

Study of the charmed-antistrange and anticharmed-strange meson pairs at Belle and status of Belle II

Outline

- Belle experiments
- $e^+e^- \to D_s^+D_{s1}(2536)^-$
- $e^+e^- \to D_s^+D_{s2}^*(2573)^-$

• Status and Prospects of Belle II

Belle experiment and data samples

Quarknium

- Quarkonium: $q\bar{q}$, the simplest system of a hadron.
- Below $D\overline{D}/B\overline{B}$ thresholds both charmonium and bottomonium are successful stories of QCD.
- But there are many exotic states observed in the past decade, and they are hard to fit in the two families.
 -4-

Discoveries of XYZ states at Belle

2003 -	X(0070) 1
	X (3872) observed at Belle
	X(3872) confirmed at D0, CDF
2004 -	X(3915) [as $Y(3940)$] observed at Belle
	Y (4260) observed at BaBar
	$\chi_{c2}(2P)$ [as $Z(3930)$] observed at Belle
2005 -	Y(4260) confirmed at CLEO-c
	X(3940), Y(4008), Y(4660) observed at Belle
	Y(4360) observed at BaBar
2006 -	Y(4360) confirmed at Belle
	X(3915) [as $Y(3940)$] confirmed at BaBar
	X(3940) confirmed at Belle
2007 -	$Z^{\pm}(4050),X(4160),Z^{\pm}(4250),Z^{\pm}(4430),X(4630)$
	observed at Belle
	Y(4140) observed at CDF
2008 -	$X(3915), X(4350), Y_b(10888)$ observed at Belle
	$\chi_{c2}(2P)$ [as $Z(3930)$] confirmed at BaBar
	Y(4274) observed at CDF
2009 -	X(3915) confirmed at BaBar
	$Z_b(10610)^{\pm}$ observed and confirmed at Belle
	$Z_b(10650)^{\pm}$ observed and confirmed at Belle
2010 -	X(3823) [likely $\psi_2(1D)$], $Z_b(10610)^0$ observed and confirmed at Belle
	$Z_c(3900)^{\pm}, Z_c(4020)^{\pm}$ observed at BESIII
	$Z_c(3900)^{\pm}$ confirmed at Belle
2011 -	$Z_c(3900)^0$ observed at CLEO-c
	$Z_c(4020)^0$ observed at BESIII
	Y(4140) confirmed at D0, CMS
2012 -	Y(4274) confirmed at CMS
	Y(4660) confirmed at BaBar
	$Z_c(4020)^{\pm}$ confirmed at BESIII
2013 -	$Z^{\pm}(4200)$ observed at Belle
	$Z^{\pm}(4240)$ observed at LHCb
	$Z^{\pm}(4430)$ confirmed at LHCb
2014 -	$X(3823)$ [likely $\psi_2(2D)$], $Z_c(3900)^0$, $Z_c(4020)^0$ confirmed at BESIII
	$Z_c(4055)^{\pm}$ observed at Belle
	Y(4230) observed at BESIII
2015 -	$P_{c}^{+}(4380), P_{c}^{+}(4450)$ observed at LHCb
	$Y_b(10888)$ no longer observed at Belle
	$X(5568)^{\pm}$ observed at D0
2016 -	$X(5568)^{\pm}$ NOT observed at LHCb
	Y(4140), Y(4274) confirmed at LHCb
	X(4500), X(4700) observed at LHCb

- History of the quarkonium-like exotic states
- Belle accounts for ~1/2 of the discoveries, including the very first one, X(3872)

adapted from Lebed, Mitchell, Swanson, PPNP 93, 143 (2017)

Various interpretations of the exotic states

Non-standard hadrons

Besides above models, there still are screened potential, cusps effect, final state interaction ...

