Identifying the $\Sigma_b(6097)/\Xi_b(6227)$ and Ω_b^* s as P-wave bottom baryons

Er-Liang Cui (崔二亮)

Northwest A&F University (西北农林科技大学)

Collaborators: Hui-Min Yang, Hua-Xing Chen, Atsushi Hosaka, Qiang Mao

Based on: E-L Cui, H-M Yang, H-X Chen, *etc.*, PRD 99, 094021 (2019) H-M Yang, H-X Chen, E-L Cui, *etc.*, EPJC 80(2):80 (2020) H-X Chen, E-L Cui, A. Hosaka, *etc.*, EPJC 80(3):256 (2020)

强子物理新发展研讨会, 2020.4.24-4.26

- Internal structure of heavy baryons
- •QCD sum rules and light-cone sum rules
- •Decay properties of bottom baryons
- Summary and discussions

- Internal structure of heavy baryons
- •QCD sum rules and light-cone sum rules
- •Decay properties of bottom baryons
- Summary and discussions

Hadron categorizations

□ Since the quarks are fermions, the state function must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus it can be written as

$$|qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$$

□ Since the quarks are fermions, the state function must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus it can be written as

$$qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$$

□ The "ordinary" baryons are made up of u, d, and s quarks. The three flavors imply an approximate flavor SU(3). Baryons belong to

 $\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}=\mathbf{10}_{S}\oplus\mathbf{8}_{M}\oplus\mathbf{8}_{M}\oplus\mathbf{1}_{A}$

□ Since the quarks are fermions, the state function must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus it can be written as

$$qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$$

□ The "ordinary" baryons are made up of u, d, and s quarks. The three flavors imply an approximate flavor SU(3). Baryons belong to

$$\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_S \oplus \mathbf{8}_M \oplus \mathbf{8}_M \oplus \mathbf{1}_A$$

\Box For flavor SU(4)

 $\mathbf{4}\otimes\mathbf{4}\otimes\mathbf{4}=\mathbf{20}_{S}\oplus\mathbf{20}_{M}\oplus\mathbf{20}_{M}\oplus\mathbf{4}_{A}$

□SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet.

SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet. (a) Ω_c^0 (ssc)

 $\overline{3}_{F}$ PDG. 2018

 \square SU(3) multiplets of charmed baryons.

 \Box SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet. Ω_{b}^{-} (ssb)

 \Box SU(3) multiplets of bottom baryons.

PDG. 2018

Charmed and bottom baryons

□ (a)The 24 known charmed baryons, and (b) the 9 known bottom baryons

PDG. 2018

11

□ The internal structure of heavy baryons is complicated and interesting:

$\lambda\text{-}excitation$ and $\rho\text{-}excitation$

$$J = s_Q + s_{q1} + s_{q2} + l_\rho + l_\lambda$$

$$= s_{Q} + (s_{q1} + s_{q2} + l_{\rho} + l_{\lambda})_{j_{l}}$$

$$\Box | qqq \rangle_A = | \operatorname{color} \rangle_A \times | \operatorname{space}, \operatorname{spin}, \operatorname{flavor} \rangle_S$$

$$\mathbf{\bar{3}}_{C}(\mathbf{A}) \begin{pmatrix} l_{\rho}=1 \ (\mathbf{A}) \\ l_{\lambda}=0 \end{pmatrix} (\mathbf{A}) \longrightarrow \mathbf{6}_{F}(\mathbf{S}) \longrightarrow j_{l}=1: \Sigma_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & [\mathbf{6}_{F}, 1, 0, \rho] \\ \mathbf{\bar{3}}_{F}, 0, 1, \rho] \\ \mathbf{\bar{3}}_{I}=1: \mathbf{A}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b0} \left(\frac{1}{2}\right) & [\mathbf{\bar{3}}_{F}, 0, 1, \rho] \\ \mathbf{\bar{3}}_{I}=1: \mathbf{A}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & [\mathbf{\bar{3}}_{F}, 1, 1, \rho] \\ \mathbf{\bar{3}}_{I}=2: \mathbf{A}_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & \Xi_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & [\mathbf{\bar{3}}_{F}, 2, 1, \rho] \\ \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & [\mathbf{\bar{6}}_{F}, 0, 1, \lambda] \\ \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & [\mathbf{\bar{6}}_{F}, 0, 1, \lambda] \\ \mathbf{\bar{3}}_{I}=0: \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & [\mathbf{\bar{6}}_{F}, 0, 1, \lambda] \\ \mathbf{\bar{3}}_{I}=2: \mathbf{\bar{3}}_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & \Xi_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & \Omega_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & [\mathbf{\bar{6}}_{F}, 2, 1, \lambda] \\ \mathbf{\bar{3}}_{I}=0: \mathbf{\bar{3}}_{I}=0: \mathbf{\bar{3}}_{I}=1: \mathbf{\bar{3}}_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{b2} \left(\frac{3}{2}, \frac{5}{2}\right) & [\mathbf{\bar{3}}_{F}, 1, 0, \lambda] \end{cases}$$

 $\Box | qqq \rangle_A = | \operatorname{color} \rangle_A \times | \operatorname{space}, \operatorname{spin}, \operatorname{flavor} \rangle_S$

 $\square |qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$ $[F(\text{flavor}), j_l, s_l, \rho/\lambda]$

$$j_l = 0: \Lambda_{b0}(\frac{1}{2}) \qquad \Xi_{b0}(\frac{1}{2}) \qquad [\overline{\mathbf{3}}_{\mathbf{F}}, 0, 1, \rho]$$

$$_{l}=1 (\mathbf{S}) \longrightarrow \overline{\mathbf{3}}_{\mathbf{F}} (\mathbf{A}) \longleftrightarrow j_{l}=1: \Lambda_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) \Xi_{b1} \left(\frac{1}{2}, \frac{3}{2}\right) \qquad [\overline{\mathbf{3}}_{\mathbf{F}}, 1, 1, \rho]$$

$$\mathbf{\lambda} \ j_l = 2: \ \Lambda_{b2} \left(\frac{3}{2}, \frac{5}{2} \right) \ \Xi_{b2} \left(\frac{3}{2}, \frac{5}{2} \right) \qquad [\overline{\mathbf{3}}_{\mathbf{F}}, 2, 1, \rho]$$

$$\overline{\mathbf{3}}_{\mathbf{C}}(\mathbf{A}) \begin{pmatrix} l_{\rho} = 1 \ (\mathbf{A}) \\ l_{\lambda} = 0 \end{pmatrix} \xrightarrow{\mathbf{5}_{l} = 0} (\mathbf{A}) \xrightarrow{\mathbf{5}_{\mathbf{F}}} (\mathbf{S}) \xrightarrow{\mathbf{j}_{l} = 1:} \Sigma_{b1} \left(\frac{1^{-}}{2}, \frac{3^{-}}{2}\right) \xrightarrow{\mathbf{E}_{b1}} \left(\frac{1^{-}}{2}, \frac{3^{-}}{2}\right) \xrightarrow{\mathbf{\Omega}_{b1}} \left(\frac{1^{-}}{2}, \frac{3^{-}}{2}\right) \begin{bmatrix} \mathbf{6}_{\mathbf{F}}, \mathbf{1}, 0, \rho \end{bmatrix} \\ j_{l} = 0: \ \Lambda_{b0} \left(\frac{1^{-}}{2}\right) \xrightarrow{\mathbf{E}_{b0}} \left(\frac{1^{-}}{2}\right) \xrightarrow{\mathbf{E}_{b0}} \left(\frac{1^{-}}{2}\right) \xrightarrow{\mathbf{E}_{b1}} \left(\frac{1^{-}}{2}, \frac{3^{-}}{2}\right) \xrightarrow{$$

