Report on CEPC software workshop in Hong Kong and future plans

Xingtao HUANG
Shandong University
2020/02/14

HK Mini-Workshop: Experiment / Detector - Software and Physics Requirements for e+e- Colliders

- Two days meeting organized by Paolo and Joao
 - Jan. 16: Physics and Detector
 - Jan. 17: Software

Paolo Giacomelli

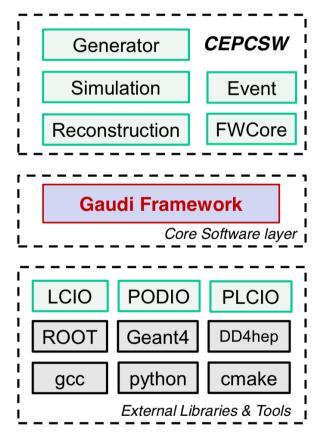
Purpose of today's workshop

- Keep the same collaborative spirit shown at the meeting in Bologna!
- Continue in the footsteps of the first workshop
- Show the development done since Bologna's workshop
- Illustrate and detail the next steps of the development of the common software
 - Describe the action items
 - Possibly show the timeline of the future implementations
- Plan the next workshop

Agenda, People and Talk

http://iasprogram.ust.hk/hep/2020/workshop experiment.php

Time	Jan 16 (Thu) Jan 17 (I		Session 4 Chairs: Paolo GIACOMELLI and Joao GUIMARAES DA COSTA	
Session 3 Chairs: Paolo GIACC 09:00 - 09:10	OMELLI and Joao GUIMARAES DA COSTA Introduction: Towards a Common Software for Future HEP Projects [Slides]	14:15 - 14:50	CEPC Simulation [Slides] Tao LIN	
	Paolo GIACOMELLI National Institute for Nuclear Physics (INFN, Bologna)	14:50 - 15:20	Institute of High Energy Physics, Chinese Academy of Sciences A Worldwide Software Collaboration? [Slides]	
09:10 - 10:00	The Turnkey Software Stack: Where Are We and Where We Want to Go? [Slides] Gerri GANIS CERN	14.30 - 13.20	David LANGE Princeton University	
10:00 - 10:30	EDM4hep: A Common Event Data Model [Slides] Frank GAEDE DESY	15:20 - 15:50	Coffee Break (Venue: Open Area, 1/F)	
10:30 - 11:00	Coffee Break (Venue: Open Area, 1/F)	15:50 - 16:45	Future Software Implementations [Slides]	
11:00 - 11:50	DD4hep and Shareable Detector Geometry Description [Slides] Andre SAILER CERN		Gerri GANIS, Xingtao HUANG and All	
11:50 - 12:30	CEPC Software Prototype [Slides] Jiaheng ZOU Institute of High Energy Physics, Chinese Academy of Sciences	16:45 - 17:15	Wrap Up and Next Goals [Slides] Paolo GIACOMELLI and All	

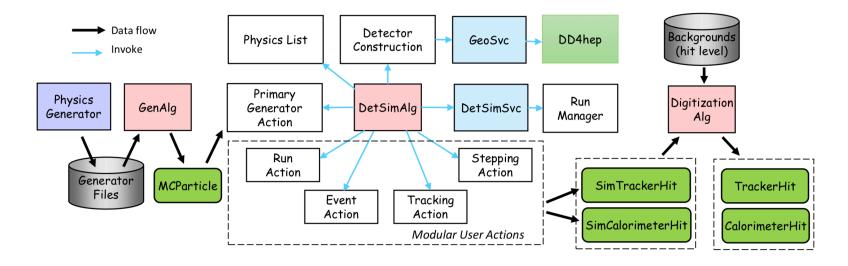

- Representatives from CEPC, CLIC, FCC and ILC
- Total 9 talks
 - 1 for introduction

- 1 for collaboration
- 3 for common software: Key4hep, EDM4hep and DD4hep 1 for discussion
- 2 for CEPC software: Software Prototype and Simulation
 1 for summary

Status of CEPC Software Prototype

Jiaheng Zou

■ Since the Bologna workshop (June 2019), CEPCSW prototype has been developed using Gaudi, DD4hep, Geant4 and PLCIO, etc.



