

IHEP EPD Seminar (Jan 9th, 2020)

Long-lived Particles in Standard Model and Beyond

¹ Argonne National Laboratory

OF Office of Science

Argonne Argonational Laboratory

LHC and ATLAS and CMS

CMS

Geneva Airport CERN

Physics Programs in ATLAS and CMS

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019									
	Model	<i>ℓ</i> , γ	Jets †	E_{T}^{miss}	∫£ dt[fb	⁻¹] Limit	<i>j2.ut</i> = (c	5.2 - 139/10	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ el $2 J$ $\geq 1 b, \geq 1 J,$ $\geq 2 b, \geq 3$	Yes - - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D M Ms M Mth M Mth M Mth M Mth M GKK mass 4.1 TeV GKK mass 2.3 TeV GKK mass 1.6 TeV gKK mass 3.8 TeV KK mass 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ k/\overline{M}_{Pl} &= 1.0 \\ \Gamma/m &= 15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to tt \\ \mathrm{SSM}\ W' \to \ell\nu \\ \mathrm{SSM}\ W' \to \tau\nu \\ \mathrm{HVT}\ V' \to WZ \to qqqq \ \mathrm{model}\ \mathrm{B} \\ \mathrm{HVT}\ V' \to WH/ZH \ \mathrm{model}\ \mathrm{B} \\ \mathrm{LRSM}\ W_R \to tb \\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \end{array}$ multi-channe 2 \mu \\ \end{array}	_ 2 b ≥ 1 b, ≥ 1J, _ 2 J el el 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 T W' mass 3.7 TeV V' mass 3.6 TeV V' mass 3.6 TeV V' mass 3.6 TeV V' mass 3.6 TeV V' mass 5.0 TeV	ſ ſeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
C	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j 	– – Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
DM	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e,μ Λ) 0 e,μ 0 e,μ 0-1 e,μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} 1.55 TeV m _{med} 1.67 TeV M₄ 700 GeV m _φ 3.4 TeV		g_q =0.25, g_{χ} =1.0, $m(\chi)$ = 1 GeV g =1.0, $m(\chi)$ = 1 GeV $m(\chi)$ < 150 GeV γ = 0.4, λ = 0.2, $m(\chi)$ = 10 GeV	1711.03301 1711.03301 1608.02372 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> , μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ ^u mass 1.03 TeV LQ ^d mass 970 GeV		$egin{aligned} eta &= 1\ eta &= 1\ \mathcal{B}(\mathrm{LQ}_3^u o b au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o t au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o t au) &= 0 \end{aligned}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe 2(SS)/≥3 e, 1 e, μ 0 e,μ, 2 γ 1 e, μ	el el $\mu \ge 1$ b, ≥ 1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	i Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	_ 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 q* mass 5.3 TeV p* mass 2.6 TeV b* mass 2.6 TeV ℓ* mass 3.0 TeV v* mass 1.6 TeV	7 TeV V	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 22 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$1 e, \mu 2 \mu 2,3,4 e, \mu (St 3 e, \mu, \tau - - = 13 TeV tial data$	≥ 2 j 2 j S) - - - - √s = 1	Yes - - 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>] 1/	$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	par			ald			I V	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

- Over the past decade, both CMS and ATLAS have produced a large number of interesting results
- This rich table comes from just one physics group (EXOTICS) in one collaboration (ATLAS)!
- What have I done?

Research Timeline

Exotic Search with B-tagging...

Resonance Search with b-tagged Jets

- flagship analysis in hadron colliders for decades
 - The most inclusive search
- A natural extension is to apply b-tagging on the jets
 - couplings to bottom quarks

Search for heavy resonances in the final states with two jets has been the

More sensitive to new physics where the heavy resonance has larger

Analysis Strategy

- In five steps:
 - Apply a jet trigger with the lowest threshold
 - Select two good jets
 - Apply signal enhancement selections: $|y^*| < 0.8$ and b-tagging
 - Fit the data
 - Interpretation

Sounds really simple!