LHCb results

□ Recently, the LHCb Collaboration reported their discoveries of two new excited bottom baryons: $\Xi_{h}(6227)^{-}$ in both $\Lambda_{h}^{0}K^{-}$ and $\Xi_{h}^{0}\pi^{-}$ invariant spectrum, $\Sigma_{h}(6097)^{\pm}$ in $\Lambda_{h}^{0}\pi^{\pm}$ invariant spectrum $\Xi_b(6227)^-: M = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV},$ $\Gamma = 18.1 \pm 5.4 \pm 1.8 \text{ MeV},$ $\Sigma_b(6097)^+: M = 6095.8 \pm 1.7 \pm 0.4 \text{ MeV},$ $\Gamma = 31 \pm 5.5 \pm 0.7 \text{ MeV},$ $\Sigma_b (6097)^- : M = 6098.0 \pm 1.7 \pm 0.5 \text{ MeV},$ $\Gamma = 28.9 \pm 4.2 \pm 0.9 \text{ MeV}.$

LHCb results

□ Recently, the LHCb Collaboration reported their discoveries of two new excited bottom baryons: $\Xi_{h}(6227)^{-}$ in both $\Lambda_{h}^{0}K^{-}$ and $\Xi_{h}^{0}\pi^{-}$ invariant spectrum, $\Sigma_{b}(6097)^{\pm}$ in $\Lambda_{b}^{0}\pi^{\pm}$ invariant spectrum $\Xi_b(6227)^-: M = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV},$ $\Gamma = 18.1 \pm 5.4 \pm 1.8 \text{ MeV},$ $\Sigma_b(6097)^+: M = 6095.8 \pm 1.7 \pm 0.4 \text{ MeV},$ $\Gamma = 31 \pm 5.5 \pm 0.7 \text{ MeV},$ $\Sigma_b(6097)^-: M = 6098.0 \pm 1.7 \pm 0.5 \text{ MeV},$ $\Gamma = 28.9 \pm 4.2 \pm 0.9 \text{ MeV}.$ The following branching ratio was measured to be PRL 121, 072002 (2018)

$$\frac{\mathcal{B}(\Xi_b(6227)^- \to \Lambda_b^0 K^-)}{\mathcal{B}(\Xi_b(6227)^- \to \Xi_b^0 \pi^-)} \simeq 1.$$

17

PRL 122, 012001 (2019)

LHCb results

□ Very recently, the LHCb Collaboration further discovered four excited Ω_b states
simultaneously in the $\Xi_b^0 K^-$ invariant spectrum:PRL 124, 082002 (2020)
Zhang L-M's lecture

	δM_{peak} [MeV]	Mass [MeV]	Width [MeV]
$\Omega_{b}(6316)^{-}$	$523.74 \pm 0.31 \pm 0.07$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	<2.8(4.2)
$\Omega_b(6330)^-$	$538.40 \pm 0.28 \pm 0.07$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	<3.1(4.7)
$\Omega_{b}(6340)^{-}$	$547.81 \pm 0.26 \pm 0.05$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	< 1.5(1.8)
$\Omega_b(6350)^-$	$557.98 \pm 0.35 \pm 0.05$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	<2.8(3.2)
			$1.4^{+1.0}_{-0.8}\pm0.1$
LHCb	-+ Data	a 30 LHCb	-+ Data
	Full fit	Ž –	Full fit
	Background		
⁵ 500 ⁻⁵⁵⁰	$M(\Xi_b^0 K^-) - M(\Xi_b^0) [MeV]$ 650 700	550° 550 600 $M(\Xi_b^0 K^+) - M(E_b^0 K^+)$	50 7 18 (<i>Ξ⁰b</i>) [MeV]

Structure of P-wave bottom baryons

■ At first we should update our previous QCD sum rule analyses about the mass spectrum of P-wave bottom baryons.

$$\mathbf{\bar{3}}_{C} (\mathbf{A}) \begin{pmatrix} l_{\rho} = 1 \ (\mathbf{A}) \\ l_{\lambda} = 0 \end{pmatrix} (\mathbf{A}) \longrightarrow \mathbf{6}_{F} (\mathbf{S}) \longrightarrow j_{l} = 1; \ \Sigma_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \Sigma_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \Omega_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \mathbf{G}_{F}, \mathbf{1}, \mathbf{0}, \rho] \\ \mathbf{\bar{3}}_{F}, \mathbf{1}, \mathbf{1}, \rho] \\ \mathbf{\bar{3}}_{I} = 0; \ \Lambda_{b0} \left(\frac{1}{2}^{-}\right) \qquad \Xi_{b0} \left(\frac{1}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{b0} \left(\frac{1}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{F}, \mathbf{1}, \rho] \\ \mathbf{\bar{3}}_{I} = 1; \ \Lambda_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{F}, \mathbf{1}, \rho] \\ \mathbf{\bar{3}}_{I} = 1; \ \Lambda_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{b2} \left(\frac{3}{2}^{-}, \frac{5}{2}^{-}\right) \qquad \mathbf{\bar{3}}_{b2}, \mathbf{1}, \rho] \\ \mathbf{\bar{3}}_{I} = 0; \ \mathbf{\bar{3}}_{I} = 0;$$

PRD 92, 114007 (2015)

Internal structure of heavy baryons
QCD sum rules and light-cone sum rules
Decay properties of bottom baryons
Summary and discussions

QCD sum rules

□ We can construct various interpolating currents to reflect the internal structure of heavy baryons by using the method of

QCD sum rules within heavy quark effective theory (HQET)

QCD sum rules

□ We can construct various interpolating currents to reflect the internal structure of heavy baryons by using the method of

QCD sum rules within heavy quark effective theory (HQET) SVZ sum rules for spectrum light-cone sum rules for decay properties

SVZ sum rules

□In sum rule analyses, we consider two-point correlation functions:

$$\Pi(q^2) \stackrel{\text{\tiny def}}{=} i \int d^4 x e^{iqx} \langle 0 | T\eta(x) \eta^+(0) | 0 \rangle$$
$$\approx \sum_n \langle 0 | \eta | n \rangle \langle n | \eta^+ | 0 \rangle$$

where η is the current which can couple to hadronic states.

SVZ sum rules

□In sum rule analyses, we consider two-point correlation functions:

$$\Pi (q^2) \stackrel{\text{\tiny def}}{=} i \int d^4 x e^{iqx} \langle 0 | T\eta(x) \eta^+(0) | 0 \rangle$$
$$\approx \sum_n \langle 0 | \eta | n \rangle \langle n | \eta^+ | 0 \rangle$$

where η is the current which can couple to hadronic states.

□In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

SVZ sum rules

SVZ sum rule (Shifman 1979)

Quark and Gluon Level (Convergence of OPE) dispersion relation $\rho_{OPE}(s) = a_n s^n + a_{n-1} s^{n-1}$ $\Pi_{OPE}(q^2)$ $S = -Q^2$ **Quark-Hadron Duality Hadron Level** $\Pi_{phys}(q^2) = f_P^2 \frac{q + M}{a^2 - M^2}$ $\rho_{phys}\left(s\right)=\lambda_{x}^{2}\delta(s-M_{x}^{2})+\cdots$ ρ (Positivity) (for baryon case) (Sufficient amount of Pole contribution) 25 **S**₀ S Μ

0

Light-cone sum rules

□ The method of light-cone sum rules is a fruitful hybrid of the SVZ technique and the theory of hard exclusive processes, whose basic idea is to expand the three-point correlation function in terms of distribution amplitudes near the light-cone:

$$F_{\mu\nu}(p,q) = i \int d^4x e^{-iq \cdot x} \langle \pi^0(p) | T\{j^{em}_{\mu}(x) j^{em}_{\nu}(0)\} | 0 \rangle$$

$$F_{\mu\nu}(p,q) = -i\epsilon_{\mu\nu\alpha\rho} \int d^4x \frac{x^{\alpha}}{\pi^2 x^4} e^{-iq \cdot x} \langle \pi^0(p) | \overline{u}(x) \gamma^{\rho} \gamma_5 u(0) | 0 \rangle .$$

$$\langle \pi^0(p) | \overline{u}(x) \gamma_\mu \gamma_5 u(0) | 0 \rangle_{x^2 = 0} = -ip_\mu \frac{f_\pi}{\sqrt{2}} \int_0^1 du e^{iup \cdot x} \varphi_\pi(u, \mu)$$

where $\varphi_{\pi}(u, \mu)$ is the pion light-cone distribution amplitude of twist 2.

