

Spectroscopy of charm and bottom baryons at LHCb

强子物理新发展研讨会 (四月24-26日)

The LHC as a Beauty and Charm factory

Proton-Proton Collisions at $\sqrt{s} = 13$ TeV ~ 20 000 $b\overline{b}$ pairs per second, x 20 of $c\overline{c}$ pairs

LHCb-

Pro and the

CERN Prévessin

ATLAS

SPS_7 km

High B-baryon production fraction

SUISSE

FRANCE

CMS

 $B^+:B^0:B^0_s:\Lambda^0_b\ (u\overline{b})\ (d\overline{b})\ (s\overline{b})\ (udb)\ 4\ :\ 4\ :\ 1\ :\ 2\ Unique dataset$

LHC 27 km

LHCb detector and performance

LHCb collected luminosity

THOMS

Two methods for spectroscopy

- Direct production in *pp* collisions
 - Combine a heavy flavour hadron with one or more light particles
 - Pros: High statistics, in principle can study all states
 - Cons: Large combinatorial background, hard to determine J^P

- Production by a heavier particle decay
 - Usually with amplitude analysis
 - Pros: Low background, Better determination of J^P
 - Cons: Low cross-section, limited states and limited J

Two methods for spectroscopy

- Direct production in pp collisions □ \mathcal{Z}_{cc}^{++} , $\Omega_{c}^{**} \rightarrow \mathcal{Z}_{c}K$
 - All excited B, $\Xi_b^{**} \to \Xi_b \pi$; $\Lambda_b K$

- Production by a B or D decays
 - □ X(3872) J^P
 - □ Z_c(4430)
 - □ X(4140)
 - \square P_c(4312), P_c(4440), P_c(4447)

D_(s)

Charmed and bottom baryons

- 25 charmed baryons observed
 - Missing many Σ_c^* ?
- 11 bottom baryons observed
- Bottom are very similar to charmed baryons

7

(Experimental results by end of 2018) 8

$\Omega_{c,b}^{**}$ baryons

- 25 charmed baryons observed
 - Missing many Σ_c^* ?
- 11 bottom baryons
 observed
- Bottom are very similar to charmed baryons

Excited $\Omega_c \rightarrow \Xi_c^+ K^-$ states, prospect for Ω_b

- LHCb observed 5 narrow states (+ a possible wide one) in 2017
- Belle confirmed the first four states

[PRL 118 (2017) 182001]

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
- ()	-0.5	<1.2 MeV, 95% C.L.		
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 \substack{+0.3 \\ -0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
	-0.5	<2.6 MeV, 95% C.L.		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$	$1670\pm450\pm360$	
$\Omega_{c}(3066)_{\rm fd}^{0}$			$700\pm40\pm140$	
$\Omega_{c}(3090)_{\rm fd}^{\rm la}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\mathrm{fd}}$			$190\pm70\pm20$	

Analogical search applicable to *b*-sector

	${\it \Xi_c^+}/{\it \Xi_b^0}$	$arOmega_c^*/arOmega_b^*$
$\Omega_c^* \to \Xi_c^+ K^-$	1M (3fb ⁻¹)	1000-2000
$\Omega_b^* \to \Xi_b^0 K^-$	0.02M (9fb ⁻¹) [PRL 113 (2014) 032001 (3fb ⁻¹)]	20-40 (scaled from charm result)

Mass splitting 20-50 MeV

Observation of Ω_b^{**-}

- $\mathcal{Z}_b^0 \to \mathcal{Z}_c^+ \pi^-, \, \mathcal{Z}_c^+ \to p K^- \pi^+$ is reconstructed
- 20k \mathcal{Z}_b^0 decays selected based on MVA discriminant
- PID of *K*[−] is optimized by Punzi FOM

Observation of Ω_b^{**-}

• 4 peaks are seen, the last two have global significance > $5\sigma_{1}$

Mass splitting 10-15 MeV

State	Mass [MeV]	Width [MeV] (90% UL)	Nsig	Local significance	Global significance
$\Omega_{b}(6316)^{-}$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	<2.8	15^{+6}_{-5}	3.6	2.1
$\Omega_{b}(6330)^{-}$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	<3.1	18^{+6}_{-5}	3.7	2.6
$\Omega_{b}(6340)^{-}$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	<1.5	47^{+11}_{-10}	7.2	6.7
$\Omega_{b}(6350)^{-}$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	$\begin{array}{c} <2.8 \\ 1.4^{+1.0}_{-0.8} \pm 0.1 \end{array}$	57^{+14}_{-13}	7.0	6.2

