .

axionic potential magnitude increases with $v_{\rm h}$, so at some point ϕ gets stuck.

QCD-axion model:
$$\Delta V_{\rm br} \simeq -m_u \cos \frac{\phi}{f} \langle \bar{q}q \rangle \simeq -4\pi f_\pi^3 m_u \cos \frac{\phi}{f}$$

issue: relaxation doesn't guarantee stopping at $\phi/f \rightarrow 0$

techniquarks

$$\Lambda_{\rm br}^4 \simeq \frac{y v'^3 v_H}{\sqrt{2}}$$

see 1610.02025 for review

New strong sector near EW scale?

EW symmetric condensates $\Delta V_{\rm br} \simeq -\frac{4\pi f_{\pi'}^3 y_1 y_2 \hat{h}^2}{m_L} \cos \frac{\phi}{f}$

A new light boson mode (relaxion)

minimizing the potential

$$\begin{split} V &= \left[-\Lambda^2 + g\Lambda\phi + \dots \right] \hat{h}^2 + \lambda \hat{h}^4 + rg\Lambda^3\phi + rg^2\Lambda^2\phi^2 \\ &- \tilde{M}^3 \hat{h} \cos\left(\frac{\phi}{f}\right) \qquad \text{(j=1 model)} \end{split}$$

near expected vev(s) yields:

$$\lambda v_H^2 - \Lambda^2 + g\Lambda\phi_0 - \frac{\tilde{M}^3}{\sqrt{2}v_H}\cos\left(\frac{\phi_0}{f}\right) = 0$$
$$rg\Lambda^3 + 2rg^2\Lambda^2\phi_0 + \frac{g\Lambda v_H^2}{2} + \frac{\tilde{M}^3v_H}{\sqrt{2}f}\sin\left(\frac{\phi_0}{f}\right) = 0$$

The mass matrix

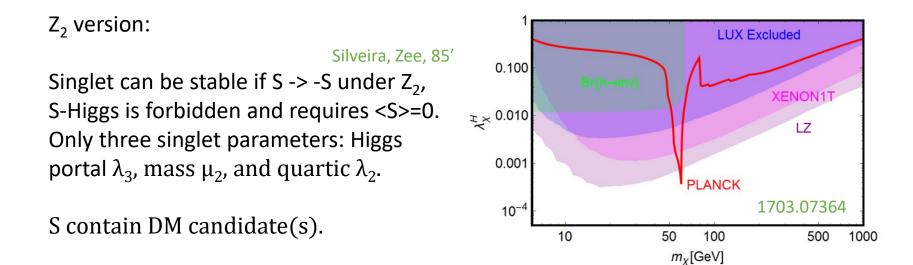
 $\phi = \phi_0 + \phi', \qquad \hat{h} = \frac{v_H + h'}{\sqrt{2}}$

Extended Higgs - Singlet

Scalar potential with an additional SM singlet scalar

$$V(\phi, S) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2 + a_1 S + \mu_2^2 S^2 + \kappa S^3 + \lambda_2 S^4 + \lambda_3 (\phi^{\dagger} \phi) S^2$$

*Additional h⁰ and A emerge. The 125 GeV eigenstate's coupling to SM reduces due to mixing ~ $\cos^2 \alpha$, branching ratios are unchanged. *If additional h0 and A are light, h₂(125) -> h₁h₁, AA are possible.



Extended Higgs – 2HDM

The 2HDM potential (CP-invariant)

 m_{12} , $\lambda_{5,6,7}$ may be complex: mass eigenstates not CP eigenstates.

$$\begin{split} V(\phi_1,\phi_2) &= m_{11}^2 \,\phi_1^{\dagger} \phi_1 + m_{22}^2 \,\phi_2^{\dagger} \phi_2 - \left[m_{12}^2 \,\phi_1^{\dagger} \phi_2 + \text{h.c.} \right] \\ &+ \frac{\lambda_1}{2} \,(\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} \,(\phi_2^{\dagger} \phi_2)^2 + \lambda_3 \,(\phi_1^{\dagger} \phi_1) \,(\phi_2^{\dagger} \phi_2) + \lambda_4 \,|\phi_1^{\dagger} \,\phi_2|^2 \\ &+ \left[\frac{\lambda_5}{2} \,(\phi_1^{\dagger} \phi_2)^2 + \lambda_6 \,(\phi_1^{\dagger} \phi_1) \,(\phi_1^{\dagger} \phi_2) + \lambda_7 \,(\phi_2^{\dagger} \phi_2) \,(\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] \end{split}$$