Light-cone sum rules

□ The pion light-cone distribution amplitudes:

$$\langle 0|\bar{u}(z)\gamma_{\mu}\gamma_{5}d(-z)|\pi^{-}(P)\rangle = if_{\pi}p_{\mu}\int_{0}^{1}du\,e^{i\xi pz}\,\phi_{\pi}(u) + \frac{i}{2}\,f_{\pi}m^{2}\frac{1}{pz}\,z_{\mu}\int_{0}^{1}du\,e^{i\xi pz}g_{\pi}(u)\,,\tag{C.32}$$

$$\langle 0|\bar{u}(x)i\gamma_5 d(-x)|\pi^-(P)\rangle = \frac{f_\pi m_\pi^2}{m_u + m_d} \int_0^1 du \, e^{i\xi Px} \, \phi_p(u) \,, \tag{C.33}$$

$$\langle 0|\bar{u}(x)\sigma_{\alpha\beta}\gamma_{5}d(-x)|\pi^{-}(P)\rangle = -\frac{i}{3}\frac{f_{\pi}m_{\pi}^{2}}{m_{u}+m_{d}}\left\{1-\left(\frac{m_{u}+m_{d}}{m_{\pi}}\right)^{2}\right\} \times (P_{\alpha}x_{\beta}-P_{\beta}x_{\alpha})\int_{0}^{1}du\,e^{i\xi Px}\,\phi_{\sigma}(u)\,,\qquad(C.34)$$

$$|0|\bar{u}(z)\sigma_{\mu\nu}\gamma_5 g G_{\alpha\beta}(vz)d(-z)|\pi^-(P)\rangle = i \frac{f_\pi m_\pi^2}{m_u + m_d} \left(p_\alpha p_\mu g_{\nu\beta}^\perp - p_\alpha p_\nu g_{\mu\beta}^\perp - p_\beta p_\mu g_{\nu\alpha}^\perp + p_\beta p_\nu g_{\alpha\mu}^\perp \right) \mathcal{T}(v, pz) + \dots,$$
(C.35)

$$\langle 0|\bar{u}(z)\gamma_{\mu}\gamma_{5}gG_{\alpha\beta}(vz)d(-z)|\pi^{-}(P)\rangle = p_{\mu}(p_{\alpha}z_{\beta}-p_{\beta}z_{\alpha})\frac{1}{pz}f_{\pi}m_{\pi}^{2}\mathcal{A}_{\parallel}(v,pz) + (p_{\beta}g_{\alpha\mu}^{\perp}-p_{\alpha}g_{\beta\mu}^{\perp})f_{\pi}m_{\pi}^{2}\mathcal{A}_{\perp}(v,pz), \qquad (C.36)$$

$$\langle 0|\bar{u}(z)\gamma_{\mu}ig\widetilde{G}_{\alpha\beta}(vz)d(-z)|\pi^{-}(P)\rangle = p_{\mu}(p_{\alpha}z_{\beta}-p_{\beta}z_{\alpha})\frac{1}{pz}f_{\pi}m_{\pi}^{2}\mathcal{V}_{\parallel}(v,pz) + (p_{\beta}g_{\alpha\mu}^{\perp}-p_{\alpha}g_{\beta\mu}^{\perp})f_{\pi}m_{\pi}^{2}\mathcal{V}_{\perp}(v,pz).$$
(C.37)

Ball P., et al. PRD. 1998; Ball P., et al. NPB. 1998; Ball P., et al. NPB. 1999; Ball P., et al. PRD. 2005; Ball P., et al. JHEP. 2007; Ball P., et al. JHEP. 2007.

- Internal structure of heavy baryons
- •QCD sum rules and light-cone sum rules
- Decay properties of bottom baryons
- Summary and discussions

Mass spectrum of P-wave bottom baryons

■ At first we should update our previous QCD sum rule analyses about the mass spectrum of P-wave bottom baryons.

$$\mathbf{\overline{3}}_{C}(\mathbf{A}) \begin{pmatrix} l_{\rho}=1 \ (\mathbf{A}) \\ l_{\lambda}=0 \end{pmatrix} \begin{pmatrix} s_{l}=0 \ (\mathbf{A}) \longrightarrow \mathbf{6}_{F} \ (\mathbf{S}) \longrightarrow j_{l}=1; \ \Sigma_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & \Sigma_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & \Omega_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & [\mathbf{\overline{3}}_{F},0,1,\rho] \\ \mathbf{\overline{3}}_{I}=1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \begin{pmatrix} j_{l}=0; \ \Lambda_{b0} \ (\frac{1}{2}^{-}\right) & \Xi_{b0} \ (\frac{1}{2}^{-}\right) & \Xi_{b1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & [\mathbf{\overline{3}}_{F},1,1,\rho] \\ j_{l}=2; \ \Lambda_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Xi_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & [\mathbf{\overline{3}}_{F},2,1,\rho] \\ \mathbf{\overline{3}}_{I}=1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{6}}_{F}(\mathbf{S}) \begin{pmatrix} j_{l}=0; \ \Sigma_{b0} \ (\frac{1}{2}^{-}\right) & \Xi_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Omega_{b0} \ (\frac{1}{2}^{-}\right) & [\mathbf{\overline{6}}_{F},0,1,\lambda] \\ j_{l}=1; \ \Sigma_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Xi_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Omega_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & [\mathbf{\overline{6}}_{F},1,1,\lambda] \\ j_{l}=2; \ \Sigma_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Xi_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Omega_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & [\mathbf{\overline{6}}_{F},2,1,\lambda] \\ s_{l}=0 \ (\mathbf{A}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \longrightarrow j_{l}=1; \ \Lambda_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Xi_{b1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Omega_{b2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & [\mathbf{\overline{3}}_{F},1,0,\lambda] \\ \end{array}$$

PRD 92, 114007 (2015)

Mass spectrum of P-wave bottom baryons

\Box The interpolating field of configuration [6_{*F*}, 1,0, ρ]

$$J_{1/2,-,\mathbf{6}_F,1,0,\rho} = i\epsilon_{abc}([\mathcal{D}^{\mu}_t q^{aT}]C\gamma_5 q^b - q^{aT}C\gamma_5[\mathcal{D}^{\mu}_t q^b])\gamma^{\mu}_t\gamma_5 h^c_v,$$

 \Box At the hadronic level, the two-point correlation function can be written as

$$\begin{split} \Pi_{j,P,F,j_{l},s_{l},\rho/\lambda}^{\alpha_{1}\cdots\alpha_{j-1/2},\beta_{1}\cdots\beta_{j-1/2}}(\omega) &= i\int d^{4}x e^{ikx} \langle 0|T[J_{j,P,F,j_{l},s_{l},\rho/\lambda}^{\alpha_{1}\cdots\alpha_{j-1/2}}(x)\bar{J}_{j,P,F,j_{l},s_{l},\rho/\lambda}^{\beta_{1}\cdots\beta_{j-1/2}}(0)]|0\rangle \\ &= \mathbb{S}[g_{t}^{\alpha_{1}\beta_{1}}\cdots g_{t}^{\alpha_{j-1/2}\beta_{j-1/2}}] \times \frac{1+\psi}{2} \times \Pi_{j,P,F,j_{l},s_{l},\rho/\lambda}(\omega) , \\ &= \mathbb{S}[g_{t}^{\alpha_{1}\beta_{1}}\cdots g_{t}^{\alpha_{j-1/2}\beta_{j-1/2}}] \times \frac{1+\psi}{2} \times \left(\frac{f_{F,j_{l},s_{l},\rho/\lambda}^{2}}{\overline{\Lambda}_{F,j_{l},s_{l},\rho/\lambda}-\omega} + \text{higher states}\right). \end{split}$$

■ At the quark-gluon level, the two-point correlation function can be calculated by the method of Operator Product Expansion (OPE).