<u>High Priority:</u>

- Identify most prominent component in wave function
- Seek unique picture describing all XYZ states, not state-by-state

Pentaquark Nature Reviews Physics 1, 480 (2019)

$e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$

[PHYSICAL REVIEW D 100, 111103(R) (2019)]

Y states

- Y(4008), Y(4260), Y(4360), Y(4630), Y(4660): $J^{PC} = 1^{--}$
- Strong coupling to hidden-charm final states in contract to the vector charmonium states in the same energy region [ψ(4040), ψ(4160), ψ(4415)], which couple dominantly to open-charm meson pairs.
- Many theoretical interpretations: tetraquark, molecule, hybrids, or hadrocharmonia?
- Observed in Initial state radiation processes (Belle and Babar) and e⁺e⁻ annihilations in the charmonium energy region (BESIII). The first observed Y state (Y(4260))

Y states via ISR

Belle: PRL99, 142002, 670/fb BaBar: PRD89, 111103, 670/fb

$M(\pi^{+}\pi^{-})$ in Y(4260) and Y(4660) signal region

• $f_0(980) (\rightarrow \pi^{+}\pi^{-}) J/\psi$, $f(4660) \rightarrow f_0(980) (\rightarrow \pi^{+}\pi^{-}) \psi$ $f_0(980)$ has a ss component, and J/ψ has a cc component.

It is natural to search for such Y states with a quark component of (cs̄)(cs̄), e.g. D_sD_{s1}(2536).

Analysis method

$e^+e^- \rightarrow \gamma_{ISR} D_s^+ D_{s1} (2536)^- (\rightarrow \overline{D}^{*0} K^- / D^{*-} K_S^0)$

We require full reconstruction of the γ_{ISR} , D_s^+ , and K^-/K_S^0 . • $D_s^+ \rightarrow \phi \pi^+$, $\overline{K}^{*0}K^+$, $K_s^0K^+$, $K^+K^-\pi^+\pi^0$, $K_s^0\pi^0K^+$, $K^{*+}K_s^0$, $\eta \pi^+$, and $\eta' \pi^+$

• For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^{*0}/D^{*-} nominal mass.

$$M_{rec}(\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}) = \sqrt{(E_{c.m.}^{*} - E_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2} - (p_{\gamma_{ISR}D_{s}^{+}K^{-}/K_{s}^{0}}^{*})^{2}}$$

• To improve the $M_{rec}(\gamma_{ISR})$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ is constrained to be the nominal mass of the \overline{D}^{*0}/D^{*-} . As a result, the resolution of $M_{rec}(\gamma_{ISR}) \equiv M(D_s^+D_{s1}(2536)^-)$ is drastically improved (~180MeV \rightarrow ~ 5MeV).

Data samples:

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)
10.52	89.5±1.3
10.58	711±10
10.867	121.4±1.7
Total	921.9±12.9

The invariant mass distribution for D⁺_s candidates

- Since the intrinsic width of the D_s^+ could be neglected, a double Gaussian function is used to fit the D_s^+ mass spectrum.
- The purity is $N_{sig}/(N_{sig} + N_{bkg})=64\%$.

The recoil mass spectrum against $\gamma_{ISR} D_s^+ K^- / K_S^0$

- $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ distribution is making before applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized D_{s1}(2536)⁻ mass sidebands (see below).
- Due to the poor mass resolution, the \overline{D}^{*0}/D^{*-} signal is very wide.

-13-

The recoil mass spectrum against $\gamma_{ISR}D_s^+$

 $D_{s1}(2536)^{-}$ signal: Double Gaussian

The combinatorial backgrounds: threshold function

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized D_s^+ mass sidebands.
- The fit yields $254\pm36 D_{s1}(2536)^-$ signal events with the statistical significance of 8.0 σ .

Final mass spectrum $M(D_s^+D_{s1}(2536)^-)$

After applying the \overline{D}^{*0}/D^{*-} mass constraint

An unbinned simultaneous likelihood fit:

- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- D_{s1}(2536)⁻ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^$ background contribution: a threshold function
- A non-resonant contribution: a two-body phase space form

 $M=(4625.9^{+6.2}_{-6.0}(\text{stat.}) \pm 0.4(\text{syst.}) \text{ MeV/c}^2$ $\Gamma = (49.8^{+13.9}_{-11.5}(\text{stat.}) \pm 4.0(\text{syst.}) \text{ MeV}$ $\Gamma_{ee} \times \mathcal{B}(Y \to D_s^+ D_{s1}(2536)^-) \times \mathcal{B}(D_{s1}(2536)^- \to \overline{D}^{*0} \text{K}^-) = (14.3^{+2.8}_{-2.6}(\text{stat.}) \pm 1.5(\text{syst.}) \text{ eV}$

One possible background is from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$, where the photon from the D_s^{*+} remains undetected. No obvious structure is observed in the $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

Cross section

The peak value of the $\sigma \times Br$ at $M(D_s^+D_{s1}(2536)^-) \sim 4.63 \text{ GeV/c}^2$ is about (0.18± 0.06) nb.

