CEPC RADIATION BACKGROUND STUDIES

Hongbo Zhu (IHEP) On behalf of the CEPC MDI Study Group

OUTLINE

- Interaction Region Layout
- Radiation Backgrounds
 - Synchrotron Radiation
 - Pair Production
 - Off Energy Beam Particles
- Summary and Outlook

INTERACTION REGION LAYOUT

• Interaction region layout in CDR (to be optimized)

RADIATION BACKGROUND SOURCES

- Important inputs to the detector (+machine) designs, e.g. detector occupancy, radiation tolerance ...
- Must investigate different sources (beam-induced or luminosity related) of radiation backgrounds
 - Synchrotron radiation
 - Beamstrahlung, Pair production
 - Off-energy beam particles (radiative Bhabha scattering, beamstrahlung, beam-gas interaction, etc.)

SYNCHROTRON RADIATION

- Beam particles bent by magnets (last bending dipole, focusing quadrupoles) can emit synchrotron radiation photons → critical at circular machines
- BDSim to transport beam (core + halo) from the last dipole to the interaction region and record the particles hitting the central beryllium beam pipe

CEPC Beam Backgrounds, H. Zhu

MASK TIP DESIGN

Collimator shape

High-Z material required: Au or Tungsten K-shell photon included in simulation

CEPC Beam Backgrounds, H. Zhu

WITH COLLIMATORS

 Three masks located at |Z|=1.51, 1.93 and 4.2 m along the beam pipe to the IP to block scattered SR photons → shielding the central beam pipe

- Number of photons per bunch hitting the central beam pipe dropping from 80,000 to 250, further down to 110 with beam pipe coating (10 um Au)
- SR photon and beampipe Interactions with shallow angles might not be properly simulated in Geant4 (*commented by H. Burkhardt*)

UPDATED DESIGN

• Collimator design (location & shape) being updated for the new beampipe (not optimized)

BEAMSTRAHLUNG & PAIR PRODUCTION

- Estimated as the most important background at Linear Colliders, not an issue for lower energy/luminosity machines
- Charged particles attracted by the opposite beam emit photons (beamstrahlung), followed by electron-positron pair production (dominate contributions from the incoherent pair production)

Beamstrahlung

Simulated with GUINEAPIG with external field implemented and cross checked with CAIN

14 Feburary 2020

Most electrons/positrons are produced with low energies and in the very forward region, and can be confined within the beam pipe with a strong detector solenoid;

However, a non-negligible amount of electrons/positrons can hit the detector \rightarrow radiation backgrounds

Hadronic backgrounds much less critical

BACKGROUND LEVELS

- Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels
- Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of ×10 applied

PAIR PRODUCTION (UPDATED)

• Estimated backgrounds in the vertex detector (based on the CEPC CDR machine parameters) Higgs ($\sqrt{s} = 240$ GeV)

	Layer	Hit Density $[\mathrm{cm}^{-2}\mathrm{BX}^{-1}]$	$_{ m TID}$ [kRad/yr]	$\begin{array}{c} 1 \ \mathrm{MeV} \ \mathrm{Equ.} \ \mathrm{Neu.} \ \mathrm{Fluence} \\ [\mathrm{n_{eq}}\mathrm{cm}^{-2}\mathrm{yr}^{-1}] \end{array}$
	1	2.26	591.14	1.11×10^{12}
	2	1.70	472.12	8.66×10^{11}
	3	0.14	42.63	9.08×10^{10}
	4	0.11	35.62	8.09×10^{10}
	5	0.02	6.15	$2.57 imes 10^{10}$
	6	0.01	5.37	2.41×10^{10}
				$Z(\sqrt{s} = 91 \text{ GeV})$
To be und	rctood	Hit Density	TID	NIEL
	erses	[hits/cm ² ·BX]	[kRad/year]	[10 ¹² 1 MeV n _{eq} /cm ² ·year]
	B = 2 T	0.008	128.6	0.25
	B = 3 T	0.012	239.6	0.45

OFF-ENERGY BEAM PARTICLES

 Beam particles losing energy (radiative Bhabha scattering, beam-gas interaction, beam-gas interaction, etc.) larger than acceptance kicked off their orbit → lost close or even in the interaction region

• Revisited the lattice/beampipe implantation in simulation

COLLIMATORS

• Two sets of collimators (NOT Sufficient!) placed upstream to stop off-energy beam particles, far away from the beam clearance area (exact aperture size subject to optimization)

RADIATIVE BHABHA SCATTERING

- Event generated with **BBBrem** and particles tracked with **SAD**
- Hit map in the vertex detector (with collimators)

BEAM-GAS INTERACTION

- Generated with customized code and tracked with SAD
- Hit map in the vertex detector (with collimators)

(c) X-Y plane (Beam-Gas Scattering) (d) R-Z plane (Beam-Gas Scattering)

BEAM THERMAL PHOTONS

- Generated with customized code and tracked with SAD
- Hit map in the vertex detector (with collimators)