□ The mass of the bottom baryon can be written as:

PRD 92, 114007 (2015)

$$m_{j,P,F,j_l,s_l,\rho/\lambda} = m_b + \Lambda_{F,j_l,s_l,\rho/\lambda} + \delta m_{j,P,F,j_l,s_l,\rho/\lambda}$$

Mass spectrum of P-wave bottom baryons

Multiplata	р	ω_c	Working region	$\overline{\Lambda}$	Baryons	Mass	Difference	f			
Multiplets	Б	(GeV)	$({ m GeV})$	(GeV)	(j^P)	(GeV)	(MeV)	$({ m GeV}^4)$			
	Σ_b	1.75	0.30 < T < 0.33	1.29 ± 0.08	$\Sigma_b(1/2^-)$	6.09 ± 0.10	_	$0.085 \pm 0.017 \ (\Sigma_b^-(1/2^-))$			
$[6_F,0,1,\lambda]$	Ξ_b'	1.90	0.30 < T < 0.34	1.44 ± 0.08	$\Xi_b^\prime(1/2^-)$	6.25 ± 0.10	_	$0.077 \pm 0.016 \ (\Xi_b^{\prime -}(1/2^-))$			
	Ω_b	2.05	0.29 < T < 0.35	1.59 ± 0.08	$\Omega_b(1/2^-)$	6.40 ± 0.11	_	$0.143 \pm 0.030 \; (\Omega_b^-(1/2^-))$			
	Σ.	1.87	0.31 < T < 0.34	1.35 ± 0.00	$\Sigma_b(1/2^-)$	6.10 ± 0.11	3 ± 1	$0.087 \pm 0.018 \ (\Sigma_b^-(1/2^-))$			
		1.01	0.51 < 1 < 0.54	1.55 ± 0.09	$\Sigma_b(3/2^-)$	6.10 ± 0.10	5±1	$0.050 \pm 0.011 \ (\Sigma_b^-(3/2^-))$			
[6 ₂₂ 1 0]	Ξ_b'	2.02	0.20 < T < 0.36	1.40 ± 0.00	$\Xi_b'(1/2^-)$	6.24 ± 0.11	$3 \perp 1$	$0.080 \pm 0.016 \ (\Xi_b^{\prime -}(1/2^-))$			
$[0_F, 1, 0, p]$			2.02	0.29 < T < 0.30	1.49 ± 0.09	$\Xi_{b}^{\prime}(3/2^{-})$	6.24 ± 0.11	3 ± 1	$0.046 \pm 0.009 \; (\Xi_b^{\prime -}(3/2^-))$		
	0.	2.217	0.33 < T < 0.38	1.67 ± 0.00	$\Omega_b(1/2^-)$	6.42 ± 0.11	2⊥1	$0.155 \pm 0.030 \; (\Omega_b^-(1/2^-))$			
	306	2.11			1.07 ± 0.09		$\Omega_b(3/2^-)$	6.42 ± 0.11	0 1 1	$0.090 \pm 0.017 \; (\Omega_b^-(3/2^-))$	
	Σ.	1.84	0.20 < T < 0.24	1.20 ± 0.00	$\Sigma_b(3/2^-)$	6.10 ± 0.12	12 ± 5	$0.102 \pm 0.022 \ (\Sigma_b^-(3/2^-))$			
	Δb	Δb	26	20	1.04	0.50 < 1 < 0.54	1.29 ± 0.09	$\Sigma_b(5/2^-)$	6.11 ± 0.12	13 ± 3	$0.045 \pm 0.010 \ (\Sigma_b^-(5/2^-))$
[6 - 2 1 \]	='	/ 1.00 (0.0.20 < T < 0.20	1 45 1 0 00	$\Xi_{b}^{\prime}(3/2^{-})$	6.27 ± 0.12	10 5	$0.099 \pm 0.021 \ (\Xi_b^{\prime -}(3/2^-))$			
$[0_F, 2, 1, \mathbf{\lambda}]$	$=_b$	1.99	0.30 < 1 < 0.30	1.43 ± 0.09	$\Xi_b'(5/2^-)$	6.29 ± 0.11	12 ± 5	$0.044 \pm 0.009 \ (\Xi_b^{\prime -}(5/2^-))$			
	Ω_b	0.14	0.32 < T < 0.38	1.62 ± 0.00	$\Omega_b(3/2^-)$	6.46 ± 0.12	11 ⊥ 5	$0.194 \pm 0.038 \; (\Omega_b^-(3/2^-))$			
		25	2.14	0.52 < 1 < 0.50	1.02 ± 0.09	$\Omega_b(5/2^-)$	6.47 ± 0.12	11 ± 5	$0.087 \pm 0.017 \; (\Omega_b^-(3/2^{T}))$		

• We investigated the following decay channel (k) $\Gamma \left[\Sigma_b(1/2^-) \to \Lambda_b(1/2^+) + \pi \right] = \Gamma \left[\Sigma_b^-(1/2^-) \to \Lambda_b^0(1/2^+) + \pi^- \right],$ (l) $\Gamma \left[\Sigma_b(1/2^-) \to \Sigma_b(1/2^+) + \pi \right] = 2 \times \Gamma \left[\Sigma_b^-(1/2^-) \to \Sigma_b^0(1/2^+) + \pi^- \right],$ (m) $\Gamma\left[\Xi_b'(1/2^-) \to \Xi_b(1/2^+) + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_b'^-(1/2^-) \to \Xi_b^0(1/2^+) + \pi^-\right],$ (n) $\Gamma\left[\Xi_b'(1/2^-) \to \Lambda_b(1/2^+) + K\right] = \Gamma\left[\Xi_b'^-(1/2^-) \to \Lambda_b^0(1/2^+) + K^-\right],$ (o) $\Gamma\left[\Xi_b'(1/2^-) \to \Xi_b'(1/2^+) + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_b'^-(1/2^-) \to \Xi_b'^0(1/2^+) + \pi^-\right],$ (p) $\Gamma\left[\Xi_b'(1/2^-) \to \Sigma_b(1/2^+) + K\right] = 3 \times \Gamma\left[\Xi_b'^-(1/2^-) \to \Sigma_b^0(1/2^+) + K^-\right],$ (q) $\Gamma \left[\Omega_b(1/2^-) \to \Xi_b(1/2^+) + K \right] = 2 \times \Gamma \left[\Omega_b^-(1/2^-) \to \Xi_b^0(1/2^+) + K^- \right],$ (r) $\Gamma\left[\Omega_b(1/2^-) \to \Xi_b'(1/2^+) + K\right] = 2 \times \Gamma\left[\Omega_b^-(1/2^-) \to \Xi_b'^0(1/2^+) + K^-\right],$ (s) $\Gamma\left[\Sigma_b(3/2^-) \to \Sigma_b^*(3/2^+) + \pi\right] = 2 \times \Gamma\left[\Sigma_b^-(3/2^-) \to \Sigma_b^{*0}(3/2^+) + \pi^-\right],$ (t) $\Gamma\left[\Xi_b'(3/2^-) \to \Xi_b^*(3/2^+) + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_b'^-(3/2^-) \to \Xi_b^{*0}(3/2^+) + \pi^-\right],$ (u) $\Gamma \left[\Xi_b'(3/2^-) \to \Sigma_b^*(3/2^+) + K \to \Lambda_b(1/2^+) + \pi + K \right]$ $= 3 \times \Gamma \left[\Xi_b^{\prime -}(3/2^-) \to \Sigma_b^{*0}(3/2^+) + K^- \to \Lambda_b^0(3/2^+) + \pi^0 + K^- \right],$ (v) $\Gamma\left[\Omega_b(3/2^-) \to \Xi_b^*(3/2^+) + K\right] = 2 \times \Gamma\left[\Omega_b^-(3/2^-) \to \Xi_b^{*0}(3/2^+) + K^-\right].$

