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The standard model

Elementary particles
Three types of interactions

1 Electromagnetic(QED):
agreements to high precision
between theoretical and
experimental values
perturbation theory

2 Strong(QCD):
asymptotic freedom
difficulties at ⇠ ⇤QCD

3 Weak: least understood; good
checks for new physics:

Unitarity of CKM matrix
CP violation
Weak decaying processes...

Figure: from
https://www.nobelprize.org/prizes/physics/2004/popular-information/
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K 0 � K 0 mixing and �mK

K 0 (S = �1) and K 0 (S = +1), each having definite strangeness, which is
conserved in the strong processes, mix through second order weak interactions.

i
d

dt

✓
K 0 (t)
K 0 (t)

◆
= (M � i

2
�)

✓
K 0 (t)
K 0 (t)

◆
, (1)

where the matrix M is given by:

Mij = m (0)
K Xij + P

’
n

hK 0
i |HW |nihn|HW |K 0

j i
mK � En

, (2)

If the small effects of CP violation are neglected,
long-lived (KL) and short-lived (KS) are the two
eigenstates:

KS ⇡ K 0 � K 0
p

2
, KL ⇡ K 0 + K 0

p
2

. (3)

�mK ⌘ mKL �mKS = 2ReM12. (4)

Figure: from wikipedia

Different life times:
KS

CP���!
even

cc,
2mc ⇡ 280MeV < mK

KL
CP���!
odd

ccc,
3mc ⇡ 420MeV . mK
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Diagrams related to �mK

box QCD penguin disconnected
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Physics motivation

�mK is given by:

�mK ⌘ mKL �mKS = 2ReM12 = 2P
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

. (5)

This quantity is:
1 Tiny if compared to the K

0 mass ⇠ 498 MeV, and precisely measured
�mK ,exp = 3.483(6) ⇥ 10�12 MeV

2 Sensitive to new physics: FCNC via 2nd order weak interaction

Methods to calculate �mK? Perturbation theory?
Although the weak interaction itself can be treated precisely with
perturbation theory, the kaon mixing process involves mesons(QCD related).

High-energy part: QCD perturbation theory works well
Low-energy part: QCD perturbative method fails, need non-perturbative
calculation methods.
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The operator product expansion(OPE) and �mK

OPE: full theory HW
integrate out������������!

heavy particles
Heff =

Õ
j
Cj (`)Oj (`), renormalized at scale `

Cj (`): short-distance, perturbative; Oj (`): long-distance, non-perturbative

HSM
W H�S=1

eff H�S=2
eff

u, c

u, c

d

s d

s

d

s d

s

c, u

c, u

d s

s
d

c, u

c, u

d

s d

su, c u, c
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Earlier calculations of �mK : charm quark is integrated out

The specific division ` < mc in OPE where charm quark is integrated out.
short-distance box only:

HSM
W ! H�S=2

eff

H�S=2
e↵ = C (`)OLL (`), (6)

OLL = (sd)V�A (sd)V�A, (7)

leaving out:

QCD penguin disconnected

long-distance box

Only 36% accuracy in the next-to-next-to-leading-order(NNLO) calculation of the QCD
correction factors using perturbation theory: slow convergence of the perturbative series

J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

! better to treat charm quark non-perturbatively on the lattice
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GIM mechanism and the short- and long-distance

characteristics of �mK

GIM mechanism: flavor-changing neutral currents(FCNC) are suppressed in loop
diagrams ! charm quark ! the CKM matrix

Quark mixing: at each weak vertex
! a product of CKM matrix elements VqdV ⇤

q0s , where q, q0 = u, c , t.
Define _q = Vq,dV ⇤

q,s , q = u, c , t,
unitarity of the CKM matrix ! _u + _c + _t = 0 ! _c = �_u � _t

Specific diagram with GIM mechanism:

X
GIM

= _2
u X

(u�c) (u�c)
+ _2

t X
(t�c) (t�c)

+ 2_u_t X
(u�c) (t�c)

For �mK = 2ReM12, the first term dominates.
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Non-perturbative calculation of �mK using a

renormalization scale above the charm quark mass

HSM
W H�S=1

eff

u, c

u, c

d

s d

s

d

s d

s

c, u

c, u

d s

s
d

c, u

c, u

d

s d

su, c u, c

Re X
GIM

' _2
u X

(u�c) (u�c)

The �S = 1 effective weak Hamiltonian:

H�S =1
eff

=
GFp

2

’
q,q0=u,c

VqdV
⇤
q0s (C1Q

qq0

1 +C2Q
qq0

2 )

(8)

where the Qqq0

i i=1,2 are current-current
opeartors, defined as:

