Lattice calculation of the mass difference between the long- and short-lived K mesons for physical quark masses

Bigeng Wang

¹Department of Physics Astronomy University of Kentucky

²Department of Physics Columbia University in the City of New York

November 2, 2021

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK)

Peter Boyle (Edinburgh)

Taku Izubuchi

Yong-Chull Jang

Chulwoo Jung

Christopher Kelly

Meifeng Lin

Hiroshi Ohki

Shigemi Ohta (KEK)

Amarjit Soni

CERN

Andreas Jüttner (Southampton)

Columbia University

Norman Christ

Duo Guo

Yikai Huo

Yong-Chull Jang

Joseph Karpie

Bob Mawhinney

Ahmed Sheta

Bigeng Wang

Tianle Wang

Yidi Zhao

University of Connecticut

Tom Blum

Luchang Jin (RBRC)

Michael Riberdy

Masaaki Tomii

Edinburgh University

Matteo Di Carlo

Luigi Del Debbio

Felix Erben

Vera Gülpers

Tim Harris

Raoul Hodgson

Nelson Lachini

Michael Marshall

Fionn Ó hÓgáin

Antonin Portelli

James Richings

Azusa Yamaguchi

Andrew Z.N. Yong

KEK

Julien Frison

University of Liverpool

Nicolas Garron

Michigan State University

Dan Hoying

Milano Bicocca

Mattia Bruno

Peking University

Xu Feng

University of Regensburg

Davide Giusti

Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen

Alessandro Barone

Jonathan Flynn

Ryan Hill

Rajnandini Mukherjee

Chris Sachrajda

University of Southern Denmark

Tobias Tsang

Stony Brook University

Jun-Sik Yoo

Sergey Syritsyn (RBRC)

Outline

- Introduction and background
 - The standard model, neutral kaon mixing and Δm_K
 - Physics motivation
- 2 Calculations of Δm_K with lattice QCD
 - Calculations of Δm_K from four-point correlators
- Systematic errors
 - Finite-volume corrections
 - Finite lattice spacing effects
- Results
 - Δm_K calculation with physical quark masses
 - Four-point correlators and Δm_K
- 5 Conclusion and outlook

The standard model

Elementary particles Three types of interactions

- Electromagnetic(QED):
 - agreements to high precision between theoretical and experimental values
 - perturbation theory
- Strong(QCD):
 - asymptotic freedom
 - difficulties at $\sim \Lambda_{QCD}$
- Weak: least understood; good checks for new physics:
 - Unitarity of CKM matrix
 - CP violation
 - Weak decaying processes...

Figure: from https://www.nobelprize.org/prizes/physics/2004/popular-information/

$K^0 - \overline{K^0}$ mixing and Δm_K

 $K^0(S=-1)$ and $\overline{K^0}(S=+1)$, each having definite strangeness, which is conserved in the strong processes, mix through second order weak interactions.

$$i\frac{d}{dt}\left(\frac{K^{0}(t)}{K^{0}(t)}\right) = (M - \frac{i}{2}\Gamma)\left(\frac{K^{0}(t)}{K^{0}(t)}\right), \qquad (1)$$

where the matrix M is given by:

$$M_{ij} = m_K^{(0)} \delta_{ij} + \mathcal{P} \sum_n \frac{\langle K_i^0 | H_W | n \rangle \langle n | H_W | K_j^0 \rangle}{m_K - E_n}, \quad (2)$$

If the small effects of CP violation are neglected, long-lived (K_L) and short-lived (K_S) are the two eigenstates:

$$K_S \approx \frac{K^0 - \overline{K^0}}{\sqrt{2}}, \quad K_L \approx \frac{K^0 + \overline{K^0}}{\sqrt{2}}.$$