32

□ We calculate the S-wave decay of the $\Sigma_b^-(1/2^-)$ belonging to $[6_F, 1, 0, \rho]$ into $\Sigma_b^0(1/2^+)\pi^-(0^-)$ to introduce the application of light-cone sum rules. At first we consider the three-point correlation function:

$$\Pi(\omega, \,\omega') = \int d^4x \; e^{-ik \cdot x} \; \langle 0 | J_{1/2, -, \Sigma_b^-, 1, 0, \rho}(0) \bar{J}_{\Sigma_b^0}(x) | \pi^- \rangle \\ = \frac{1 + \psi}{2} G_{\Sigma_b^-[\frac{1}{2}^-] \to \Sigma_b^0 \pi^-}(\omega, \omega') \,,$$

□ At the hadronic level, we can rewrite the correlation function by using double dispersion relation:

$$G_{\Sigma_{b}^{-}[\frac{1}{2}^{-}] \to \Sigma_{b}^{0} \pi^{-}}(\omega, \omega') = g_{\Sigma_{b}^{-}[\frac{1}{2}^{-}] \to \Sigma_{b}^{0} \pi^{-}} \times \frac{f_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]} f_{\Sigma_{b}^{0}}}{(\bar{\Lambda}_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]} - \omega')(\bar{\Lambda}_{\Sigma_{b}^{0}} - \omega)},$$

□ At the quark-gluon level, we calculate the correlation function using the method of OPE to expand in terms of light-cone distribution amplitudes

$$\begin{split} G_{\Sigma_{b}^{-}[\frac{1}{2}^{-}] \to \Sigma_{b}^{0} \pi^{-}}(\omega, \omega') &= g_{\Sigma_{b}^{-}[\frac{1}{2}^{-}] \to \Sigma_{b}^{0} \pi^{-}} \times \frac{f_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]} f_{\Sigma_{b}^{0}}}{(\bar{\Lambda}_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]} - \omega')(\bar{\Lambda}_{\Sigma_{b}^{0}} - \omega)} \\ &= \int_{0}^{\infty} dt \int_{0}^{1} du e^{i(1-u)\omega' t} e^{iu\omega t} \times 8 \times \left(\frac{3f_{\pi}m_{\pi}^{2}}{4\pi^{2}t^{4}(m_{u}+m_{d})}\phi_{3;\pi}^{p}(u) + \frac{if_{\pi}m_{\pi}^{2}v \cdot q}{8\pi^{2}t^{3}(m_{u}+m_{d})}\phi_{3;\pi}^{\sigma}(u) - \frac{if_{\pi}t}{256v \cdot q} \langle q_{s}\bar{q}\sigma Gq \rangle \psi_{4;\pi}(u) \right). \end{split}$$

□ After Wick rotations and double Borel transformation we obtain

$$\begin{split} g_{\Sigma_{b}^{-}[\frac{1}{2}^{-}] \to \Sigma_{b}^{0}\pi^{-}} f_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]} f_{\Sigma_{b}^{0}} e^{-\frac{\bar{\Lambda}_{\Sigma_{b}^{-}[\frac{1}{2}^{-}]}}{T_{1}}} e^{-\frac{\bar{\Lambda}_{\Sigma_{b}^{0}}}{T_{2}}} \\ &= 8 \times \left(\frac{3if_{\pi}m_{\pi}^{2}}{4\pi^{2}(m_{u}+m_{d})} T^{5} f_{4}(\frac{\omega_{c}}{T}) \phi_{3;\pi}^{p}(u_{0}) + \frac{if_{\pi}m_{\pi}^{2}}{8\pi^{2}(m_{u}+m_{d})} T^{5} f_{4}(\frac{\omega_{c}}{T}) \frac{d\phi_{3;\pi}^{\sigma}(u_{0})}{du} \right. \\ &+ \frac{if_{\pi}}{16} \langle \bar{q}q \rangle T f_{0}(\frac{\omega_{c}}{T}) \int_{0}^{u_{0}} \psi_{4;\pi}(u) du - \frac{if_{\pi}}{256} \langle g_{s}\bar{q}\sigma Gq \rangle \frac{1}{T} \int_{0}^{u_{0}} \psi_{4;\pi}(u) du \right), \end{split}$$

□ The S-wave decay properties of P-wave bottom baryons are summarized below

TABLE II: S-wave decay properties of the P-wave bottom baryons belonging to the baryon multiplets $[\mathbf{6}_F, 0, 1, \lambda], [\mathbf{6}_F, 1, 0, \rho]$ and $[\mathbf{6}_F, 2, 1, \lambda].$

Multiplets	S-wave decay channels	g	S-wave decay width (MeV)
	(l) $\Sigma_b(\frac{1}{2}^-) \to \Sigma_b(\frac{1}{2}^+)\pi$	$3.41^{+1.74}_{-1.33}$	850^{+1100}_{-540}
	(o) $\Xi_b'(\frac{1}{2}^-) \to \Xi_b'(\frac{1}{2}^+)\pi$	$2.31^{+1.13}_{-0.87}$	310^{+370}_{-190}
[6 ₂₂ 1 0 <i>a</i>]	(s) $\Sigma_b(\frac{3}{2}^-) \to \Sigma_b^*(\frac{3}{2}^+)\pi$	$2.28^{+1.16}_{-0.89}$	350^{+440}_{-220}
$[0_F, 1, 0, p]$	(t) $\Xi_b^{\prime}(\frac{3}{2}^-) \to \Xi_b^*(\frac{3}{2}^+)\pi$	$1.54_{-0.58}^{+0.75}$	130^{+150}_{-80}
	(u) $\Xi_b'(\frac{3}{2}^-) \to \Sigma_b^*(\frac{3}{2}^+) K \to \Lambda_b(\frac{1}{2}^+) \pi K$	$2.10^{+1.07}_{-0.79}$	$0.029^{+0.036}_{-0.017}$
	(v) $\Omega_b(\frac{3}{2}^-) \to \Xi_b^*(\frac{3}{2}^+)K$	$2.72^{+1.29}_{-0.96}$	_
	(k) $\Sigma_b(\frac{1}{2}^-) \to \Lambda_b(\frac{1}{2}^+)\pi$	$4.70^{+2.39}_{-1.84}$	1400^{+1800}_{-900}
$[6_{\rm T}, 0, 1, \lambda]$	(m) $\Xi_b^{\prime}(\frac{1}{2}) \to \Xi_b(\frac{1}{2})\pi$	$3.40^{+1.69}_{-1.30}$	1000^{+1300}_{-630}
$[0_F, 0, 1, \mathbf{\lambda}]$	(n) $\Xi_b'(\frac{1}{2}) \to \Lambda_b(\frac{1}{2}) K$	$4.56^{+2.35}_{-1.74}$	1000^{+1300}_{-620}
	(q) $\Omega_b(\frac{1}{2}^-) \to \Xi_b(\frac{1}{2}^+)K$	$6.38\substack{+3.16 \\ -2.35}$	3900^{+4900}_{-2400}
	(s) $\Sigma_b(\frac{3}{2}^-) \to \Sigma_b^*(\frac{3}{2}^+)\pi$	$0.014\substack{+0.008\\-0.007}$	$0.013\substack{+0.019\\-0.010}$
$[6_F, 2, 1, \lambda]$	(t) $\Xi_b^{\prime}(\frac{3}{2}^-) \to \Xi_b^*(\frac{3}{2}^+)\pi$	$0.009\substack{+0.005\\-0.005}$	$0.004\substack{+0.006\\-0.003}$
	(u) $\Xi_b'(\frac{3}{2}^-) \to \Sigma_b^*(\frac{3}{2}^+)K \to \Lambda_b(\frac{1}{2}^+)\pi K$	$0.006\substack{+0.010\\-0.006}$	$2^{+14}_{-2}\times 10^{-7}$
	(v) $\Omega_b(\frac{3}{2}^-) \to \Xi_b^*(\frac{3}{2}^+)K$	$0.007\substack{+0.012\\-0.007}$	$0.001^{+0.008}_{-0.001}$