$e^+e^- \rightarrow D_s^+D_{s2}^*(2573)^-$

arXiv:2004.02404 (2020)

$$e^+e^- \rightarrow \gamma_{ISR} D_s^+ D_{s2}^* (2573)^- (\rightarrow \overline{D}^0 K^-)$$

We require full reconstruction of the $\gamma_{ISR},\,D_s^+$, and $K^-.$

- $D_s^+ \rightarrow \phi \pi^+, K_s^0 K^+, \overline{K}^{*0} K^+, \phi \rho^+, K^{*+} \overline{K}^{*0}, K^{*+} K_s^0, K_s^0 K^+ \pi^+ \pi^-, \eta \pi^+,$ and $\eta' \pi^+$.
- For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^0 nominal mass.

$$M_{rec}(\gamma_{ISR}D_{s}^{+}K^{-}) = \sqrt{(E_{c.m.}^{*} - E_{\gamma_{ISR}D_{s}^{+}K^{-}}^{*})^{2} - (p_{\gamma_{ISR}D_{s}^{+}K^{-}}^{*})^{2}}$$

• To improve the γ_{ISR} resolution we refit recoil mass against $D_s^+K^-\gamma_{ISR}$ into the \overline{D}^0 mass. As a result, the resolution of $M_{rec} (\gamma_{ISR}) \equiv M(D_s^+D_{s2}^{*-}(2573))$ is drastically improved (~180MeV \rightarrow ~ 5MeV).

The recoil mass spectrum against $\gamma_{ISR} D_s^+ K^-$

- $M_{rec}(\gamma_{ISR}D_s^+K^-)$ distribution is making before applying the \overline{D}^0 mass constraint.
- The yellow histogram shows the normalized $D_{s2}^{*}(2573)^{-}$ mass sidebands (see below).
- The D
 ⁰ signal is wide and asymmetric due to the asymmetric resolution function of the ISR photon energy and higher order ISR corrections. -19-

The recoil mass spectrum against $\gamma_{ISR}D_s^+$

 $D_{s2}^{*}(2573)^{-}$ signal: BW \otimes Gaussian

The combinatorial backgrounds: A second-order polynomial

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^0 mass constraint.
- The yellow histogram shows the normalized D_s^+ mass sidebands.
- The fit yields $182\pm47 D_{s2}^*(2573)^-$ signal events with the statistical significance of 4.1σ .

Final mass spectrum $M(D_s^+D_{s2}^*(2573)^-)$

After applying the \overline{D}^0 mass constraint

An unbinned simultaneous likelihood fit:

- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- D^{*}_{s2}(2573)⁻ mass sidebands: a threshold function
- A non-resonant contribution: a two-body phase space form

$$\begin{split} \mathrm{M} &= (4619.8^{+8.9}_{-8.0}(\mathrm{stat.}) \pm 2.3(\mathrm{syst.}) \ \mathrm{MeV/c^2} \\ &\Gamma &= (47.0^{+31.3}_{-14.8}(\mathrm{stat.}) \pm 4.6(\mathrm{syst.}) \ \mathrm{MeV} \\ &\Gamma_{\mathrm{ee}} \times \mathcal{B}(\mathrm{Y} \to \mathrm{D}^+_{\mathrm{s}}\mathrm{D}^*_{\mathrm{s2}}(2573)^-) \times \mathcal{B}(\mathrm{D}^*_{\mathrm{s2}}(2573)^- \to \\ &\overline{\mathrm{D}}^0\mathrm{K}^-) = (14.7^{+5.9}_{-4.5}(\mathrm{stat.}) \pm 3.6(\mathrm{syst.}) \ \mathrm{eV} \end{split}$$