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \mathrm{Re} M_{12}.$$

Figure: from wikipedia

Different life times:

$$K_S \xrightarrow{\text{CP}} \pi \pi$$
, $2m_\pi \approx 280 \text{MeV} < m_K$

(3)
$$K_L \xrightarrow{\text{CP}} \pi \pi \pi$$
, $3m_{\pi} \approx 420 \text{MeV} \lesssim m_K$

$$3111_{\pi} \approx 420 \text{MeV} \lesssim 111 \text{K}$$

Diagrams related to Δm_K

box	QCD penguin	disconnected
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 G 7
$ \begin{array}{c} \overline{d} & W \\ \overline{u,c,t} & u,c,t \\ \hline s & W \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \overrightarrow{d} & \overrightarrow{G} & \overrightarrow{s} \\ \overrightarrow{W} & \overrightarrow{W}, c, t & \overrightarrow{W} \\ \overrightarrow{W}, c, t & \overrightarrow{W} \\ \overrightarrow{W}, c, t & \overrightarrow{W} \\ \overrightarrow{W}, \overrightarrow{G}, t & \overrightarrow{G} \end{array}$

Physics motivation

 Δm_K is given by:

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \text{Re} M_{12} = 2 \mathcal{P} \sum_n \frac{\langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n}.$$
 (5)

- This quantity is:
 - **10 Tiny** if compared to the K^0 mass \sim 498 MeV, and precisely measured $\Delta m_{K, \rm exp} = 3.483(6) \times 10^{-12}$ MeV
 - 2 Sensitive to new physics: FCNC via 2nd order weak interaction
- Methods to calculate Δm_K ? Perturbation theory? Although the weak interaction itself can be treated precisely with perturbation theory, the kaon mixing process involves mesons(QCD related).
 - High-energy part: QCD perturbation theory works well
 - Low-energy part: QCD perturbative method fails, need non-perturbative calculation methods.

The operator product expansion(OPE) and Δm_K

OPE: full theory $H_W \xrightarrow{\text{integrate out}} H_{\text{eff}} = \sum_j C_j(\mu) O_j(\mu)$, renormalized at scale μ $C_i(\mu)$: short-distance, perturbative; $O_i(\mu)$: long-distance, non-perturbative

$H_W^{ m SM}$	$\mathcal{H}_{ ext{eff}}^{\Delta \mathcal{S}=1}$	$H_{ ext{eff}}^{\Delta S=2}$
$\begin{array}{c c} \overrightarrow{d} & u, c, t & s \\ \hline W & & W & \\ \hline s & u, c, t & d \\ \hline \\ u, c, t & \\ \hline & & W & s \\ \hline \\ u, c, t & \\ \hline & & W & s \\ \hline \\ u, c, t & \\ \hline \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s d
$\begin{array}{c c} & W & s \\ \hline & W & s \\ \hline & u,c,t & G \\ \hline & s & W & d \\ \end{array}$	d s c,u d	
$\begin{array}{c} \overrightarrow{d} \\ \overrightarrow{W} \\ \overrightarrow{w}, c, t \\ \overrightarrow{u}, c, t \\ \overrightarrow{w}, G \\ \end{array}$	$\stackrel{d}{\underbrace{\hspace{1cm}}} \stackrel{u,c}{\underbrace{\hspace{1cm}}} \stackrel{u,c}{\underbrace{\hspace{1cm}}} \stackrel{s}{\underbrace{\hspace{1cm}}}$	

Earlier calculations of Δm_K : charm quark is integrated out

The specific division $\mu < m_c$ in OPE where charm quark is integrated out. short-distance box only: leaving out:

**		
$\mathcal{H}_{eff}^{\Delta S=2}=C($	$(\mu) O_{LL}(\mu),$	(6)

$$O_{LL} = (\overline{s}d)_{V-A}(\overline{s}d)_{V-A}, \quad (7)$$

long-distance box					
$\xrightarrow{K^0} \xrightarrow{\pi^0, \eta, \eta'} \xrightarrow{K^0} \xrightarrow{H_W}$	K^0 π H_W π H_W π H_W				