*Additional physical states: one neutral scalar, charged scalar, one pseudoscalar

$$\begin{split} h^0 = &\sqrt{2} \left[-\operatorname{Re}(\phi_1^0 - v_1) \sin \alpha + \operatorname{Re}(\phi_2^0 - v_2) \cos \alpha \right] \\ H^0 = &\sqrt{2} \left[\operatorname{Re}(\phi_1^0 - v_1) \cos \alpha + \operatorname{Re}(\phi_2^0 - v_2) \sin \alpha \right] , \\ \tan \beta \equiv t_\beta = v_2/v_1 \\ m_{A^0}^2 = \frac{m_{12}^2}{s_\beta c_\beta} - \frac{v^2}{2} \left[\lambda_4 + \lambda_5 + \frac{\lambda_6}{t_\beta} + \lambda_7 t_\beta \right] \\ m_{A^0}^2 = \frac{m_{12}^2}{s_\beta c_\beta} - \frac{v^2}{2} \left[2\lambda_5 + \frac{\lambda_6}{t_\beta} + \lambda_7 t_\beta \right] , \end{split}$$

2HDM: rich pheno with collider & precision tests.

The light Higgs coupling to gauge bosons scales as

$$\frac{g_{VVh^0}}{g_V^{\rm SM}} = \sin(\beta - \alpha)$$

	h^0	H^0	A^0
$rac{g_{VV\phi}}{g_V^{ m SM}}$	$s_{eta-lpha}$	$c_{eta-lpha}$	0
$rac{y_t}{y_t^{ extsf{SM}}}$	$rac{c_lpha}{s_eta}$	$rac{s_lpha}{s_eta}$	$rac{1}{t_eta}$
$rac{y_b}{y_b^{ extsf{SM}}}$	$-\frac{\sin(\alpha-\gamma_b)}{\cos(\beta-\gamma_b)}$	$\frac{\cos(\alpha - \gamma_b)}{\cos(\beta - \gamma_b)}$	$\tan(\beta - \gamma_b)$
$rac{y_{ au}}{y_{ au}^{ ext{SM}}}$	$-\frac{\sin(\alpha-\gamma_{\tau})}{\cos(\beta-\gamma_{\tau})}$	$\frac{\cos(\alpha - \gamma_{\tau})}{\cos(\beta - \gamma_{\tau})}$	$\tan(\beta - \gamma_{\tau})$

Natural flavor conservation requires one fermion family couple to only one doublet. Canonical schemes:

	<i>u</i> -type	<i>d</i> -type	leptons
type I (T1)	Φ_2	Φ_2	Φ_2
type II (T2)	Φ_2	Φ_1	Φ_1
lepton-specific	Φ_2	Φ_2	Φ_1
flipped	Φ_2	Φ_1	Φ_2

- type-I, where all fermions only couple to ϕ_2 ;
- type-II, where up-type (down-type) fermions couple exclusively to ϕ_2 (ϕ_1);
- lepton-specific, with a type-I quark sector and a type-II lepton sector;
- flipped, with a type-II quark sector and a type-I lepton sector.

Extended Higgs – Triplet

Two $U(1)_{\gamma}$ assignments:

$$\xi = \begin{pmatrix} \xi^+ \\ \xi^0 + v_{\xi} \\ \xi^- \end{pmatrix}$$
$$\chi = \begin{pmatrix} \chi^{++} \\ \chi^+ \\ \chi^0 = v_{\chi} + (h_{\chi} + ia_{\chi})/\sqrt{2} \end{pmatrix}$$

real scalar, $U(1)_{\gamma} = 0$

complex, $U(1)_{\gamma} = 1$

Triplet vevs contribute to gauge boson masses

$$M_W^2 = \frac{g^2}{4} \left(v_\phi^2 + 4v_\chi^2 + 4v_\xi^2 \right)$$
$$M_Z^2 = \frac{g^2}{4c_W^2} \left(v_\phi^2 + 8v_\chi^2 \right) ,$$

breaks custodial SU(2)_V
$$\rho = \frac{M_W^2}{c_W^2 M_Z^2} = \frac{v^2 + 4(v_\xi^2 + v_\chi^2)}{v^2 + 8v_\chi^2}$$

