Lattice calculation powered by factorization theory

Yan-Qing Ma Peking University

中国格点QCD第一届年会 Online, Oct. 30-Nov. 2, 2021

I. Hadron structure from experimental data

II. Hadron structure from lattice: ideas

- III. Hadron structure from lattice: details
- **IV. Summary and outlook**

QCD factorization

The key and a first principle method to relate experimental data to QCD theory

PDFs/TMDs/...: encoding nonperturbative information in hadrons

Properties of PDFs

Well defined in QCD; process independent

Spin-averaged quark distribution

$$f_{q/p}(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P | \overline{\psi}(\xi_-) \gamma_+ \exp\left\{-ig \int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0) | P \rangle$$

Defined in infinite frame: not direct physical observable

Determined by using factorization

> Logarithmic UV divergent, renormalizable

DGLAP evolution equations

> Operator defining PDFs: time dependent!

Extract PDFs by fitting data

Successful

Measure e-p at 0.3 TeV (HERA) Predict p-p at 0.2, 1.96, and 7 TeV

Uncertainty of PDFs

Large uncertainty in both small-x and large-x region

- Can theoretical calculation verify the extracted values?
- Can theoretical calculation provide more information for hadron structure?

Need to calculate PDFs/TMDs/... nonperturbatively from first principle!

Lattice QCD

> The main nonperturbative approach to solve QCD

Predict the hadron mass

> Intrinsically Euclidean time: $\tau = i t$

PDFs have (Minkowski) time dependence, lattice QCD cannot calculate PDFs directly

Very limited moments of PDFs

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n f_{q/p}(x,\mu^2)$$

I. Hadron structure from experimental data

II. Hadron structure from lattice: ideas

III. Hadron structure from lattice: details

IV. Summary and outlook

What if quark bilinear is slightly off light cone?

• Exist a frame where quark bilinear is equal time, but proton is moving fast

Quasi-PDFs Ji, 1305.1539

$$\tilde{f}_{q/p}(x,\mu^2,P_z) = \int \frac{d\xi_z}{4\pi} e^{-ix\xi_z P_z} \langle P|\overline{\psi}(\xi_z)\,\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\}\psi(0)|P\rangle$$

Classical picture: When proton is moving fast enough, i.e. P_z → ∞, there exists a frame so that quark bilinear in quasi-PDFs are only slightly off light cone, approach PDFs

> Advantage

• Fields separated along the z-direction, no time dependence, calculable using standard lattice method

> Difficulty

- Quantum fluctuation, UV divergences, does the simple classical picture still hold in QFT?
- *P_z* on lattice is very limited
- In fact, relies on the existence of factorization

$$q(x,\mu^{2},P^{z}) = \int_{x}^{1} \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P^{z}}\right) q(y,\mu^{2}) + \mathcal{O}\left(\Lambda^{2}/(P^{z})^{2},M^{2}/(P^{z})^{2}\right)$$

Ji, 1305.1539

$$\begin{split} \sigma(P \cdot \xi, \xi^2, \tilde{\mu}^2) &\approx \sum_{i=q, \bar{q}, g} \int_0^1 \frac{dx}{x} f_i(x, \mu^2) \mathcal{C}_i(xP \cdot \xi, \xi^2, \tilde{\mu}^2, \mu^2) + O(\xi^2) \\ \tilde{f}_{q/h}^{\text{ren}} &= f_{i/h} \otimes \mathcal{C}_{q/i} + O((\tilde{x}P_z)^{-2}) \\ \mathsf{YQM}, \mathsf{Qiu}, \mathsf{1404.6860} \end{split} \qquad \qquad \mathsf{pseudo} \, \mathcal{P}(x, z) = q(x) \Big\{ 1 + \mathcal{O}\Big(\frac{\Lambda^2}{p^2 x^2 (1 - x)} \Big) \Big\}, \end{split}$$

- Why quasi-PDFs work? Is there a more general way to calculate PDFs?
- From quasi-PDFs to LaMET and LCS

YQM, Qiu, 1404.6860, 1709.03018

Direct calculation is hard

- Lattice: time-dependence of operators defining PDFs
- LaMET: P_z cannot be too large on lattice

> The most general way of indirect calculation

- Relating PDFs, not calculable on lattice QCD, to some quantities calculable on lattice QCD
- The relation is nothing but a factorization!

$$\sigma_n(\xi^2, \omega, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) K_n^a(\xi^2, x\omega, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$
Parton-distribution

Hard-part
Correction

Structure
Probe

- Analogy: measured experimental cross section!
- We call these quantities: "lattice cross sections"

What kinds of LCSs are useful?