Only 36% accuracy in the next-to-next-to-leading-order(NNLO) calculation of the QCD correction factors using perturbation theory: slow convergence of the perturbative series

J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

→ better to treat charm quark non-perturbatively on the lattice_

GIM mechanism and the short- and long-distance characteristics of Δm_K

GIM mechanism: flavor-changing neutral currents(FCNC) are suppressed in loop diagrams \rightarrow charm quark \rightarrow the CKM matrix

- Quark mixing: at each weak vertex \rightarrow a product of CKM matrix elements $V_{qd}V_{q's}^*$, where q, q' = u, c, t.
- Define $\lambda_q = V_{q,d} V_{q,s}^*$, q = u, c, t, unitarity of the CKM matrix $\rightarrow \lambda_u + \lambda_c + \lambda_t = 0 \rightarrow \lambda_c = -\lambda_u - \lambda_t$
- Specific diagram with GIM mechanism:

$$(X)_{GIM} = \lambda_u^2 (X)^{(u-c)(u-c)} + \lambda_t^2 (X)^{(t-c)(t-c)} + 2\lambda_u \lambda_t (X)^{(u-c)(t-c)}$$

• For $\Delta m_K = 2 \text{Re} M_{12}$, the first term dominates.

Non-perturbative calculation of Δm_K using a renormalization scale above the charm quark mass

Physics motivation

 Δm_K is given by:

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \operatorname{Re} M_{12} = 2 \mathcal{P} \sum_n \frac{\langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n}. \tag{9}$$

- This quantity is:
 - Tiny if compared to the K^0 mass ~ 498 MeV, and precisely measured $\Delta m_{K,exp} = 3.483(6) \times 10^{-12}$ MeV
 - 2 Sensitive to new physics: FCNC via 2nd order weak interaction
 - **3** Significant contribution from scale of $m_c(GIM \text{ mechanism})$
 - Difficult to compute by treating charm quark perturbatively: strong coupling at m_c scale

J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

- Calculate Δm_K with lattice QCD, treating charm quark non-perturbatively:
 - from first principles
 - non-perturbative, no convergence problem
 - systematic errors(finite volume corrections, finite lattice spacing effects, etc)
 can be controlled

Status of the calculation

• "Long-distance contribution at the $K_L - K_S$ mass difference",

N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_\pi = 421 MeV$) including only connected diagrams

"K_L − K_S mass difference from Lattice QCD"

Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a $24^3 \times 64$ lattice with unphysical masses

• "The K_L − K_S mass difference"

Z. Bai, N. H. Christ, C. T. Sachrajda

EPJ Web of Conferences 175(2018), 13017

All diagrams included on a $64^3 \times 128$ lattice with physical masses on 59 configurations: $\Delta m_k = 5.5(1.7)_{stat} \times 10^{-12}$ MeV.

• In this talk, I will present the calculation of Δm_K on 152 configurations and a new analysis method employed to calculate Δm_K with better reduction of statistical error on this larger set of configurations.

From four-point correlators to Δm_K^{lat}

• Δm_K is given by:

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \text{Re} M_{12} = 2 \mathcal{P} \sum_n \frac{\langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n}.$$
 (10)

• What we can calculate are four-point correlators on the lattice:

$$G(t_1, t_2, t_i, t_f) \equiv \langle 0 | T\{\overline{K^0}(t_f) H_W(t_2) H_W(t_1) K^0(t_i) \} | 0 \rangle$$
(11)

Extract Δm_K from single-integrated correlators

• The single-integrated correlator is defined as:

$$\mathcal{A}^{s}(t,T) = \frac{1}{2!} \sum_{t_{1}=t-T}^{t+T} \langle 0 | T\{\overline{K^{0}}(t_{f}) H_{W}(t_{1}) H_{W}(t) K^{0}(t_{i})\} | 0 \rangle \quad (12)$$