□ The S-wave decay properties of P-wave bottom baryons are summarized below

TABLE II: S-wave decay properties of the P-wave bottom baryons belonging to the baryon multiplets $[\mathbf{6}_F, 0, 1, \lambda], [\mathbf{6}_F, 1, 0, \rho]$ and $[\mathbf{6}_F, 2, 1, \lambda].$

Multiplets	S-wave decay channels	g	S-wave decay width (MeV)	
	(l) $\Sigma_b(\frac{1}{2}^-) \to \Sigma_b(\frac{1}{2}^+)\pi$	$3.41^{+1.74}_{-1.33}$	850 ⁺¹¹⁰⁰ -540	Too large to
	(o) $\Xi_b'(\frac{1}{2}^-) \to \Xi_b'(\frac{1}{2}^+)\pi$	$2.31^{+1.13}_{-0.87}$	310^{+370}_{-190}	internret the
$[6_F, 1, 0, \rho]$	(s) $\Sigma_b(\frac{3}{2}) \to \Sigma_b(\frac{3}{2}) \pi$ (t) $\Xi'(\frac{3}{2}) \to \Xi^*(\frac{3}{2})\pi$	$2.28^{+1.10}_{-0.89}$ 1 54 ^{+0.75}	350^{+120}_{-220} 120 ⁺¹⁵⁰	
	$ \begin{array}{c} (0) \ \Xi_b(\frac{1}{2}) \ \to \ \Xi_b(\frac{1}{2}) \\ (\mathbf{u}) \ \Xi_b'(\frac{3}{2}) \ \to \ \Sigma_b^*(\frac{3}{2}) \\ K \ \to \ \Lambda_b(\frac{1}{2}) \\ \pi \\ K \ \to$	$2.10^{+1.07}_{-0.58}$	$0.029^{+0.036}_{-0.017}$	newly
	$(\mathbf{v}) \ \Omega_b(\frac{3}{2}^-) \to \Xi_b^*(\frac{3}{2}^+)K$	$2.72^{+1.29}_{-0.96}$	-	observed
	(k) $\Sigma_b(\frac{1}{2}^-) \to \Lambda_b(\frac{1}{2}^+)\pi$	$4.70^{+2.39}_{-1.84}$	1400^{+1800}_{-900}	ovited better
$[6_F, 0, 1, \lambda]$	(m) $\Xi_b'(\frac{1}{2}) \to \Xi_b(\frac{1}{2})\pi$	$3.40^{+1.69}_{-1.30}$	1000^{+1300}_{-630}	exiled bollon
	(n) $\Xi_b'(\frac{1}{2}) \to \Lambda_b(\frac{1}{2}) K$	$4.56^{+2.35}_{-1.74}$	1000^{+1300}_{-620}	baryons
	$(\mathbf{q}) \ \Omega_b(\frac{1}{2}) \to \Xi_b(\frac{1}{2}) K$	$6.38^{+3.10}_{-2.35}$	3900^{+4500}_{-2400}	
$[6_F,2,1,\lambda]$	(s) $\Sigma_b(\frac{3}{2}) \to \Sigma_b^*(\frac{3}{2})\pi$	$0.014^{+0.008}_{-0.007}$	$0.013^{+0.019}_{-0.010}$	
	$(\mathbf{t}) \ \Xi_b^{\prime}(\frac{3}{2}) \rightarrow \Xi_b^{\ast}(\frac{3}{2}) \pi$	$0.009^{+0.005}_{-0.005}$	$0.004^{+0.000}_{-0.003}$	
	$(\mathbf{u}) \stackrel{\simeq}{=}_{b} (\frac{3}{2}) \rightarrow \Sigma_{b}^{*} (\frac{3}{2}) K \rightarrow \Lambda_{b} (\frac{1}{2}) \pi K$	$0.006^{+0.010}_{-0.006}$	$2^{+14}_{-2} \times 10^{-7}_{-7}$	
	$(\mathbf{v}) \ \Omega_b(\frac{s}{2}) \to \Xi_b^*(\frac{s}{2}) K$	$0.007^{+0.012}_{-0.007}$	0.001 + 0.003	36

• We investigated the following decay channel (w) $\Gamma\left[\Sigma_b(3/2^-) \to \Lambda_b(1/2^+) + \pi\right] = \Gamma\left[\Sigma_b^-(3/2^-) \to \Lambda_b^0(1/2^+) + \pi^-\right],$ (x) $\Gamma\left[\Xi_b'(3/2^-) \to \Xi_b(1/2^+) + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_b'^-(3/2^-) \to \Xi_b^0(1/2^+) + \pi^-\right],$ (y) $\Gamma\left[\Xi_b'(3/2^-) \to \Lambda_b(1/2^+) + K\right] = \Gamma\left[\Xi_b'^-(3/2^-) \to \Lambda_b^0(1/2^+) + K^-\right],$ (z) $\Gamma\left[\Omega_b(3/2^-) \to \Xi_b(1/2^+) + K\right] = 2 \times \Gamma\left[\Omega_b^-(3/2^-) \to \Xi_b^0(1/2^+) + K^-\right],$ (w') $\Gamma \left[\Sigma_b(5/2^-) \to \Lambda_b(1/2^+) + \pi \right] = \Gamma \left[\Sigma_b^-(5/2^-) \to \Lambda_b^0(1/2^+) + \pi^- \right],$ (x') $\Gamma\left[\Xi_b'(5/2^-) \to \Xi_b(1/2^+) + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_b'^-(5/2^-) \to \Xi_b^0(1/2^+) + \pi^-\right],$ $(y') \quad \mathbf{\Gamma} \Big[\Xi_b'(5/2^-) \to \Lambda_b(1/2^+) + K \Big] = \mathbf{\Gamma} \Big[\Xi_b'^-(5/2^-) \to \Lambda_b^0(1/2^+) + K^- \Big],$ (z') $\Gamma\left[\Omega_b(5/2^-) \to \Xi_b(1/2^+) + K\right] = 2 \times \Gamma\left[\Omega_b^-(5/2^-) \to \Xi_b^0(1/2^+) + K^-\right],$

The D-wave decay properties of P-wave bottom baryons are summarized below TABLE III: *D*-wave decay properties of the *P*-wave bottom baryons belonging to the baryon doublet $[\mathbf{6}_F, 2, 1, \lambda]$.