- A very complex spectrum to fit
- B-tagging applied on a mixture of jets with different flavors (Cartoons only show the light and bottom)

Background Modeling Method

validate it using control samples

ith bin

To fit the background, we apply a Sliding Window Fit (SWiFt) method and

- The canonical global fit can not describe the background given the complexities
- SWiFt is a numerical approximation where each bin is estimated by performing a global fit within a subset (window) of the full spectrum
- It works but it is a rather complex model with many free parameters

Background Modeling Method

- We have to validate the background modeling method
 - Need background-only control samples
 - Major background, multi-jet, does not have reliable simulations • Flavor fractions are not well modeled
- - Last differential bb measurement was done in Run1

Background Modeling Method

- We have to validate the background modeling method
 - Need background only control samples
 - Major background, multi-jet, does not have reliable simulations
 - b-tagging/mis-tag rate are not calibrated at high p_T

A New "ABCD" Approach

- and flavor compositions in multi-jet events
 - Extract this information from data

Two sidebands data scaling met						
A tagged ly*l > 0.8	B tagged ly*l < 0.8	 Obtain per j efficiencies regions (A a in p_T and η Calculate ev 				
C untagged ly*l > 0.8	D untagged ly*l < 0.8	 tagging effic Scale untagg to tagged reg 				

The major challenge comes from unknown tagging efficiency/mis-tag rate,

hod

et tagging n |y*| inverted nd C), binned

ent level iencies ged (D) region gion (B)

- Inverting |y*| suppresses the signal • contaminations, but also alters m_{ii}
- Instead we calculate per-jet tagging efficiency
 - Since the flavor fraction of leading jet is correlated with the sub-leading jet's flavor. Both absolute efficiency and conditional efficiency are calculated:
 - $P(j_1)$, $P(j_2)$ and $P(j_2|j_1)$
- Event level efficiency is calculated by
 - >= 1 b-tag:

 $P(j_1) + P(j_2) - P(j_1)P(j_2|j_1)$

• ==2 b-tag:

 $P(j_1)P(j_2|j_1)$

Results

• Both 2015 + 2016 di-b-jet search and full Run 2 di-(b)-jet search are public!

Resonance Search with More b-tagged Jets

fermions?

- quarks
 - Multi-b-jet final state
 - Only considering leading four jets

What if the new heavy resonance is exclusively coupled to third generation

The new heavy resonance has to be produced in association with two b-

New Ideas Deployed I: Efficiency Scaling Method

- are considering NLO multi-jet processes
- I developed a new approach

- smear the influence from potential signal
 - The impact from signal is found to be small in stress tests
- Produce bkg-only pseudo-data samples to validate the background modeling strategy

• The "ABCD" approach does not work any more in this final state as now we

• By fitting the signal region selection efficiency (simple polynomial fit), we

New Ideas Deployed II: Functional Decomposition

• We have been using empirical functions to fit the di-jet invariant mass spectra in history

New Method:

- Functional Decomposition
 - Using a truncated series to describe the spectrum
 - Analogous to Fourier Analysis

arXiv:1805.04536

The Future Of "Simple" Search

- LHC has accumulated ~140 fb^{-1} data • It will take LHC a while to double the integrated luminosity
- - Differential measurements are in their way
- - corresponding calibrations

 Search strategies need to be thoroughly re-evaluated and improved Search with tagging techniques can benefit significantly from CP development

• Di-b-jet search is limited by the b-tagging performance at high p_T and the

So, Flavor Tagging...

B-hadron Properties

- b-hadrons have:
 - Majority of the energy from hadronization (~80%)
 - Relatively large mass (~5 GeV)
 - Significant lifetime (~1.5 ps)
 - High decay multiplicity (~5 charged particles)
 - Relatively large $b \rightarrow \mu + X$ branching ratio (~20%)
- b-tagging algorithms are constructed based on the above properties

- **Primary Vertex**
- **b-hadron Decay Vertex**
- Tracks from b-hadron
- c-hadron Decay Vertex
- Tracks from c-hadron
- Tracks from PV
- Lepton from b-hadron

Low Level Taggers

- Experimental signatures:
 - Secondary Vertex
 - Heavier Vertex Mass
 - Tertiary Vertex
 - Displaced Tracks
 - Larger Track Multiplicity
 - Muon
- Low level taggers:
 - Track based:
 - IP2D, IP3D and RNNIP
 - Secondary vertex based: SV1
 - Decay topology based:
 - JetFitter
 - Muon based: SMT