• If we insert a complete set of intermediate states, we find:

$$\mathcal{A}^{s} = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \overline{K^{0}} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} (-1 + e^{(m_{K} - E_{n})(T+1)})$$
(13)

Subtraction of the light states

• Single-integration method requires subtraction of the terms from light states:

$$\mathcal{A}^{s} = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \overline{K^{0}} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} \{-1 + e^{(m_{K} - E_{n})(T+1)} \}$$
(14)

- For $|n\rangle$ (in our case $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$) with $E_n < m_K$ or $E_n \sim m_K$: the exponential terms will be significant. We can:
 - freedom of adding $c_s \bar{s} d$, $c_p \bar{s} \gamma^5 d$ operators to the weak Hamiltonian. Here we choose:

$$\langle 0|H_W-c_p\bar{s}\gamma_5d|K^0\rangle=0, \langle \eta|H_W-c_s\bar{s}d|\bar{K}^0\rangle=0$$

• subtract contributions from other states($|\pi\rangle$, $|\pi\pi\rangle$) explicitly

Operators of Δm_K calculation

• The $\Delta S = 1$ effective weak Hamiltonian:

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$
 (15)

where the $Q_{i}^{qq'}$ are current-current opeartors, defined as:

$$Q_1^{qq'} = (\bar{s}_i \gamma^{\mu} (1 - \gamma^5) d_i) (\bar{q}_j \gamma^{\mu} (1 - \gamma^5) q'_j)$$

$$Q_2^{qq'} = (\bar{s}_i \gamma^{\mu} (1 - \gamma^5) d_i) (\bar{q}_i \gamma^{\mu} (1 - \gamma^5) q'_i)$$

• There are four states need to subtracted: $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$. We add $c_s\bar{s}d$, $c_p\bar{s}\gamma^5d$ operators to weak operators to make:

$$\langle 0|Q_i - c_{pi}\bar{s}\gamma_5 d|K^0\rangle = 0, \langle \eta|Q_i - c_{si}\bar{s}d|K^0\rangle = 0$$
 (16)

$$Q_i' = Q_i - c_{pi}\bar{s}\gamma_5 d - c_{si}\bar{s}d \tag{17}$$

Diagrams in the calculation of Δm_K

• For contractions among Q_i , there are four types of diagrams to be evaluated.

• In addition, there are "mixed" diagrams from the contractions between the $c_s \bar{s} d c_p \bar{s} \gamma^5 d$ operators and Q_i operators.

Non-perturbative renormalizations

• Renormalization of lattice operator $Q_{1,2}$ and and obtain the Wilson coefficients C_i^{lat} in 3 steps:

$$C_i^{lat} = C_a^{\overline{MS}} (1 + \Delta r)_{ab}^{RI \to \overline{MS}} Z_{bi}^{lat \to RI}$$

Non-perturbative Renormalization: from the lattice to the RI-SMOM

$$Z^{lat \to RI} = \begin{bmatrix} 0.5642 & -0.03934 \\ -0.03934 & 0.5642 \end{bmatrix}$$
 (18)

• Perturbation theory: from the RI-SMOM to the \overline{MS}

C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

$$\Delta r^{RI \to \overline{MS}} = 10^{-3} \times \begin{bmatrix} -2.28 & 6.85 \\ 6.85 & -2.28 \end{bmatrix}$$
 (19)

• Use Wilson coefficients in the \overline{MS} scheme

G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

$$C^{\overline{MS}} = 10^{-3} \times \begin{bmatrix} -0.260 & 1.118 \end{bmatrix} \tag{20}$$

Finite-volume corrections

Lattice calculations are performed with a finite space-time volume rather than an infinite volume.

- without multi-particle states: corrections $\sim e^{-mL}$
- with multi-particle states: corrections having power-law dependence.

Finite-volume corrections to Δm_K :

ullet the scattering among multiple particles in the finite volume: I=0 two-pion state.