Conditions for a good LCS

- 1) Calculable on Euclidean lattice QCD
- **2** Renormalizable for UV divergences
- **③** Factorizable for CO divergence with IR safe coefficients

$$\sigma_n(\xi^2, \omega, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) K_n^a(\xi^2, x\omega, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$

• The last condition relates LCSs to, e.g., PDFs

First condition: at least two possibilities

$$\begin{split} \sigma_n(\xi^2,\omega,P^2) &= \langle P|T\{\mathcal{O}_n(\xi)\}|P\rangle \quad \text{with } \xi_0 = 0, \text{e.g., quasi-PDFs}\\ & \text{Lin, et. al., 1402.1462}\\ \widetilde{\sigma}_n(q^2,\widetilde{\omega},P^2) &= \int \frac{d^4\xi}{\xi^4} e^{iq\cdot\xi} \sigma_n(\xi^2,P\cdot\xi,P^2) \quad \text{with } q_0 = 0, \text{e.g., OPE w/o OPE}\\ & \text{Chambers, et. al., 1703.01153} \end{split}$$

Second and third conditions: need to prove

LCSs to determine PDFs

LCSs in coordinate space or in momentum space

 $\sigma_n(\xi^2, \omega, P^2) = \langle P | T\{\mathcal{O}_n(\xi)\} | P \rangle \qquad \widetilde{\sigma}_n(q^2, \widetilde{\omega}, P^2) = \int \frac{d^4\xi}{\xi^4} e^{iq \cdot \xi} \sigma_n(\xi^2, P \cdot \xi, P^2)$

• $1/\xi^2$ and q^2 : hard scales to enable factorization

Possible choices of nonlocal operators

Parton correlators

$$\mathcal{O}_q(\xi) = Z_q(\xi^2) \overline{\psi}_q(\xi) \, \not \xi \Phi(\xi, 0) \, \psi_q(0)$$

 $\Phi(\xi,0) = \mathcal{P}e^{-ig\int_0^1 \xi \cdot A(\lambda\xi) \, d\lambda}$

Ji, 1305.1539

- Path ordered gauge link needed
- Renormalization is complicated

Current-current operators

$$\begin{split} \mathcal{O}_{S}(\xi) &= \xi^{4} Z_{S}^{2}[\overline{\psi}_{q}\psi_{q}](\xi) \left[\overline{\psi}_{q}\psi_{q}\right](0) ,\\ \mathcal{O}_{V}(\xi) &= \xi^{2} Z_{V}^{2}[\overline{\psi}_{q} \xi \psi_{q}](\xi) \left[\overline{\psi}_{q} \xi \psi_{q}\right](0) ,\\ \mathcal{O}_{\widetilde{V}}(\xi) &= -\frac{\xi^{4}}{2} Z_{V}^{2}[\overline{\psi}_{q}\gamma_{\nu}\psi_{q}](\xi) \left[\overline{\psi}_{q}\gamma^{\nu}\psi_{q}\right](0) ,\\ \mathcal{O}_{V'}(\xi) &= \xi^{2} Z_{V'}^{2}[\overline{\psi}_{q} \xi \psi_{q'}](\xi) \left[\overline{\psi}_{q'} \xi \psi_{q}\right](0) , \dots ,\\ \end{split}$$

$$\begin{aligned} \mathsf{YQM}, \mathsf{Qiu}, \mathsf{1709.03018} \end{split}$$

Renormalization is very simple

Straight forward to construct much more operators with both quark fields and gluon fields

Different methods

Inverse Laplace transform for structure functions

Liu, Dong, 9306299, Liu, 9910306, 1603.07352

Coordinate-space method for LDA

Aglietti, et. al., 9806277; Abada, et.al., 0105221; Braun, Mueller, 0709.1348

Quasi-PDFs

Ji, 1305.1539, 1404.6680

Pseudo-DFs

Orginos, Radyushkin, Karpie, Zafeiropoulos, 1706.05373

OPE without OPE

Chambers, et. al. , 1703.01153

Current-current correlators

YQM, Qiu, 1709.03018

All existed methods rely on factorization, can be interpreted as constructing LCSs

Analogy: meat, vegetables, fruits are all food

- I. Hadron structure from experimental data
- II. Hadron structure from lattice: ideas
- III. Hadron structure from lattice: details
- **IV. Summary and outlook**

> Why proof is important?