(likely) in tension with EWPD

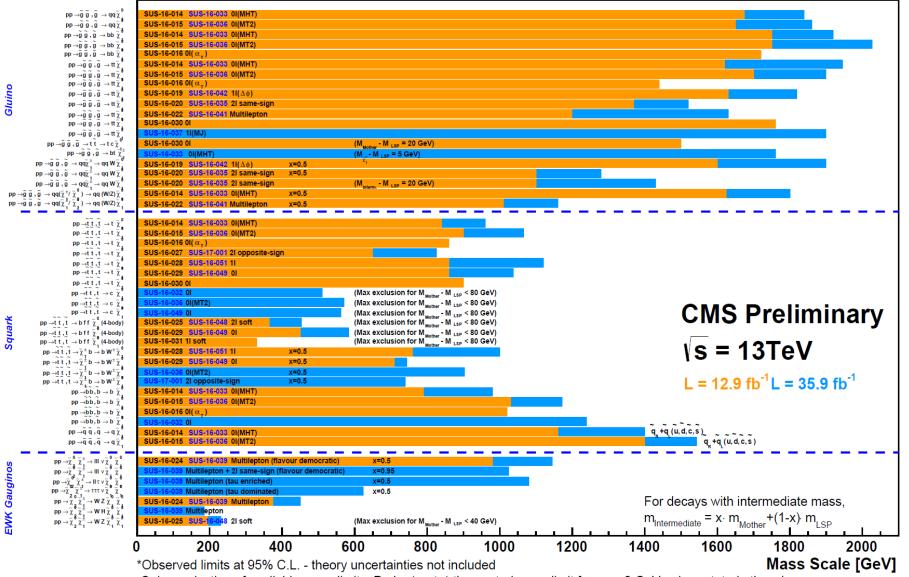
Georgi-Machacek,85'

A $v_{\xi} = v_{\chi}$ scenario protects custodial sym. and evades EWPD.

Can generate neutrino mass – appears in Type-II seesaw.

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

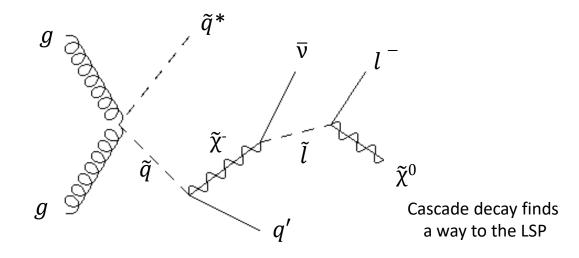


Only a selection of available mass limits. Probe *up to* the quoted mass limit for me ≈0 GeV unless stated otherwise

SUSY search @ pp

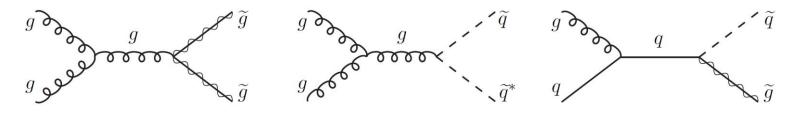
- Colored sparticles: squarks/gluino -> strong production.
- EW gauginos, sleptons -> weak production.
- Extra Higgs -> strong production (via loop), weak VBF, decays, etc.
- LSP dark matter -> weak production/decays. (missing energy)