"Effects of finite volume on the K_L – K_S mass difference"

N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, Phys.Rev.D 91 (2015) 11, 114510

• The correction $\delta(\Delta m_K)^{FV} = 2\text{Re}(\delta M_{12})$. δM_{12} is defined as:

$$M_{12}^{\infty} = M_{12}^{V} + \delta M_{12}, \tag{21}$$

and given by:

$$\delta M_{12} = -\cot(h(m_K)) \frac{dh(E)}{dE} \Big|_{E=m_K} \times f(m_K), \tag{22}$$

$2f(m_k)$	$h = \delta + \phi$	$\cot h$	dh/dE	$\cot h \times dh/dE$	$\delta(\Delta m_K)^{FV}$
-0.0086(25)	-0.49(6)	-1.85(27)	33.5(4)	-62(10)	-0.54(18)

K1 - K5 mass difference

Finite lattice spacing effects

Lattice calculations are performed on a discretized space with finite lattice spacing

- a. As $a \rightarrow 0$, we obtain the continuum limit.
 - Elimination of O(a) finite lattice spacing errors
 - Sources of $O(a^2)$ finite lattice spacing errors
 - heavy charm quark, $\sim (m_c a)^2$ gives 25%
 - effects from low-energy scale $\sim \Lambda_{\rm QCD}$
 - Scaling tests: perform calculations of three- and four-point quantities on two lattices with different lattice spacings. We need a coarser lattice to be compared with a finer lattice.
 - $64I(2.4 \text{ GeV}) \leftrightarrow 96I(2.8 \text{ GeV})$ Hard to do • $24I(1.8 \text{ GeV}) \leftrightarrow 32I(2.4 \text{ GeV})$

We estimate the finite lattice spacing error in our Δm_K calculation to be of order of 40%.

Lattice talk 2021

Lattice	Action	a^{-1}	Lattice	β	b+c	Ls	m _l	m_h	$m_{ m res}$
name	(F+G)	(GeV)	Volume						
241	DWF+I	1.785(5)	$24^3 \times 64 \times 16$	2.13	1.0	16	0.0050	0.0400	0.00308
32I	DWF+I	2.383(9)	$32^3 \times 64 \times 16$	2.25	1.0	16	0.0040	0.0300	0.000664

Δm_K calculation with physical quark masses

• $64^3 \times 128 \times 12$ lattice with Möbius DWF and the Iwasaki gauge action with physical pion mass (136 MeV).

Lattice	Action	a ⁻¹	Lattice	β	b+c	Ls	m_l	m_h	m_{res}
ensemble	(F+G)	(GeV)	Volume						
64I	MDWF+I	2.359(7)	$64^3 \times 128 \times 12$	2.25	2.0	12	0.000678	0.02661	0.000314

- Data analysis:
 - Sample AMA correction:

data type	CG stop residual
Sloppy	1e – 4
Exact	1e - 8

Diagram types	sample AMA correction	# of Sloppy	# of Exact
Type-3&4	Y	116	36
Type-1&2	N	0	36

the super-jackknife method is used to estimate the statistical errors for the AMA corrected data.

 Disconnected Type4 diagrams: save left- and right-pieces separately and use multiple source-sink separation for fitting.

Overview of the calculation of Δm_K

Quantities to be calculated are:

- two-point correlation functions:
 - meson masses: m_{π} , m_{K} , $m_{\pi\pi}$, m_{η}
 - normlization factors of meson interpolating operators: N_{π} , N_{K} , $N_{\pi\pi}$, N_{η}
- three-point correlation functions:
 - light state matrix elements to be subtracted: $\langle \pi | Q_i' | K^0 \rangle = \langle \pi | Q_i | K^0 \rangle c_{si} \langle \pi | \overline{s}d | K^0 \rangle$, and $\langle \pi \pi_{I=0} | Q_i c_{pi} \overline{s} \gamma_5 d | K^0 \rangle$.
 - coefficients of the $\overline{s}d$ and $\overline{s}\gamma_5d$ operators:

$$c_{\mathrm{s}i} = \frac{\langle \eta | Q_i | K^{\mathbf{0}} \rangle}{\langle \eta | \overline{s}d | K^{\mathbf{0}} \rangle}, \quad c_{\mathrm{p}i} = \frac{\langle 0 | Q_i | K^{\mathbf{0}} \rangle}{\langle 0 | \overline{s} \gamma_{\mathbf{5}}d | K^{\mathbf{0}} \rangle}.$$