Qqq0

1 = (s̄iW` (1 � W5)di ) (q̄jW` (1 � W5)q0
j )

Qqq0

2 = (s̄iW` (1 � W5)dj ) (q̄jW` (1 � W5)q0
i )
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Physics motivation

�mK is given by:

�mK ⌘ mKL �mKS = 2ReM12 = 2P
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

. (9)

This quantity is:
1 Tiny if compared to the K

0 mass ⇠ 498 MeV, and precisely measured
�mK ,exp = 3.483(6) ⇥ 10�12 MeV

2 Sensitive to new physics: FCNC via 2nd order weak interaction
3 Significant contribution from scale of mc (GIM mechanism)
4 Difficult to compute by treating charm quark perturbatively: strong coupling

at mc scale
J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

Calculate �mK with lattice QCD, treating charm quark non-perturbatively:
from first principles
non-perturbative, no convergence problem
systematic errors(finite volume corrections, finite lattice spacing effects, etc)
can be controlled
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Status of the calculation

"Long-distance contribution at the KL � KS mass difference",
N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a 163 ⇥ 32 lattice with
unphysical masses(mc = 421MeV ) including only connected diagrams

"KL � KS mass difference from Lattice QCD"
Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a 243 ⇥ 64 lattice with unphysical masses

"The KL � KS mass difference"
Z. Bai, N. H. Christ, C. T. Sachrajda

EPJ Web of Conferences 175(2018), 13017

All diagrams included on a 643 ⇥ 128 lattice with physical masses on 59
configurations: �mk = 5.5(1.7)stat ⇥ 10�12 MeV.

In this talk, I will present the calculation of �mK on 152 configurations and a
new analysis method employed to calculate �mK with better reduction of
statistical error on this larger set of configurations.
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From four-point correlators to �mlat
K

�mK is given by:

�mK ⌘ mKL �mKS = 2ReM12 = 2P
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

. (10)

What we can calculate are four-point correlators on the lattice:

(11)G (t1, t2, ti , tf ) ⌘ h0|T {K 0 (tf )HW (t2)HW (t1)K 0 (ti )}|0i
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Extract �mK from single-integrated correlators

The single-integrated correlator is defined as:

(12)As (t,T ) ⌘ 1
2!

t+T’
t1=t�T

h0|T {K 0 (tf )HW (t1)HW (t)K 0 (ti )}|0i

If we insert a complete set of intermediate states, we find:

(13)As =N2
K e

�mK (tf �ti )
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

(�1+e (mK�En) (T+1) )
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Subtraction of the light states

Single-integration method requires subtraction of the terms from light states:

(14)As =N2
K e

�mK (tf �ti )
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

{�1+e (mK�En) (T+1) }

For |ni(in our case |0i, |cci, |[i, |ci) with En < mK or En ⇠ mK : the
exponential terms will be significant. We can:

freedom of adding cs s̄d , cp s̄W5
d operators to the weak Hamiltonian. Here we

choose:
h0|HW � cp s̄W5d |K0i = 0, h[ |HW � cs s̄d |K̄0i = 0

subtract contributions from other states(|ci, |cci) explicitly
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Operators of �mK calculation

The �S = 1 effective weak Hamiltonian:

(15)HW =
GFp

2

’
q,q0=u,c

VqdV
⇤
q0s (C1Q

qq0

1 + C2Q
qq0

2 )

where the Qqq0

i i=1,2 are current-current opeartors, defined as:

Qqq0

1 = (s̄iW` (1 � W5)di ) (q̄jW` (1 � W5)q0
j )

Qqq0

2 = (s̄iW` (1 � W5)dj ) (q̄jW` (1 � W5)q0
i )

There are four states need to subtracted: |0i, |cci, |[i, |ci. We add cs s̄d ,
cp s̄W5d operators to weak operators to make:

h0|Qi � cpi s̄W5d |K 0i = 0, h[ |Qi � csi s̄d |K 0i = 0 (16)

Q 0
i = Qi � cpi s̄W5d � csi s̄d (17)
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Diagrams in the calculation of �mK

For contractions among Qi , there are four types of diagrams to be evaluated.