Components	Tasks	Status	
Canaral	Software infrastructure Gaudi		
General	Core modules FWCore	V	
EDM & I/O	PLCIO data model and I/O		
EDIVI & I/O	LCIO compatible reader	V	
Geometry and	DD4hep integration	$\sqrt{}$	
Simulation	Simulation framework	•	
5 :	SiliconTracking	$\sqrt{}$	
Reconstruction	More reconstruction algorithms	In progress	
Build and release Git, CMake, CVMFS		Ready	

Status of CEPC Simulation

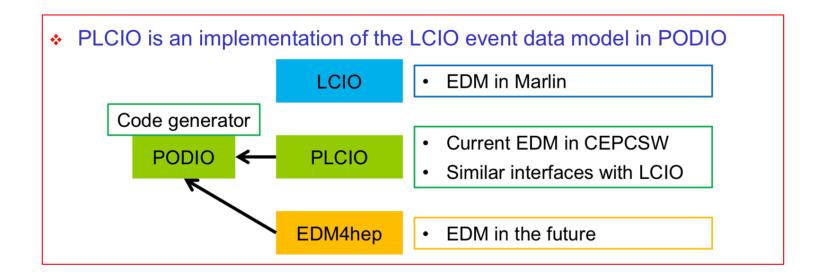
Tao Lin

- Based on Gaudi and DD4hep.
 - Reuse part of interfaces defined in FCCSW.
- In the current prototype, "Tracker" is setup.

- A simulation framework prototype is developed.
 - Configurable Geometry with DD4hep's XML files: support multiple options of detectors and beam test geometry.
 - Physics generator: Integrate with external physics generators easily.
 - Modular user actions to collect data in simulation: Save more information other than the event data model.

EDM4hep and PLCIO

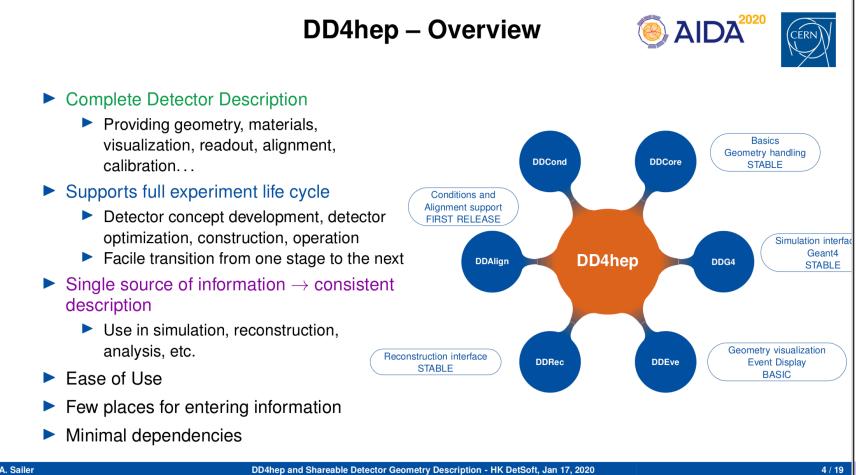
Status of EDM4hep


- Common event data model for future collider
 - Provide foundation of the Common Software Stack (Key4hep)
 - Use PODIO high-level EDM generator
 - Rely on experience with LCIO and fcc-edm
- Meetings every 2-4 weeks since bologna's workshop
 - https://indico.cern.ch/category/11461/(CEPC People remotely join the meeting)
- So far implemented the simulation model, i.e.
 - MCParticle, SimTrackerHit and SimCalorimeterHit
 - Vector3f, Vector3d, Vector2i
- Created github page:
 - https://github.com/HSF/EDM4hep

Plan of EDM4hep

- The project is in rather early phase
- Start implementation of reconstruction part, i.e.
 - Track Parameters and TrackState
- Provide navigation between TracketHit and SimTrackerHit
 - using appropriate helper functions
- Support ACTS with different parameters
- Add different I/O implementations in PODIO
 - Currently support ROOT
 - Working on HDF5, SIO ...
- Benchmark the I/O performance in MT mode
- Investigate automatic generation of lambda functions for RDataFrame

PLCIO: LCIO EDM in PODIO


- Currently used by CEPC until moving to EDM4hep
- CEPC is the first user of PLCIO
- Need helper classes for event navigation between TracketHit and SimTrackerHit
- Optimize Performance of PLCIO
- At the same time, CEPC should work on EDM4hep

DD4hep

Detector Geometry Description : DD4hep

- Relative stable project
- Used by ILC and CLIC, FCC and CEPC (currently "Tracker")
- Default palette of usable sub-detector solution for Key4hep

■ Use XML file and C++ driver to build Detectors

Detector XML

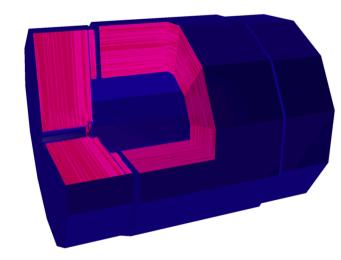
- XML structure to set parameters for detectors
- ► C++ driver to interpret XML parameters and create DetElements and Volumes
 - Define sensitive parts (attached with