Multiplets	D-wave decay channels	$g \; (\mathrm{GeV}^{-2})$	D-wave decay width (MeV)
$[{\bf 6}_F, 2, 1, \lambda]$	(w) $\Sigma_b(\frac{3}{2}) \to \Lambda_b(\frac{1}{2})\pi$	$7.29^{+3.65}_{-2.75}$	46^{+58}_{-28}
	(x) $\Xi_b'(\frac{3}{2}^-) \to \Xi_b(\frac{1}{2}^+)\pi$	$4.57^{+2.17}_{-1.67}$	16^{+19}_{-10}
	(y) $\Xi_b'(\frac{3}{2}^-) \to \Lambda_b(\frac{1}{2}^+)K$	$5.44^{+2.65}_{-1.95}$	$6.5^{+7.9}_{-3.8}$
	(z) $\Omega_b(\frac{3}{2}^-) \to \Xi_b(\frac{1}{2}^+)K$	$6.51^{+2.97}_{-2.22}$	58_{-33}^{+65}

□ We also show the stability of coupling constant as a function of Borel Mass T

- Internal structure of heavy baryons
- •QCD sum rules and light-cone sum rules
- •Decay properties of bottom baryons
- Summary and discussions

The masses and decay widths of the $\Sigma_b(3/2^-)$ and $\Xi'_b(3/2^-)$ belonging to $[\mathbf{6}_F, \mathbf{2}, \mathbf{1}, \lambda]$ are extracted to be

$$\begin{split} M_{\Sigma_b(3/2^-)} &= 6.10 \pm 0.12 \text{ GeV}, \\ \hline M_{\Sigma_b(3/2^-)} &= 46 \stackrel{+58}{_{-28}} \text{ MeV (total)}, \\ M_{\Xi'_b(3/2^-)} &= 6.27 \pm 0.12 \text{ GeV}, \\ \hline \Gamma_{\Xi'_b(3/2^-)} &= 23 \stackrel{+27}{_{-14}} \text{ MeV (total)}, \end{split} \\ \end{split}$$

Their non-vanishing decay channels are extracted to be

$$\begin{split} \Gamma_{\Sigma_b(3/2^-) \to \Lambda_b \pi} &= 46 \ ^{+58}_{-28} \ \text{MeV} \,, \\ \Gamma_{\Sigma_b(3/2^-) \to \Sigma_b^* \pi} &= 1.3 \ ^{+1.9}_{-1.0} \times 10^{-2} \ \text{MeV} \,, \\ \Gamma_{\Xi'_b(3/2^-) \to \Xi_b \pi} &= 16 \ ^{+19}_{-10} \ \text{MeV} \,, \\ \Gamma_{\Xi'_b(3/2^-) \to \Lambda_b K} &= 6.5 \ ^{+7.9}_{-3.8} \ \text{MeV} \,, \\ \Gamma_{\Xi'_b(3/2^-) \to \Xi_b^* \pi} &= 4 \ ^{+6}_{-3} \times 10^{-3} \ \text{MeV} \,, \\ \Gamma_{\Xi'_b(3/2^-) \to \Sigma_b^* K} &= 2 \ ^{+14}_{-2} \times 10^{-7} \ \text{MeV} \,. \end{split}$$

 \square The internal structures of $\Xi_b(6227)^-$ and $\Sigma_b(6097)^{\pm}$ are estimated to be

 \square The internal structures of $\Xi_b(6227)^-$ and $\Sigma_b(6097)^{\pm}$ are estimated to be

λ-excitation and $[6_F, 2, 1, \lambda]$

• Especially the branching ratio is extracted to be

$$\begin{split} \frac{\mathcal{B}(\Sigma_b(3/2^-)^- \to \Lambda_b^0 K^-)}{\mathcal{B}(\Sigma_b(3/2^-)^- \to \Xi_b^0 \pi^-)} &= 0.6 \ ^{+1.1}_{-0.5} \,, \\ \end{split} \qquad \begin{aligned} \frac{\mathcal{B}(\Xi_b(6227)^- \to \Lambda_b^0 K^-)}{\mathcal{B}(\Xi_b(6227)^- \to \Xi_b^0 \pi^-)} &\simeq 1 \,. \\ \end{split} \\ \end{split}$$

 \square Furthermore we predict the mass and decay width of $\Omega_b(3/2^-)$

$$\begin{array}{rcl} \mbox{Theo} & M_{\Omega_b(3/2^-)} &= 6.46 \ \pm 0.12 \ {\rm GeV} \,, \\ & & & \\ \Gamma_{\Omega_b(3/2^-)} &= 58 \ ^{+65}_{-33} \ {\rm MeV} \,, \end{array} & \begin{array}{rcl} & & & \\ \Gamma_{\Omega_b(3/2^-) \to \Xi_b K} &= 58 \ ^{+65}_{-33} \ {\rm MeV} \,, \\ & & \\ & & \\ \Gamma_{\Omega_b(3/2^-) \to \Xi_b^* K} &= 1 \ ^{+8}_{-1} \times 10^{-3} \ {\rm MeV} \,. \end{array} \end{array}$$

□ Moreover the differences within the same doublet are extracted to be

$$\begin{split} M_{\Sigma_b(5/2^-)} &= 6.11 \pm 0.12 \text{ GeV}, \ M_{\Sigma_b(5/2^-)} - M_{\Sigma_b(3/2^-)} = 13 \pm 5 \text{ MeV}, \\ \text{Theo} \quad M_{\Xi'_b(5/2^-)} &= 6.29 \pm 0.11 \text{ GeV}, \ M_{\Xi'_b(5/2^-)} - M_{\Xi'_b(3/2^-)} = 12 \pm 5 \text{ MeV}, \\ M_{\Omega_b(5/2^-)} &= 6.47 \pm 0.12 \text{ GeV}, \ M_{\Omega_b(5/2^-)} - M_{\Omega_b(3/2^-)} = 11 \pm 5 \text{ MeV}. \end{split}$$

□ For Ω_b of $[6_F, 2, 1, \lambda]$ multiplate

Theo (origin)

$$\begin{split} M_{\Omega_b(3/2^-)} &= 6.46 \pm 0.12 \text{ GeV}, \\ \Gamma_{\Omega_b(3/2^-)} &= 58 \stackrel{+65}{_{-33}} \text{ MeV}, \\ \Gamma_{\Omega_b(3/2^-) \to \Xi_b K} &= 58 \stackrel{+65}{_{-33}} \text{ MeV}, \\ \Gamma_{\Omega_b(3/2^-) \to \Xi_b^* K} &= 1 \stackrel{+8}{_{-1}} \times 10^{-3} \text{ MeV}. \end{split}$$

 $M_{\Omega_b(5/2^-)} - M_{\Omega_b(3/2^-)} = 11 \pm 5 \text{ MeV}.$

PRD 99, 094021 (2019)

Ехр

$$\begin{split} \Omega_b(6316)^-: & M = 6315.64 \pm 0.31 \pm 0.07 \pm 0.50 \text{ MeV}, \\ & \Gamma < 2.8 \text{ MeV}, \end{split} \tag{1} \\ \Omega_b(6330)^-: & M = 6330.30 \pm 0.28 \pm 0.07 \pm 0.50 \text{ MeV}, \\ & \Gamma < 3.1 \text{ MeV}, \end{aligned} \tag{2} \\ \Omega_b(6340)^-: & M = 6339.71 \pm 0.26 \pm 0.05 \pm 0.50 \text{ MeV}, \\ & \Gamma < 1.5 \text{ MeV}, \end{aligned} \tag{3} \\ \Omega_b(6350)^-: & M = 6349.88 \pm 0.35 \pm 0.05 \pm 0.50 \text{ MeV}, \\ & \Gamma = 1.4^{+1.0}_{-0.8} \pm 0.1 \text{ MeV}. \end{aligned}$$