In addition, there are "mixed" diagrams from the contractions between the
cs s̄d cp s̄W5d operators and Qi operators.
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Non-perturbative renormalizations

Renormalization of lattice operator Q1,2 and and obtain the Wilson
coefficients C lat

i in 3 steps:

C lat
i = CMS

a (1 + �r )RI!MS
ab Z lat!RI

bi

Non-perturbative Renormalization: from the lattice to the RI-SMOM

Z
lat!RI =


0.5642 �0.03934

�0.03934 0.5642

�
(18)

Perturbation theory: from the RI-SMOM to the MS

C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

�rRI!MS = 10�3 ⇥

�2.28 6.85
6.85 �2.28

�
(19)

Use Wilson coefficients in the MS scheme
G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

C
MS = 10�3 ⇥

⇥
�0.260 1.118

⇤
(20)
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Finite-volume corrections

Lattice calculations are performed with a finite space-time volume rather than an
infinite volume.

without multi-particle states: corrections ⇠ e�mL

with multi-particle states: corrections having power-law dependence.
Finite-volume corrections to �mK :

the scattering among multiple particles in the finite volume: I = 0 two-pion
state.
"Effects of finite volume on the KL � KS mass difference"
N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, Phys.Rev.D 91 (2015) 11, 114510

The correction X(�mK )FV = 2Re(XM12).
XM12 is defined as:

M
1
12 = M

V
12 + XM12, (21)

and given by:

XM12 = �cot(h(mK )) dh(E )
dE

���
E=mK

⇥ f (mK ), (22)

2f (mk ) h = X + q coth dh/dE coth ⇥ dh/dE X(�mK )FV
�0.0086(25) �0.49(6) �1.85(27) 33.5(4) �62(10) �0.54(18)
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Finite lattice spacing effects

Lattice calculations are performed on a discretized space with finite lattice spacing
a. As a ! 0, we obtain the continuum limit.

Elimination of O(a) finite lattice spacing errors
Sources of O(a2) finite lattice spacing errors

heavy charm quark, ⇠ (mca)2 gives 25%
effects from low-energy scale ⇠ ⇤QCD

Scaling tests: perform calculations of three- and four-point quantities on two
lattices with different lattice spacings. We need a coarser lattice to be compared
with a finer lattice.

64I(2.4 GeV) $ 96I(2.8 GeV) Hard to do
24I(1.8 GeV) $ 32I(2.4 GeV) 3

We estimate the finite lattice spacing error in our �mK calculation to be of order
of 40%.

Lattice talk 2021

Lattice Action a�1 Lattice V b+c Ls ml mh mres
name (F+G) (GeV) Volume
24I DWF+I 1.785(5) 243 ⇥ 64 ⇥ 16 2.13 1.0 16 0.0050 0.0400 0.00308
32I DWF+I 2.383(9) 323 ⇥ 64 ⇥ 16 2.25 1.0 16 0.0040 0.0300 0.000664
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�mK calculation with physical quark masses

643 ⇥ 128 ⇥ 12 lattice with M •obius DWF and the Iwasaki gauge action with
physical pion mass (136 MeV).

Lattice Action a�1 Lattice V b+c Ls ml mh mres
ensemble (F+G) (GeV) Volume

64I MDWF+I 2.359(7) 643 ⇥ 128 ⇥ 12 2.25 2.0 12 0.000678 0.02661 0.000314

Data analysis:
Sample AMA correction:

data type CG stop residual
Sloppy 1e � 4
Exact 1e � 8

Diagram types sample AMA correction # of Sloppy # of Exact
Type-3&4 Y 116 36
Type-1&2 N 0 36

the super-jackknife method is used to estimate the statistical errors for the
AMA corrected data.

Disconnected Type4 diagrams:
save left- and right-pieces separately and use multiple source-sink separation
for fitting.
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Overview of the calculation of �mK

Quantities to be calculated are:
two-point correlation functions:

meson masses: mc , mK , mcc , m[
normlization factors of meson interpolating operators: Nc , NK , Ncc , N[

three-point correlation functions:
light state matrix elements to be subtracted:
hc |Q 0

i |K
0i = hc |Qi |K0i � csi hc |sd |K0i, and hccI=0 |Qi � cpi sW5d |K0i.

coefficients of the sd and sW5d operators:
csi =

h[ |Qi |K0 i
h[ |sd |K0 i , cpi =

h0 |Qi |K0 i
h0 |sW5d |K0 i .

four-point correlation functions:
unintegrated correlation functions calculated from diagrams having light state
contribution subtracted:eG sub (X) = eG (X) � Õ

n2{nl }
hK̄0 |HW |nihn|HW |K0ie (mK�En) X

single-integrated correlation functions:

eAS (T ) =
TÕ
X=1

eG sub (X) + 1
2
eG sub (0) ! �mK
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�mK using single-integrated correlators preliminary
Subtract light states from the averaged unintegrated correlator:

eG sub
ij (X) = eGij (X) �

’
n2{nl }

hK̄ 0 |Q 0
i |nihn|Q

0
j |K

0ie (mK�En) X (23)

Perform a single-integration over X for the subtracted correlator between
X = 0 and X = T to obtain:

eAS
ij (T ) =

T’
X=1

eG sub
ij (X) + 1

2
eG sub
ij (0) (24)
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Sample AMA corrections preliminary

Our use of the sample AMA method reduced the computational cost of the
calculation by a factor of 2.3, while the statistical error on the AMA correction
will add to the total statistical error.