 SensitiveDetector) and radiator, which has to be known fo
- Attach sensition XML

<readout name
<segmentat:</pre>

<id>...x:32 </readout>

Sailer


```
<detector
   name="ECalBarrel"
   type="GenericCalBarrel_o1_v01"
   id="42" readout="ECB">
   <dimensions
    numsides="ECalBarrel_symmetry"
   rmin="ECalBarrel_inner_radius"</pre>
```

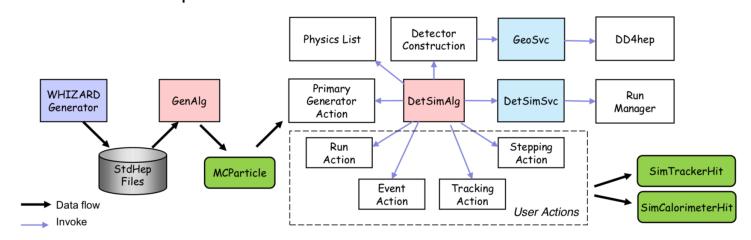
Detector Driver

- C++ model of separation of 'data' and 'behaviour'
- Drivers return single 'reference' to the DetElement object

Sharing Drivers

CERN

- ▶ DD4HEP's plugin manager can load drivers at runtime
- Expected XML structure needs to be known to other users
- Existence of driver needs to be known to other users

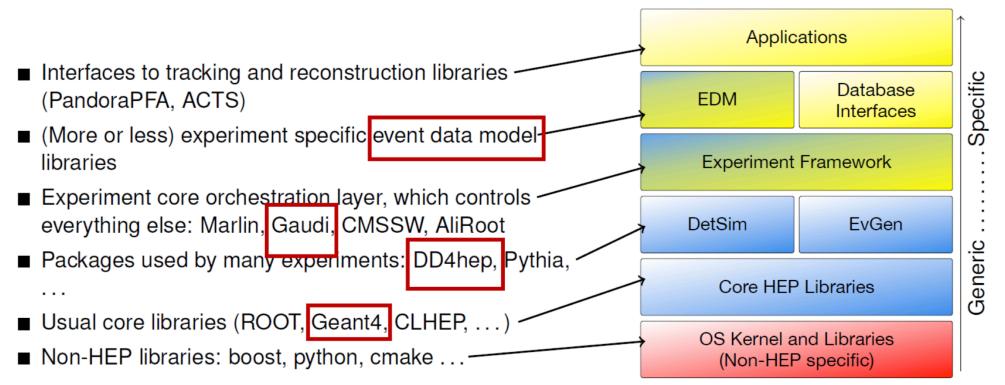

Existing Palettes:

- DD4hep: https://github.com/AIDASoft/DD4hep/tree/master/DDDetectors
- Icgeo: https://github.com/iLCSoft/lcgeo/tree/master/detector
- FCCSW https://github.com/HEP-FCC/FCCSW/tree/master/Detector
- ► CEPC?

Place common drivers in DD4hep or different package?

Plan of DD4hep

- DD4hep description of IDEA, but need to implement
 - Dual readout calorimeter
 - Muon system
- Optimize common interface for reconstruction in DD4hep
 - Already generic classes that describe all the subdetectors
 - Work on new subdetectors, i.e. the dual readout calorimeter
- Validate DD4hep-based (unified-geometry)-Service simulation and reconstruction for CEPC


Key4hep

Common Software Stack (Key4hep)

A typical HEP Software Stack

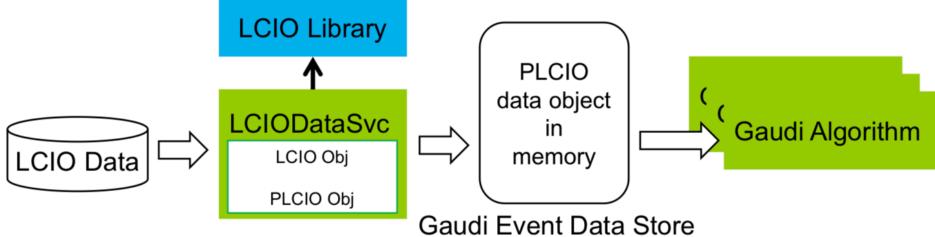
Applications usually rely on large number of libraries, where some depend on others