$\Omega_{c,b}^{**}$ baryons

- 25 charmed baryons observed
 - Missing many Σ_c^* ?
- 11 bottom baryons observed
 - See 4 narrow Ω_b^{**-}
- Bottom are very similar to charmed baryons

- 25 charmed baryons observed
 - Missing many Σ_c^* ?
- 11 bottom baryons observed
 - See 4 narrow Ω_b^{**-}
- Bottom are very similar to charmed baryons

Belle's $E_c(2930)$ from $B \rightarrow \Lambda_c \overline{\Lambda}_c K$

New \mathcal{Z}_{c}^{**0} from LHCb

- Large statistics data shows Belle's *E_c*(2930) is a composite of two narrow *E_c^{**}*'s
- A third peak is also seen
 - position close to kinematic limit of the B decay used by Belle

Fit results

- S-wave relativistic BW fit signal shape
- Low mass bump is modelled by reflections of heavier Ξ_c^{**} (default)
 - □ possible new \mathcal{Z}_c^{**} at $\delta m = 100$ MeV(syst.) to improve fit, more data needed to confirm

State	Mass [MeV]	Width [MeV]	Nsig
$E_c(2923)^0$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$	5400
$E_c(2939)^0$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$	10400
$E_c(2965)^0$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1 \pm 0.9 \pm 1.3$	11700

Further discussion

[arXiv:2003.13649]

		Mode		Fraction (Γ_i / Γ)	
State	Mass [MeV]	Width [MeV]	Γ_1	$\Lambda_c^+ \overline{K} \pi$	seen
$E_c (2965)^0$ [LHCb]	2964.9 ± 0.3		Γ_2	$\Sigma_c(2455)\overline{K}$	seen
		14.1 ± 1.6	Γ_3	$\Lambda_c^+\overline{K}$	not seen
			Γ_4	$\Xi_c 2 \pi$	seen
$E_c(2970)^{\circ}$ [PDG]	$2967.8^{+0.8}_{-0.9}$	$28.1^{+3.4}_{-4.0}$	Γ_5	$\Xi_c^{\ \prime}\pi$	seen
		-4.0	Γ_6	$\Xi_c(2645)\pi$	seen

Equal spacing rule predicted mass of Ω [Gell-Mann, Okubo], still holds for the excited states, implies same multiplets

 $m(\Omega_c(2770)^0) - m(\Xi_c(2645)^0) \simeq m(\Xi_c(2645)^0) - m(\Sigma_c(2520)^0) \simeq 125 \,\text{MeV}.$

$$m(\Omega_c(3050)^0) - m(\Xi_c(2923)^0) \simeq m(\Xi_c(2923)^0) - m(\Sigma_c(2800)^0) \simeq 125 \text{ MeV},$$

$$m(\Omega_c(3065)^0) - m(\Xi_c(2939)^0) \simeq 125 \text{ MeV},$$

$$m(\Omega_c(3090)^0) - m(\Xi_c(2965)^0) \simeq 125 \text{ MeV}.$$

 $\Xi_{c}(2970)$

Multiplets between \mathcal{Z}_{c}^{**} and \mathcal{Q}_{c}^{**}

$\Lambda_b^{**}/\Sigma_b^{**}$ baryons

- 25 charmed baryons observed
 Missing many Σ_c^{*}?
 - See more \mathcal{Z}_c^{**}
- 11 bottom baryons
 observed
 - See 4 narrow Ω_b^{**-}
- Bottom are very similar to charmed baryons

Λ_b^0 / Σ_b^0 excitations in $\Lambda_b^0 \pi^+ \pi^-$

- Adding $\pi^+\pi^-$ to the Λ_b^0 \Rightarrow probe Λ_b^0 excitations
- Λ_b^0 is reconstructed in • $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and • $\Lambda_b^0 \to J/\psi pK^-$
- Structure around 6.15GeV
- Investigate substructure of decays $(\Sigma_b^{(*)} \rightarrow \Lambda_b \pi) \pi$

[PRL 123 (2019) 152001]