- four-point correlation functions:
 - unintegrated correlation functions calculated from diagrams having light state contribution subtracted:

$$\widetilde{\widetilde{G}}^{\mathrm{sub}}(\delta) = \widetilde{\widetilde{G}}(\delta) - \sum\limits_{n \in \{n_l\}} \langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{(m_K - E_n) \delta}$$

• single-integrated correlation functions:

$$\widetilde{\mathcal{A}}^{S}(T) = \sum_{\delta=1}^{T} \widetilde{G}^{\mathrm{sub}}(\delta) + \frac{1}{2} \widetilde{G}^{\mathrm{sub}}(0) \to \Delta m_{K}$$

Δm_K using single-integrated correlators preliminary

• Subtract light states from the averaged unintegrated correlator:

$$\widetilde{G}_{ij}^{\text{sub}}(\delta) = \widetilde{G}_{ij}(\delta) - \sum_{n \in \{n_j\}} \langle \bar{K}^0 | Q_i' | n \rangle \langle n | Q_j' | K^0 \rangle e^{(m_K - E_n) \delta}$$
(23)

• Perform a single-integration over δ for the subtracted correlator between $\delta=0$ and $\delta=T$ to obtain:

$$\widetilde{\mathcal{A}}_{ij}^{\mathcal{S}}(T) = \sum_{\delta=1}^{I} \widetilde{G}_{ij}^{\text{sub}}(\delta) + \frac{1}{2} \widetilde{G}_{ij}^{\text{sub}}(0)$$
 (24)

Sample AMA corrections preliminary

Our use of the sample AMA method reduced the computational cost of the calculation by a factor of 2.3, while the statistical error on the AMA correction will add to the total statistical error.

Analysis method	type 3&4 error	type 3&4 error	type 3&4 error	
	from "sloppy"	from correction	in total	
Double-integration	0.60	0.24	0.65	
Single-integration	0.39	0.29	0.49	

We can conclude that the AMA method does not contribute much to the error in our final answer.

Results for Δm_K preliminary

• The finite-volume correction to Δm_K is estimated to be:

$$\delta(\Delta m_K)^{FV} = -0.54(18) \times 10^{-12} \text{MeV}.$$
 (25)

• Based on the scaling tests, we estimate the finite lattice spacing error of our Δm_K calculation to be $\sim 40\%$. We choose to use the results from the single-integration method:

Analysis method	Δm_K	Δm_K (type1&2)	Δm_K (type3&4)
Double-integration	6.31(0.98)	6.71(0.48)	-0.20(0.65)
Single-integration	6.34(0.57)	6.24(0.24)	0.33(0.50)

After including the finite volume correction, our result for Δm_K based on 152 configurations with physical quark masses is:

$$\Delta m_{\mathcal{K}} = 5.8(0.6)_{\text{stat}}(2.3)_{\text{sys}} \times 10^{-12} \text{MeV}.$$
 (26)

Conclusion and outlook

• Our **preliminary** result for Δm_K based on 152 configurations is:

$$\Delta m_{K} = 5.8(0.6)_{\text{stat}}(2.3)_{\text{sys}} \times 10^{-12} \text{MeV},$$
 (27)

to be compared to the experimental value:

$$(\Delta m_K)^{\text{exp}} = 3.483(6) \times 10^{-12} \text{MeV}.$$
 (28)

We find reasonable agreement given the large finite lattice spacing errors.