- Secondary Decay Vertex **Tertiary Decay Vertex Displaced Tracks**
- → Muon

Low Level Taggers

ATL-PHYS-PUB-2017-013 ATL-PHYS-PUB-2017-003 **ATL-PHYS-PUB-2018-025**

IP2D and IP3D

 Consider the IP parameters of individual track

RNNIP

- Explore the correlations between tracks
- SV1
 - Explore properties of the secondary vertex such as vertex mass

JetFitter

• Explore decay properties such as energy ratio

High Level Taggers

Construction **Inclusive Secondary** Trak IP:

IP2D/IP3D

Training

Trained on multiple jet collections:

AK4EMTopo Jets (Phasing out)

Vertex:SV1

AK4EMPFlow Jets

- Variable Radius Track Jets

Using Hybrid Sample $t\bar{t}$ and Z'

- Both MV2 and DL1 have various versions
 - MV2r and DL1r (Recommended)
 - Including RNNIP
 - MV2 and DL1 (Backup)
 - MV2mu and DL1mu (R&D)
 - Including SMT
 - MV2rmu and DL1rmu (R&D)
 - Including RNNIP and SMT

Performance

Recent training campaign gives us the best performance so far

FTAG-2019-005

Bingxuan Liu

Working Points (WPs)

FTAG-2019-005

Working Points (WPs)

FTAG-2019-005

Working Points (WPs)

FTAG-2019-005

Flavor Tagging Calibration

- Mis-modeling of the input variables used by the algorithms
- The performance of b-tagging in MC is different from that in data Need to correct the performance in MC
 - Ideally one can correct all input variables
 - Practically we correct the resulting tagging performance
- Basic idea
 - p_T , and correct the performance in MC to match the data
- Measure the b-tagging efficiency/mis-tag rate in data and MC binned in jet • The mainstream calibrations are done in $t\bar{t}$ and Z + jets events The expanding physics programs now demand more versatile calibrations To cover different kinematic regions (Di-b-jet resonance) • To avoid circular dependence (Top decay branching ratio measurement)

Mainstream Calibrations

B-tagging Efficiency Calibration Eur. Phys. J. C 79 (2019) 970

distribution and perform a combined log-likelihood fit

• Method: Select di-lepton $t\bar{t}$ events, construct CR/SR based on the $m_{i,l}$

B-tagging Efficiency Calibration

Latest results for VRTrack Jets and EMPFlow Jets

FTAG-2019-003 FTAG-2019-004

C-mistag Rate Calibration

 Method: Select semi-leptonic tī events, associated jets with W boson via a kinematic fit and perform a likelihood fit to extract the mis-tag rate

_					
j jet p _T [GeV	[65,140]	26.6 ± 0.1	24.2 ± 0.1	27.3 ± 0.1	
leading	[40,65]	21.8 ± 0.1	20.8 ± 0.1		
	[25,40]	20.0 ± 0.1	ATLAS Simulation Preliminary		
		[25,40]	[40,65]	[65,140]	
			sublead	ling jet p _T [GeV]	

ATLAS-CONF-2018-001

C-mistag Rate Calibration

Latest results for VRTrack Jets and EMPFlow Jets

FTAG-2019-003 FTAG-2019-004

L-mistag Rate Calibration

likelihood fit to extract light jet mistag rate

- Light-flavor jets have a ~symmetric signed d_0 distribution
- Charm- and bottom-flavor jets have much longer positive tails

33

ATLAS-CONF-2018-006

• Method: Enrich the light jet fraction via "flipped" taggers, select Z + jets events, fit the secondary vertex mass to obtain flavor fractions and perform a

Flipped Tagger

- Negate the sign of track IP parameters before b-tagging
- bottom or charm are shifted towards lower values
- regions