Λ_b^0 / Σ_b^0 excitations in $\Lambda_b^0 \pi^+ \pi^-$

- Adding $\pi^+\pi^-$ to the Λ_b^0 \Rightarrow probe Λ_b^0 excitations
- Λ_b^0 is reconstructed in • $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and • $\Lambda_b^0 \to J/\psi pK^-$
- Structure around 6.15GeV
- Investigate substructure of decays $(\Sigma_b^{(*)} \rightarrow \Lambda_b \pi) \pi$

[PRL 123 (2019) 152001]

Two new Λ_b^0 / Σ_b^0 excitations

[PRL 123 (2019) 152001]

Another new baryon in $\Lambda_b^0 \pi^+ \pi^-$

 A broad structure is just below the two peaks

- $m = 6072.3 \pm 2.9 \pm 0.6 \pm 0.2 \,\mathrm{MeV}$
- $\Gamma = 72 \pm 11 \pm 2 \,\mathrm{MeV}\,,$

• Consistent with prediction of $\Lambda_b(2S)^0$

Theoretical explanations

Interpret Λ_b(6146), Λ_b(6152) as 1D
 [PRD 100 (2019), 094032; 2002.11435]

Or superposition of several states?

[Bing Chen, Xiang Liu PRD 98 (2018) 074032]

[Bing Chen et. al. PRD 98 (2018) 031502(R)]

$\Lambda_b^{**}/\Sigma_b^{**}$ baryon summary

A STATERSIT

- 26 charmed baryons observed
 - Missing many Σ_c^{*}?
 See more Ξ_c^{**}
- 16 bottom baryons observed
 - See 4 narrow Ω_b^{**-}
 - See 3 more $\Lambda_b^{**0} / \Sigma_b^{**0}$
- Bottom are very similar to charmed baryons

Summary

- Baryons have rich spectra
- Exploring meson and baryon excitation spectra
- Studying exotic hadron spectroscopy
 - Not showing is the pentaquark baryon states
- Remarkable facts:
 - Lots of excited charm and bottom baryons are very narrow
 - Equal spacing rule (~125 MeV) works well for charm and bottom Σ, Ξ and Ω

Your suggestions may results in more discoveries

Backup

E_b baryon spectroscopy

- Numbers of excited *b*-baryons have already been discovered
 - $\Box \ \mathcal{Z}_b^*(5945)^0 \to \mathcal{Z}_b^- \pi^+ \ [\text{CMS'12}]$
 - □ $\mathcal{Z}_{b}^{\prime}(5935)^{-}, \mathcal{Z}_{b}^{*}(5955)^{-} \rightarrow \mathcal{Z}_{b}^{0}\pi^{-}$ [LHCb'15]

Neutral Ξ_h^*

 $\Box \mathcal{Z}_b^{\prime 0}$ not yet observed

Σ_b spectroscopy: Observation of $\Sigma_b (6097)^{\pm}$

- $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ combined with π^{\pm} from PV
- Fit: relativistic BW convoluted with resolutions of 1.0-2.4 MeV

Quantity	Value [MeV]
$m(\Sigma_b(6097)^-)$	$6098.0 \pm 1.7 \pm 0.5$
$m(\Sigma_b(6097)^+)$	$6095.8 \pm 1.7 \pm 0.4$
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm 4.2 \pm 0.9$
$\Gamma(\Sigma_b(6097)^+)$	$31.0 \pm 5.5 \pm 0.7$

 Σ_b^{\pm} and $\Sigma_b^{*\pm}$ parameters are measured, 5x more precise than the previous CDF values

[PRL 122 (2019) 012001]

Observation of a new $\mathcal{E}_{b}^{**}(6227)^{-}$ **state**

- Hadronic (HD) and Semileptonic (SL) decays for Λ_b^0
- SL decays for $\Xi_b^0 \to \Xi_c^+ \mu^- X \bar{\nu}_{\mu}$

With hadronic mode

$$\begin{split} M(\Xi_b^{**-}) &- M(\Lambda_b^0) = 607.3 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ \Gamma &= 18.1 \pm 5.4 \, (\mathrm{stat}) \pm 1.8 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ M(\Xi_b^{**-}) &= 6226.9 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \pm 0.2 (\Lambda_b^0) \, \mathrm{MeV}/c^2, \end{split}$$

Mass peak position is consistent between the three decay channels

The most massive baryons observed so far!