(a) X-Y plane (Beam-thermal photon Scattering)

(b) R-Z plane (Beam-thermal photon Scattering)

OFF-ENERGY BEAM PARTICLES

• Estimated backgrounds at the first vertex detector layer (still using the CEPC CDR machine parameters)

Higgs ($\sqrt{s} = 240 \text{ GeV}$)	Hit Density [hits/cm ² ·BX]	TID [MRad/year]	NIEL [10 ¹² 1 MeV n _{eq} /cm ² ·year]
Radiative Bhabha	0.93	1.2	4.08
Beam Thermal Photons	2.31	2.3	5.48
Beam-Gas Interaction	368.37	39.90	965

Vacuum pressure assumed to be 10⁻⁷ Pa

Beam-gas interaction backgrounds reduce linearly to the vacuum pressure level \rightarrow better vacuum, e.g. 10⁻⁸ Pa

BEAM-GAS INTERACTIONS

• How to mitigate the beam-gas interaction backgrounds?

Raise vacuum pressure level in IR

BETTER UNDERSTANDING OF BEAM-GAS INTERACTION MODELLING AND PRACTICAL OPERATION

MODEL VERIFICATION WITH BEPC II/BES III

BASIC PRINCIPLES

Single beam mode: three dominant contributions from Touschek, beam-gas and electronics noise (+ cosmic rays)

 $O_{single \ beam} = O_{Touschek} + O_{beam-gas} + O_{e-noise,cosmic}$ $= S_t \cdot D(\sigma_{x'}) \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$

Double beam mode: additional contributions from luminosity related backgrounds, e.g. radiative Bhabha scattering

$$O_{double \ beam} = O_{e^+} + O_{e^-} + O_{\mathcal{L}}$$

WHAT CAN BE LEARNT FROM B II/BES III

SINGLE BEAM MODE

$$S_t \cdot D(\sigma_{x'}) \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$$

- No Beam, detector with high voltage on to measure the backgrounds in MDC and EMC $\rightarrow S_e$
- Touschek backgrounds: with fixed beam energy and total current (I_t) , varying bunch number (changing I_b), bunch size $(\sigma_y, \sigma_z) \rightarrow S_t$
- Beam-gas backgrounds: with I_b and bunch size fixed, increasing the bunch number (increasing I_t) $\rightarrow S_g$

Example plot from SuperKEKB

WHAT CAN BE LEARNT FROM B II/BES III

DOUBLE BEAM MODE $O_{double \ beam} = O_{e^+} + O_{e^-} + O_{\mathcal{L}}$

- Fixed beam energy & current, bunch parameters, operating
 - Single e^+/e^- beam
 - Separate e^+ and e^- beams
 - Colliding e^+ and e^- beams
- Thorough understanding of the radiative Bhabha scattering backgrounds would be vital for optimizing the collimators.

The number of collimators is shown at around 2-4. Taking into account the necessary freedom required for tuning, the number of the collimators is extremely insufficient. According to experience in other colliders such as LEP, KEKB, PEP-II, SuperKEKB, 10-20 of them may be needed per IP.

PROPOSED EXPERIMENTAL STEPS

SuperKEKB background runs

- Propose to repeat the summer studies with longer machine time (extending to 12 hours) to take background with more machine/beam parameter points
- Beam scraping instead of natural beam current decay to save machine time (exact data points to be estimated)

CEPC Beam Backgrounds, H. Zhu

unbaked.

24

- Beam-gas backgrounds depending significantly on the vacuum pressure, which can be affected by synchrotron radiation during operation;
- LEP studies back in 1982 with very low photon energy (critical energy~2 keV);

VACUUM PRESSURE DEGRADATION

- Relevant parameters for CEPC:
 - Higgs:~360 keV on arc, ~25 keV on last bending;
 - Z:~23keV on arc.
- To find an end station at the SR facility with the beam energy of ~25 keV, e.g. BSRF

dose for H2, CH4, CO and CO2 for the first series of measurements-

Proposed by H. Shi & M. Sullivan

EXPERIMENTAL SETUP

- CEPC vacuum chamber prototypes (Cu/Al, 2 meters long preferred but depending on the space)
- Gas pressure monitors and gas composition analysis tools
 - Pump the Cu/Al chamber and set incident angle and energy;
 - Record pressure, gas type, pump speed with photon exposure;
 - Stop when reach the stopping condition (accumulated current or pressure); expose the chamber to air;
 - Repeat with different conditions (energy, angle, hitting side...).

SUMMARY & OUTLOOK

- Radiation backgrounds calculated for different sources
 - Pair production, synchrotron radiation, off-energy beam particles (with collimators)

Results being summarized and paper to be submitted to RDTM (Draft ready, read proofing ongoing)

NEXT:

- Migration of the simulation packages to the CEPCSW (when ready) and update the background estimation
- Validate (partly) the simulation codes with background data from BEPC II (machine studies), LEP II and SuperKEKB
 - Continue to anticipate in the background studies for SuperKEKB/Belle II Phase III commissioning