PRL 124, 082002 (2020)

 \square We update our calculations and try to explain the newly observed Ω_b states

Mass spectrum

Multiplets	ω_c (GeV)	Working region (GeV)	$\overline{\Lambda}$ (GeV)	Baryon (j^P)	Mass (GeV)	Difference (MeV)	f (GeV ⁴)
$[6_F(\Omega_b), 1, 0, \rho]$	2.13	0.26 < T < 0.37	$1.58^{+0.10}_{-0.08}$	$\Omega_b(1/2^-)$	$6.32^{+0.12}_{-0.10}$	$2.3^{+1.0}_{-0.9}$	$0.13^{+0.03}_{-0.02}$
				$\Omega_b(3/2^-)$	$6.32_{-0.10}^{+0.12}$		$0.08^{+0.02}_{-0.01}$
$[6_F(\Omega_b), 0, 1, \lambda]$	2.00	0.27 < T < 0.34	1.54 ± 0.08	$\Omega_b(1/2^-)$	6.34 ± 0.11	-	0.13 ± 0.03
$[6_F(\Omega_b), 1, 1, \lambda]$	2.00	0.38 < T < 0.39	1.49 ± 0.07	$\Omega_b(1/2^-)$	$6.34_{-0.08}^{+0.09}$	$6.3^{+2.3}_{-2.1}$	0.12 ± 0.02
				$\Omega_b(3/2^-)$	$6.34_{-0.08}^{+0.09}$		0.07 ± 0.01
$[6_F(\Omega_b), 2, 1, \lambda]$	2.08	0.26 < T < 0.37	$1.53_{-0.08}^{+0.11}$	$\Omega_b(3/2^-)$	$6.35_{-0.11}^{+0.13}$	$10.0^{+4.6}_{-3.8}$	$0.16^{+0.04}_{-0.03}$
				$\Omega_b(5/2^-)$	$6.36_{-0.11}^{+0.13}$		$0.07^{+0.02}_{-0.01}$

EPJC 80(3):256 (2020)

 \square We update our calculations and try to explain the newly observed Ω_b states

Decay properties

Multiplets	Baryon (j^P)	S-wave $\Xi_b K$	<i>D</i> -wave $\Xi_b K$	$\Xi_b'K/\Xi_b^*K/\Xi_bK^*\cdots$	Candidate
$[6_F(\Omega_b), 1, 0, \rho]$	$\Omega_b(1/2^-)$	0	0	<i>K</i> . <i>F</i> .	$\Omega_{b}(6316)^{-}$
	$\Omega_b(3/2^-)$	A.M.F.	0	<i>K</i> . <i>F</i> .	
$[6_F(\Omega_b), 0, 1, \lambda]$	$\Omega_b(1/2^-)$	$\Gamma = 2800^{+3600}_{-1800} \text{MeV}$	-	<i>K</i> . <i>F</i> .	
$[6_F(\Omega_b), 1, 1, \lambda]$	$\Omega_b(1/2^-)$	0	0	<i>K</i> . <i>F</i> .	$\Omega_b(6330)^-$
	$\Omega_b(3/2^-)$	A.M.F.	0	<i>K</i> . <i>F</i> .	$\Omega_b(6340)^-$
$[6_F(\Omega_b), 2, 1, \lambda]$	$\Omega_b(3/2^-)$	A.M.F.	$\Gamma = 4.7^{+6.1}_{-2.9}$ MeV	<i>K</i> . <i>F</i> .	$\Omega_b(6350)^-$
	$\Omega_b(5/2^-)$	A.M.F.	0	K.F.	

EPJC 80(3):256 (2020)

• Our results suggest that:

 $\Omega_{b}(1/2^{-}), \Omega_{b}(3/2^{-}) \in [\mathbf{6}_{F}, \mathbf{1}, \mathbf{0}, \boldsymbol{\rho}] \Omega_{b}(6316)^{-}$ $\Omega_{b}(1/2^{-}) \in [\mathbf{6}_{F}, \mathbf{0}, \mathbf{1}, \boldsymbol{\lambda}]$ $\Omega_{b}(1/2^{-}), \Omega_{b}(3/2^{-}) \in [\mathbf{6}_{F}, \mathbf{1}, \mathbf{1}, \boldsymbol{\lambda}] \Omega_{b}(6330)^{-}, \Omega_{b}(6340)^{-}$ $\Omega_{b}(3/2^{-}), \Omega_{b}(5/2^{-}) \in [\mathbf{6}_{F}, \mathbf{2}, \mathbf{1}, \boldsymbol{\lambda}] \Omega_{b}(6350)^{-}$

- \square We have also studied their S-wave decays into ground-state bottom baryons accompanied by vector mesons (ρ or K^*).
- **D** 28 possible decay channels are calculated for each P-wave bottom baryon mutiplet of flavor 6_F : $[6_F, 1, 0, \rho]$, $[6_F, 0, 1, \lambda]$, $[6_F, 1, 1, \lambda]$ and $[6_F, 2, 1, \lambda]$.

Decay channels	Coupling constant g	Partial width	Total width
(d2) $\Sigma_b(\frac{3}{2}^-) \to \Sigma_b(\frac{1}{2}^+)\rho \to \Sigma_b(\frac{1}{2}^+)\pi\pi$	$5.90 \stackrel{+3.56}{_{-3.08}}$	$0.14 \stackrel{+0.19}{_{-0.12}}$ keV	$0.14 \substack{+0.19 \\ -0.12}$ keV
(e3) $\Xi_b^{\prime}(\frac{3}{2}^-) \rightarrow \Xi_b^{\prime}(\frac{1}{2}^+)\rho \rightarrow \Xi_b^{\prime}(\frac{1}{2}^+)\pi\pi$	$4.23 \stackrel{+2.42}{-2.13}$	0.53 ^{+0.68} _{-0.46} keV	$0.53 \stackrel{+0.68}{_{-0.46}} \mathrm{keV}$
(g1) $\Sigma_b(\frac{5}{2}^-) \rightarrow \Sigma_b^*(\frac{3}{2}^+)\rho \rightarrow \Sigma_b^*(\frac{3}{2}^+)\pi\pi$	$3.78 \substack{+2.01 \\ -1.65}$	$(3^{+4}_{-2}) \times 10^{-6} \text{ keV}$	$\left(3 \begin{array}{c} +4 \\ -2 \end{array}\right) \times 10^{-6} \text{ keV}$
(h2) $\Xi_b^{\prime}(\frac{5}{2}^-) \rightarrow \Xi_b^*(\frac{3}{2}^+)\rho \rightarrow \Xi_b^*(\frac{3}{2}^+)\pi\pi$	$4.09 \stackrel{+2.08}{-1.72}$	$0.29 \stackrel{+0.32}{_{-0.23}} \text{ keV}$	$0.29 \stackrel{+0.32}{_{-0.23}} \mathrm{keV}$

Table 4 S-wave decays of P-wave bottom baryons belonging to the doublet $[6_F, 2, 1, \lambda]$ into ground-state bottom baryons and vector mesons

■ We suggest the LHCb and Belle/Belle-II experiments to search for the $\Xi_b(5/2^-)$, which is the $J^P = 5/2^-$ partner state of the $\Xi_b(6227)^-$ in the decay channel of $\Xi_b(5/2^-) \rightarrow \Xi_b^* (3/2^+) \rho \rightarrow \Xi_b^* (3/2^+) \pi \pi$. EPJC 80(2):80 (2020)

Thanks for your attention! 谢谢