- Need to take continuum limit for lattice calculation
- All-order proof of factorization needs multiplicative renormalization
- Find out all operators mixing under renormalization YQM, Qiu, 1404.6860

Lessons from gluon-gluon correlator: proof is crucial!

Current-current operators: known

Parton correlators: difficult

- Because of *z*-direction dependence, Lorentz symmetry is broken, hard to exhaust all possible UV divergences
- Renormalization of nonlocal composite operator

All-order proofs for renormalization

- Diagrammatic method: key is to show that UV divergences are local in space-time
 - Nontrivial conclusion! E.g. UV divergences for normal PDFs are non-local in "—" direction
 Ishikawa YQM, Qiu, Yoshida, 1707
 - The most difficult part in this proof

Ishikawa YQM, Qiu, Yoshida, 1707.03107 Li, YQM, Qiu, 1809.01836

- Auxiliary field method: gauge link obtained by integration out an auxiliary field in HQET
 - Taking advantage of the renormalizability of heavy-light current in HQET

Ji, Zhang, Zhao, 1706.08962 Green, Jansen, Steffens, 1707.07152 Zhang, et. al., 1808.10824

All-order proofs for factorization

Diagrammatic method:

YQM, Qiu, 1404.6860

• Rigorous, but hard to resum target mass corrections

> OPE method:

YQM, Qiu, 1709.03018 Izubuchi, et. al., 1801.03917

• For quasi-PDFs, no proof of OPE: only a derivation of factorization

$$\sigma_n(\xi^2, \omega, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) K_n^a(\xi^2, x\omega, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$

$$\widetilde{\sigma}_n = \sum_a f_a \otimes \widetilde{K}_n^a + O(\Lambda_{\text{QCD}}^2/q^2) \qquad \qquad f_{\bar{a}/h}(x,\mu^2) = -f_{a/h}(-x,\mu^2)$$

where

$$K_{n}^{a} = \sum_{J} 2W_{n}^{(J,a)}(\xi^{2},\mu^{2}) \Sigma_{J}(x\omega,x^{2}P^{2}\xi^{2})$$
$$\widetilde{K}_{n}^{a} = \int \frac{d^{4}\xi}{\xi^{4}} e^{iq\cdot\xi} K_{n}^{a}(\xi^{2},xP\cdot\xi,x^{2}P^{2},\mu)$$
21/25

Conditions satisfied up to now

- With $\xi_0 = 0$ or $q_0 = 0$, calculable on Euclidean lattice
- Renormalizable
- Factorizable to PDFs

With these conditions, σ_n and $\widetilde{\sigma}_n$ are good LCSs to extract PDFs

Questions still need to answer:

- 1) OPE for parton-parton correlators?
- 2) Renormalization using lattice regulator?

> What next?

- Calculate matching coefficients perturbatively
- Calculate LCSs nonperturbatively (including renormalization methods)

Matching coefficients

Obtained by calculating Feynman diagrams

- Most quantities: calculated to one-loop order
- Flavor nonsinglet quark-quark correlator (qPDF, pPDF): two-loop order

Li, YQM, Qiu, 2006.12370 Chen, Wang, Zhu, 2006.14825

High-order calculations for more quantities are needed, make lattice data more useful

Renormalization schemes

See Jian-Hui Zhang's talk

- > LaMET: see many talks in this meeting
- > Many interesting results from pseudo-PDFs
- > An example using current-current correlator

- Hadronic matrix elements that are calculable + renormalizable + factorizable
 - Like experimental cross section, can constrain hadron structure
- Quasi-PDFs, pseudo-PDFs, OPE w/o OPE, current-current correlators: good LCSs
- Construct better operators?
- > Many (non-)perturbative works to do

With world (lattice and experimental) data, a global fit to determine PDFs/TMDs/...