- Outlook: Future calculations on the Summit supercomputer:
 - Δm_K : on $96^3 \times 192$ lattice with $a^{-1} = 2.8$ GeV
 - Better estimate of finite lattice spacing effect:
 64I(2.4 GeV) ↔ 96I(2.8 GeV) continuum limit to be explored
 - Further improvement of the precision to $\sim 5\%$ level.
 - ullet ϵ_K : with Joe Karpie, improve the accuracy of ϵ_K to sub-percent level.

Thanks for your attention!

Three-point light-state matrix elements: K to $\pi\pi$ matrix elements

$$\overline{\widetilde{C}}_{K \to \pi \pi_{l=0}}^{Q'_{i}}(\delta) = \left\langle \widetilde{C}_{K \to \pi \pi_{l=0}}^{Q'_{i}}(\Delta, t) \right\rangle_{\Delta} = \left\langle \frac{N_{\pi \pi_{l=0}} N_{K} C_{K \to \pi \pi_{l=0}}^{Q'_{i}}(\Delta, \delta)}{C_{\pi \pi_{l=0}}^{2pt}(\Delta - t) C_{K}^{2pt}(t)} \right\rangle_{\Delta},$$
(58)

Obtaining Δm_K from single-integrated correlators with operators Q_i' and Q_i'

Separate fitting of the single-integrated correlator \mathcal{A}^S with weak Hamiltonian into fitting the integrated correlator with Q_1' and Q_2' :

$$\mathcal{A}_{ij}^{S}(T) = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \bar{K}^{0} | Q_{i}' | n \rangle \langle n | Q_{j}' | K^{0} \rangle}{m_{K} - E_{n}} \{-1 + e^{-(E_{n}-m_{K})T}\}.$$
 (59)

The relationship between $\mathcal{A}^{\mathcal{S}}_{ij}(T)$ and $\mathcal{A}^{\mathcal{S}}(T)$ is thus given by:

$$\mathcal{A}^{S}(T) = \frac{G_{F}^{2}}{2} \lambda_{u}^{2} \sum_{i,j=1,2} C_{i} C_{j} \mathcal{A}_{ij}^{S}(T).$$
 (60)

The value of Δm_K is then given by:

$$\Delta m_K^{\text{lat}} = \frac{G_F^2}{2} \lambda_u^2 \sum_{i,j=1,2} (-2) \times C_i^{\text{lat}} C_j^{\text{lat}} k_{ij}. \tag{61}$$

Obtaining Δm_K from double-integrated correlators

The double-integrated correlator is defined as:

$$\mathcal{A} = \frac{1}{2} \sum_{t_2 = t_a}^{t_b} \sum_{t_1 = t_a}^{t_b} \langle 0 | T\{ \overline{K}^0(t_f) H_W(t_2) H_W(t_1) K^0(t_i) \} | 0 \rangle$$
 (62)

If we insert a complete set of intermediate states

$$\mathcal{A} = N_K^2 e^{-m_K (t_f - t_i)} \sum_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n} \{ -T + \frac{e^{(m_K - E_n)T} - 1}{m_K - E_n} \}$$
 (63)

we identify the coefficient of the term linear in the size of integration box $T=t_b-t_a+1$ as proportional to the expression for Δm_K

$$\Delta m_K^{lat} \equiv 2 \sum_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n}$$
 (64)

Finite lattice spacing effects: scaling test

• The parameters used are listed below:

Lattice	β	b+c	Ls	a^{-1}	m _I	m_h
241	2.13	1.0	16	1.785	0.005	0.04
321	2.25	1.0	16	2.383	0.004	0.03

Lattice	$m_{\scriptscriptstyle X}$	m_y	m_{π}	m_K	m _c 's
241	0.00667	0.0321	0.2079	0.3125	0.15:0.05:0.35
32I	0.00649	0.0249	0.1557	0.2332	$(0.15:0.05:0.35)\frac{1.785}{2.383}$

Table: Parameters related to the lattices for measurements.