A susy cascade event

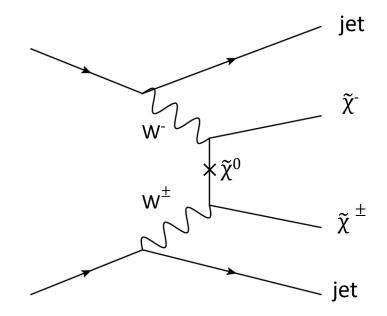


Squark diagram in QCD production

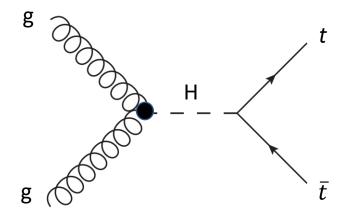
+ t-channel diagrams, etc



Weak VBF production of charginos

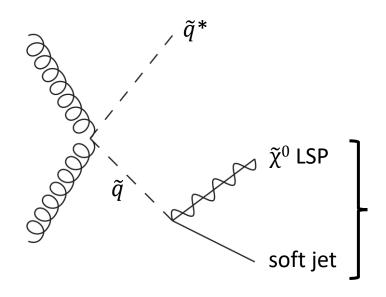


Heavy resonance



Large top Yukawa leads to large resonance width

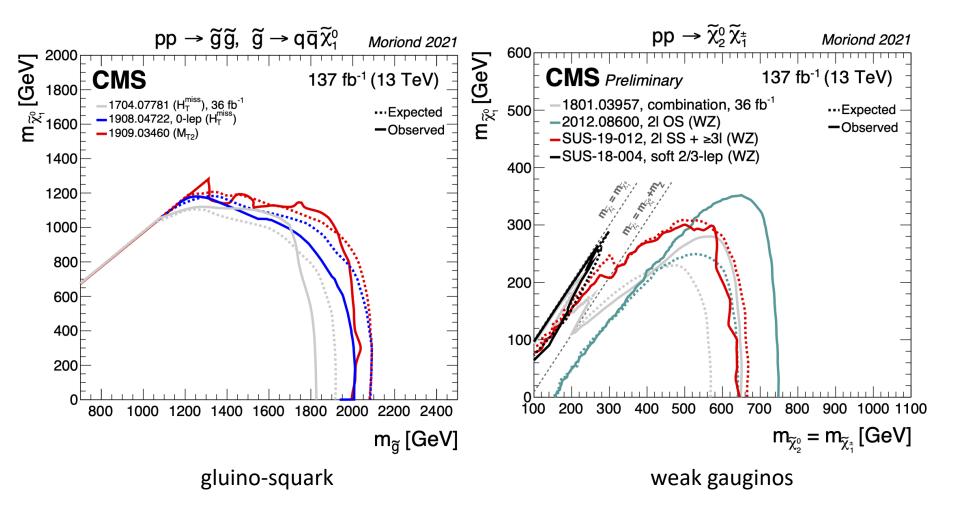
Issue with LSP: `Compressed' scenario



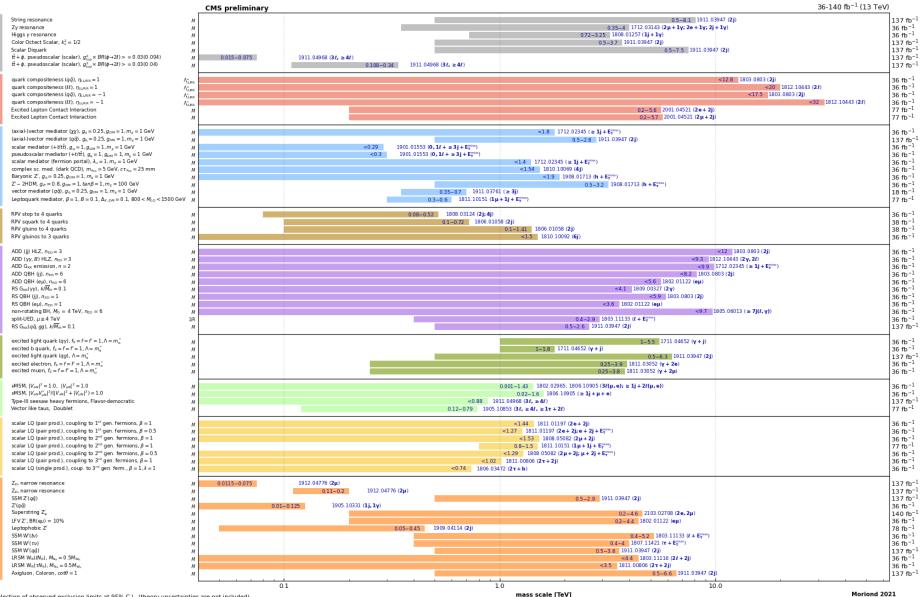
if LSP mass too close to squark's, jet has very low energy.

Entire system will be missing.

sparticle limits



Overview of CMS EXO results



Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included)

Contact

excited

Heavy

ept