-21-

$\sigma_{B}(e^{+}e^{-} \rightarrow D_{s}^{+}D_{s2}^{*}(2573)^{-})\mathcal{B}(D_{s2}^{*}(2573)^{-} \rightarrow \overline{D}^{0}K^{-}) = N^{obs}$ $\overline{\Sigma_{i}(\varepsilon_{i} \times \mathcal{B}_{i}) \times \Delta \mathcal{L}}$

 N^{obs} : the number of observed $e^+e^- \rightarrow D_s^+D_{s2}^*(2573)^-$ signal events after subtracting the normalized $D_{s2}^*(2573)^-$ mass sidebands

Summary and discussion

Interpretations of Y(4626)

- A tetraquark state in a chiral constituent quark model with a scaling method [PRD101, 054010 (2020)].
- A P-wave tetraquark state [*cs*][*c̄s̄*] with 1⁻⁻ in the multiquark color flux-tube model [PRD 101, 054039 (2020)].
- A hidden-strange molecular state from $\Lambda_c^+ \Lambda_c^-$ interaction [arXiv:1911.03706 (2020)].
- A molecular state from interaction $D_s^* \overline{D}_{s1}(2536) D_s \overline{D}_{s1}(2536)$ [EPJC 80, 246 (2020)].
- A tetraquark and etc instead of $D_s^* \overline{D}_{s1}$ (2536) molecular within the Bethe-Salpeter framework [arXiv:2004.03167 (2020)].
- A higher charmonium [PRD 101, 034001 (2020)].
- A P-Wave hidden-charm exotic mesons in the diquark model [arXiv:2003.02802 (2020)].

What is Y(4660)?

- Charmonium?
- Molecule $[f_0(980)\psi', \Lambda_c^+\Lambda_c^-]$?
- Hadron-charmonium?
- Tetraquark state?
- Hybrid?

Experimental measurements: Y(4660) \rightarrow > $D_s^* D_{s0}^* (2317)$ > $D_s D_{s1} (2460)$ > $D_s^* D_{s1} (2460)$ > $D_s^* D_{s1} (2536)$ > $D_s^* D_{s2}^* (2573)$

May these rates be estimated according to $D_s^+D_{s1}(2536)^-$ and $D_s^+D_{s2}^*(2573)^-$?

Why does Y(4660) couple to charmed baryon strongly? Why does Y(4660) couple to $s\bar{s}$ strongly?

Extend to the charm meson pairs

- $D_1(2420), D_2(2460), D_{s1}(2536), D_{s2}(2573)$ are $j_l^P = \frac{3}{2}^+$ heavy-light states.
- The widths of the $D_1(2420)$, $D_2(2460)$, $D_{s1}(2536)$, $D_{s2}(2573)$ are narrow.

Do Y(4360)/Y(4390)/ψ(4415) & Y(4630)/Y(4660) have similar structures?-27-

Status and Prospects of Belle II

SuperKEKB

Detector: Belle Vs. Belle II

Dataset at Belle II

Exotic and Quarkonium Prospects at Belle II

Production of charmonium(-like) states at B-factory

- **B** decay $(B \rightarrow KX_{c\bar{c}})$
 - CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$
 - $J^{PC} = 0^{-+}, 1^{--}, 1^{++}, \dots$
- Initial-state radiation (ISR)
 I^{PC} = 1⁻⁻
- Two-photon process
 J^{PC} = 0⁻⁺, 0⁺⁺, 2⁺⁺, 2⁻⁺, ...
- Double charmonium
 - e.g. $e^+e^- \rightarrow J/\psi X(3940)$ [PRL 98, 082001 (2007)]

Expected statistics @50 ab⁻¹ of XYZ

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, Y(4260) $\rightarrow J/\psi \pi^+\pi^-$	$\simeq 29600$
Z(4430)	$B \rightarrow K^{\mp} Z(4430), Z(4430) \rightarrow J/\psi \pi^{\pm}$	$\simeq 10200$

Initial state radiation

Further investigations at Belle II

B decays:

- Determination of the X(3872) total width
- The branching fraction of $B \rightarrow KX(3872)$
- $X(3872) \rightarrow D^0 \overline{D}^{*0}$ has been seen. Other open flavor decays? B $\rightarrow KD\overline{D}, KD^*\overline{D}^*, KD\overline{D}^{**}, KD^*\overline{D}^{**}$.
- Full amplitude analysis to $B \rightarrow K\omega J/\psi$ and $B \rightarrow K\pi \chi_{c1}$ to determine the spin-parities of X(3915), Z(4050), Z(4250) ...
- $B \rightarrow K$ + anything, to discover new particles?