L-mistag Rate Calibration

Latest results for VRTrack Jets and EMPFlow Jets

FTAG-2019-003 FTAG-2019-004

Bingxuan Liu

Calibrations In Multi-jet

Calibrations Using Multi-jet Events

- Multi-jet events provide an abundance source of b-jets
 - A large number of b-jets populated in a broader kinematic region
- More challenging
 - There is also more background
 - Simulation is not sufficient
- The calibrations apply template fits
 - Two discriminant variables can be used
 - S_{d_0} and p_T^{rel}

$$S_{d_0} = \left| \frac{d_0}{\sigma_{d_0}} \right| \cdot s_j$$
$$s_j = \text{sign} \left[\sin \left(\arctan(\frac{p_y(j)}{p_x(j)} - \phi(t)) \right) \right]$$

longer lifetimes

p_T^{rel} Calibration: Discriminant Variable

• Muons from direct bottom decays have harder p_T in the rest frame of b-hadron (p*) than that from charm or cascade bottom decays

direct b decays c decays

Consider a massless twoday decay:

 $(P, \overrightarrow{P}) + (P, \overrightarrow{P}) = M_{b/c}$ $P = -M_{b/c}$

p_T^{rel} Calibration: Method

Calibration strategy:

- Define a discriminating variable p_T^{rel}
- Produce p_T^{rel} templates for jets with different flavors, (b), charm (c) and light (I)
- Apply the b-enhanced selections in data
- Perform a template fit to tagged data and un-tagged data to obtain the fraction of b's

$$\varepsilon_{b}^{data} = \frac{f_{b}^{tagged} N_{data}^{tagged}}{f_{b}^{tagged} N_{data}^{tagged} + f_{b}^{untagged} N_{data}^{untag}}$$

- Extract the b-tagging efficiency using number of events and the fractions
- Compare the efficiencies measured in data with the those in MC to derive corrections

ged

 p_T^{rel} Calibration: Results

Full Run2 calibration is going with much improved strategies

Better precision is expected

2016 JINST 11 P04008

Bingxuan Liu

High *p*_T Calibration: Discriminant Variable • Similar strategy as the p_T^{rel} calibration • No public results are available yet. Show example distributions from g ightarrow bbmeasurement

Even Longer Lifetimes...

B-tagging and LLP Tagging

- Long-lived particles can have lifetimes similar as b-hadrons Can be b-tagged

Standard searches with b-tagging have sensitivities to such LLPs

Future of b-tagging

• Explore new strategies to improve performance at high p_T • Optimize the existing low taggers

High Level Taggers

Proving ground for new Machine Learning techniques

Training

 More efficient and unbiased training samples?

- Training for charm/ strange tagging
- Training for LLP tagging?

A Flashback...Displaced Lepton In CMS

Displaced Lepton Search

parameters

• R-parity Violating Supersymmetry can yield leptons with large impact

- A search was done by simply requiring a displaced $e - \mu$ lepton pair
- Large impact parameter d_0 Main backgrounds come from heavy flavor multi-jet and events $Z \rightarrow \tau \bar{\tau}$
- Estimate multi-jet via a datadriven method and the rest in simulation

Displaced Lepton Search

parameters

PhysRevLett.114.061801

R-parity Violating Supersymmetry can yield leptons with large impact

- Applying standard algorithms with the analysis strategies optimized for long-lived signatures, top squark mass up to 790 GeV with $c\tau$ of 2 cm is excluded.
- However it was found sensitivities to longer lifetimes were constrained by standard algorithms

Displaced Muon Reconstruction

During LS1 I developed a set of new algorithms for displaced muons

CMS-DP-2015-015

Displaced Lepton Search

search in CMS using 13 TeV data

CMS-PAS-EXO-16-022

Applying some of the improvements, I performed the first displaced lepton

 Top squark mass up to 870 GeV with $c\tau$ of 2 cm is excluded with 2015 data

• My thesis!

 Full Run2 results should be on its way

Displaced Lepton Reinterpretation CMS-PAS-EXO-16-007

A similar re-interpretation work was done

- A search for $LQ \rightarrow \mu\mu jj$ suing standard techniques can probe shorter lifetimes
- Again it demonstrates the power standard algorithms
- It also shows us where the gap is

Summary and Outlook

- We have seen that traditional methods such as b-tagging and lepton reconstruction are already sensitive to certain long-lived signatures
- The corner of the parameter space for traditional algorithms is already very long-lived (or in general "Exotics") like
- CP work is crucial and a very comprehensive program can be built during LS2, making us better suited for Run3!

High p_T B-tagging Calibration : Tracking \longrightarrow High $p_T B$ -tagging

LLP Tagging

and a second second