Analysis method type 3&4 error type 3&4 error type 3&4 error
from "sloppy" from correction in total

Double-integration 0.60 0.24 0.65
Single-integration 0.39 0.29 0.49

We can conclude that the AMA method does not contribute much to the error in
our final answer.
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Results for �mK preliminary

The finite-volume correction to �mK is estimated to be:

X(�mK )FV = �0.54(18) ⇥ 10�12MeV. (25)

Based on the scaling tests, we estimate the finite lattice spacing error of our
�mK calculation to be ⇠ 40%. We choose to use the results from the
single-integration method:

Analysis method �mK �mK (type1&2) �mK (type3&4)
Double-integration 6.31(0.98) 6.71(0.48) -0.20(0.65)
Single-integration 6.34(0.57) 6.24(0.24) 0.33(0.50)

After including the finite volume correction, our result for �mK based on 152
configurations with physical quark masses is:

�mK = 5.8(0.6)stat (2.3)sys ⇥ 10�12MeV. (26)
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Conclusion and outlook

Our preliminary result for �mK based on 152 configurations is:

�mK = 5.8(0.6)stat (2.3)sys ⇥ 10�12MeV, (27)

to be compared to the experimental value:

(�mK )exp = 3.483(6) ⇥ 10�12MeV. (28)

We find reasonable agreement given the large finite lattice spacing errors.

Outlook:
Future calculations on the Summit supercomputer:

�mK : on 963 ⇥ 192 lattice with a
�1 = 2.8 GeV

Better estimate of finite lattice spacing effect:

64I(2.4 GeV) $ 96I(2.8 GeV) continuum limit to be explored

Further improvement of the precision to ⇠ 5% level.

nK : with Joe Karpie, improve the accuracy of nK to sub-percent level.
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Thanks for your attention!
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Three-point light-state matrix elements: K to cc matrix

elements

eCQ0
i

K!ccI=0
(X) =

D eCQ0
i

K!ccI=0
(�, t)

E
�
=

*
NccI=0NKC

Q0
i

K!ccI=0
(�, X)

C 2pt
ccI=0 (� � t)C 2pt

K (t)

+
�

, (58)
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Obtaining �mK from single-integrated correlators with

operators Q0
i and Q0

j

Separate fitting of the single-integrated correlator AS with weak Hamiltonian into
fitting the integrated correlator with Q 0

1 and Q 0
2:

AS
ij (T ) = N2

K e
�mK (tf �ti )

’
n

hK̄ 0 |Q 0
i |nihn|Q

0
j |K

0i
mK � En

{�1 + e�(En�mK )T }. (59)

The relationship between AS
ij (T ) and AS (T ) is thus given by:

AS (T ) =
G 2
F

2
_2
u

’
i ,j=1,2

CiCjAS
ij (T ). (60)

The value of �mK is then given by:

�mlat
K =

G 2
F

2
_2
u

’
i ,j=1,2

(�2) ⇥ C lat
i C lat

j kij . (61)
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Obtaining �mK from double-integrated correlators

The double-integrated correlator is defined as:

(62)A =
1
2

tb’
t2=ta

tb’
t1=ta

h0|T {K 0(tf )HW (t2)HW (t1)K 0 (ti )}|0i

If we insert a complete set of intermediate states

(63)A = N2
K e

�mK (tf �ti )
’
n

hK 0 |HW |nihn|HW |K 0i
mK � En

{�T + e (mK�En)T � 1
mK � En

}

we identify the coefficient of the term linear in the size of integration box
T = tb � ta + 1 as proportional to the expression for �mK

(64)�mlat
K ⌘ 2

’
n

hK 0 |HW |nihn|HW |K 0i
mK � En
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Finite lattice spacing effects: scaling test

The parameters used are listed below:
Lattice V b+c Ls a�1 ml mh

24I 2.13 1.0 16 1.785 0.005 0.04
32I 2.25 1.0 16 2.383 0.004 0.03

Lattice mx my mc mK mc ’s
24I 0.00667 0.0321 0.2079 0.3125 0.15:0.05:0.35
32I 0.00649 0.0249 0.1557 0.2332 (0.15:0.05:0.35) 1.785

2.383

Table: Parameters related to the lattices for measurements.
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