With the full data sample of Belle II (50 ab⁻¹), total width with values up to [90% C.L.] ~ 180 keV [3 σ significance] ~ 280 keV [5 σ significant] ~ 570 keV can be measured.

Further investigations at Belle II

Bottomonium(-like) at *B*-factories

Three ways to access bottomonia below $B\overline{B}$ threshold:

- ► Decays of higher mass states (e.g. Y(4S,5S,6S))
- Production of 1⁻⁻ states via initial-state radiation

Direct production via operation at a lower C.M. energy.
 Predicted Missing bottomonium levels below BB threshold

Name	L	S	J^{PC}	Mass, MeV/ c^2	Emitted hadrons [Threshold, GeV/c^2]
$\eta_b(3S)$	0	0	0^{-+}	10336	ω [11.12], ϕ [11.36]
$h_b(3P)$	1	0	1^{+-}	10541	$\pi^+\pi^-$ [10.82], η [11.09], η' [11.50]
$\eta_{b2}(1D)$	2	0	2^{-+}	10148	ω [10.93], ϕ [11.17] Mod. Phys. Lett. A
$\eta_{b2}(2D)$	2	0	2^{-+}	10450	ω [11.23], ϕ [11.47] 32, 1750025 (2017)
$\Upsilon_J(2D)$	2	1	$(1, 2, 3)^{}$	10441 - 10455	$\pi^+\pi^-$ [10.73], η [11.00], η' [11.41]
$h_{b3}(1F)$	3	0	3^{+-}	10355	$\pi^+\pi^-$ [10.63], η [10.90], η' [11.31]
$\chi_{bJ}(1F)$	3	1	$(2,3,4)^{++}$	10350 - 10358	ω [11.14], ϕ [11.38]
$\eta_{b4}(1G)$	4	0	4^{-+}	10530	ω [11.31], ϕ [11.55]
$\Upsilon_J(1G)$	4	1	$(3, 4, 5)^{}$	10529 - 10532	$\pi^+\pi^-$ [10.81], η [11.08], η' [11.49]

Operation energies (in fb-1 (M events))

Experiment	Y(1S)	Y (2S)	Y(3S)	Y(4S)	Υ(5S)	Y(6S)
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-
BaBar	-	14 (99)	30 (122)	433 (471)	R _b scan	R _b scan
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5
Belle II	200	200	200	5×10 ⁴ (5.4×10 ⁴)	1000 (300)	100 + 400 (scan)

More data samples provide opportunities to explore bottomonium spectrum further.

Search for new exotics at Belle II

- Observed $Z_b(10610)$ and $Z_b(10650)$ in $\Upsilon(5S,6S) \pi \pi$ transitions.
- The decays $Z_b(10610) \rightarrow B\overline{B}^*$ and $Z_b(10650) \rightarrow B^*\overline{B}^*$ are dominant.

The expected molecular states with the structures $B\overline{B}$, $B\overline{B}^*$, and $B^*\overline{B}^*$.

$I^G(J^P)$	Name	Content	Co-produced particles	Decay channels
			[Threshold, GeV/c^2]	
$1^+(1^+)$	Z_b	$B\bar{B}^*$	π [10.75]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^{+}(1^{+})$	Z_b'	$B^*\bar{B}^*$	π [10.79]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^{-}(0^{+})$	W_{b0}	$B\bar{B}$	ρ [11.34], γ [10.56]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}^{\prime}	$B^*\bar{B}^*$	ρ [11.43], γ [10.65]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$B\bar{B}^*$	ρ [11.38], γ [10.61]	$\Upsilon(nS) ho$ Mod. Phys. Lett. A
$1^{-}(2^{+})$	W_{b2}	$B^*\bar{B}^*$	ρ [11.43], γ [10.65]	$\Upsilon(nS) ho$ 32, 1750025 (2017)
$0^{-}(1^{+})$	X_{b1}	$B\bar{B}^*$	$\eta [11.15]$	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X_{b1}'	$B^*\bar{B}^*$	η [11.20]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$B\bar{B}$	ω [11.34], γ [10.56]	$\Upsilon(nS)\omega, \ \chi_{bJ}(nP)\pi^+\pi^-, \ \eta_b(nS)\eta$
$0^+(0^+)$	X_{b0}^{\prime}	$B^*\bar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega, \ \chi_{bJ}(nP)\pi^+\pi^-, \ \eta_b(nS)\eta$
$0^+(1^+)$	X_b	$B\bar{B}^*$	ω [11.39], γ [10.61]	$\Upsilon(nS)\omega, \ \chi_{bJ}(nP)\pi^+\pi^-$
$0^+(2^+)$	X_{b2}	$B^*\bar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega, \ \chi_{bJ}(nP)\pi^+\pi^-$