Gaudi Framework

- A good candidate for Key4hep
- Provided required interfaces and services
- Need Data Service handling with EDM4hep/pLCIO
 - FCC developed FWCore

FCCSW FWCore

- DataWrapper: PLCIO data collection -> DataObject in Gaudi
- DataHandle: user interface to register/retrieve data to/from Gaudi
 TES (Transient Event Store)
- PODIO data service: read/write PODIO data objects


CEPCSW FWCore

- Mainly taken from FCCSW FWCore (many thanks)
- Extension to read LCIO data generated by Marlin

Read the Existing LCIO Data

LCIODataSvc

- Read LCIO files via the LCIO library
- Convert LCIO data objects to PLCIO data objects
- Register PLCIO data objects to Gaudi Event Data Store

Current Status

- Most LCIO data types can be retrieved as PLCIO objects in CEPCSW
- Some of the data relations are not fully recovered (there are some limitation for data analysis now)

Detector Simulation

- Streamline Gaudi/FCCSW/G4 interface
- Develop a parallelized simulation solution for CEPC
 - Based on Geant4-MT and MPI
- Digitization IDEA Dual Readout calorimeter and Muon system
- Develop a coherent simulation framework allowing mixing of full and fast simulation
 - Test setup available in FCCSW ?
- Fast simulation with Delphes
 - Validation of Delphes cards for proposed solutions
 - Uniformize (full sim + reco) and Delphes outputs

Reconstruction

- Provide vertexing, solid Particle ID and c,b tagging
 - Migration of all existing algorithms from Marlin to Gaudi-based frameworks
 - For tracking, Particle-Flow, Jet Flavor tagging
 - Validation of the migrated algorithms
- Integration of ACTS
- Integrate Particle Flow (Pandora, Arbor, ...)
- Integration of tensorflow and ML techniques for reconstruction

• ...

Available in FCCSW:

- Tracking
 - Track seeding (TrickTrack) for silicon tracker
 - Hough Transform for drift chambers (not yet in the master)
 - Under implementation / investigation: ACTS integration, Conformal tracking
- Calorimeters
 - Sliding window (rectangular/ellipse)
 - Topo-clustering
 - Under investigation: deep learning

Integration of ACTS into Key4hep

- CEPC groups are interested in getting ACTS to work
 - eventually all groups would be
- CEPC could contribute ACTS gaudi wrapper
- Potentially extension to EDM4hep (Trackerhits, track state,...)
 - see point above under Reconstruction
- Need of pattern recognition algorithms
 - should investigate porting the Conformal Tracking from CLIC
 - in a first step run this in the Marlin-wrapper

Key4hep Activities after HK workshop

- Setup mail list: key4hep-sw@cern.ch
- First meeting on Feb. 12, 2012
 - > 20 people joined the meeting
 - CEPC people joined remotely
- Technical Issues
 - Use Spack to build the whole stack
 - Installations based on LCG releases
 - Use /cvmfs/sw.hsf.org/key4hep repository
 - Move EDM4hep to key4hep
- Discussion on the first face to face workshop
 - Longer workshop (2 or 3 days)
 - For developer
 - Late June, 2020
- Goal: have a first working release

Future Plan

CEPCSW Plan in 2020

- First Version (May-Release)
 - Software environment
 - EDM: relationship
 - Uniform geometry: Simulation and Reconstruction
 - Tracker: silicon / TPC
- Second Version (October-Release)
 - PFA: Arbor and/or Pandora
 - Jet / Flavor tag
 - Integration of ACTS
 - Geometry: DD4Hep
 - Fast simulation framework: tracker and/or calorimeter
 - Multi-threading testing / EDM performance optimization
 - Detector design
 - Visualization ?

CEPCSW Plan for 2021 and 2022

2021

- PLCIO → EDM4Hep
- Support data analysis of beam test
- Fast simulation: data production and physics analysis
- Non-uniformity of magnetic field, noise and background mixing: optimization of reconstruction algorithm and physics analysis

2022

- Integration with Key4Hep
- Optimization, performance and validation of reconstruction algorithms, physics analysis
- Online event filter
- Parallel computing
- Application of Machine learning in Reconstruction

Remark

- Most of issues or action items have been listed in the CEPCSW three years' Plan
 - Support CEPC R&D
- Adjust our plan according to the communities schedules
- CEPC should contribute the communities
 - Join development of common toolkits: DD4hep, EDM4hep, Key4hep, FWCore...
 - Develop more innovative applications, such as new sub-detector, new reconstruction algorithms...
- Need more people working on CEPC software and Common Software Toolkits!

Thanks