Summary

- Although Belle has stopped data taking for ~10 years ago, we are still producing exciting results.
- We reported the first vector charmonium-like state decaying to the charmed-antistrange and anticharmed-strange meson pairs D⁺_sD_{s1}(2536)⁻ and D⁺_sD^{*}_{s2}(2573)⁻ with a signal significance of 5.9σ and 3.4σ. The masses and widths are close to those of the Y(4660).
- Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivity and precise measurements in hadron physics.

Thanks for your attentions!

Table 1

Possible S-wave resonances with two D_s mesons below 4.8 GeV. Only those states with C = +, permitted to couple to $J/\psi \phi$, are shown. Here $\Delta M \equiv M - M(J/\psi) - M(\phi)$. Exchanges are labeled "d" for direct $(A\bar{B} \rightarrow A\bar{B})$ and "x" for exchange $(A\bar{B} \rightarrow B\bar{A})$. "Rank" denotes anticipated ease of detection (see text). Allowed J^P values and rank are only shown for those states which can bind via η exchange.

States (J^P)	M (MeV)	ΔM (MeV)	Binding		Allowed	Rank
			by η ?	by $f_0(980)$?	J^P	
$\overline{D_s^+(0^-) \ D_s^-(0^-)}$	3936.6	-179.8	No	d	_	_
$D_s^+(0^-) D_s^{*-}(1^-)$	4080.4	-36.0	х	d	1^{+}	1
$D_s^{*+}(1^-) D_s^{*-}(1^-)$	4224.2	107.8	d	d	$0^+, 2^{+a}$	2
$D_s^+(0^-) D_{s0}^{*-}(2317)(0^+)$	4286.0	169.6	х	d	0^{-}	2
$D_s^+(0^-) D_{s1}^{50}(2460)(1^+)$	4427.8	311.4	No ^b	d, x	[1 ⁻] ^b	2
$D_s^{*+}(1^-) D_{s0}^{*-}(2317)(0^+)$	4429.8	313.4	No ^b	d, x	[1 ⁻] ^b	3
$D_s^+(0^-) D_{s1}^{-5}(2536)(1^+)$	4503.4	387.0	No	d, x	_	_
$D_s^+(0^-) D_{s2}^{*-}(2573)(2^+)$	4540.2	423.8	х	d	2^{-}	2
$D_s^{*+}(1^-) D_{s1}^{*-}(2460)(1^+)$	4571.6	455.2	d, x	d, x	$0^{-}, 1^{-}, 2^{-}$	3
$D_{s0}^{*+}(2317)(0^+) D_{s0}^{*-}(2317)(0^+)$	4635.4	519.0	No	d	_	_
$D_s^{*+}(1^-) D_{s1}^-(2536)(1^+)$	4647.2	530.8	d, x	d, x	$0^{-}, 1^{-}, 2^{-}$	3
$D_s^{*+}(1^-) D_{s2}^{*-}(2573)(2^+)$	4684.0	567.6	d, x	d, x	$1^{-}, 2^{-}, 3^{-}$	3
$D_{s0}^{*+}(2317)(0^{+}) D_{s1}^{-}(2460)(1^{+})$	4777.2	660.8	Х	d	1^{+}	4

^a $J^P = 1^+$ forbidden by C symmetry.

^b Proximity of these two channels may lead to binding. See text.