Recent results from **BESII** experiment

刘北江 中国科学院高能物理研究所 (On behalf of the BESIII collaboration)

中国格点QCD第一届年会,华南师范大学 2021.10.30-2021.11.02

World's largest $\tau - charm$ data sets in e^+e^- annihilation

Selected topics

- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU
- Hadronic corrections to muon g-2 : HPV & HLbL
- Baryons: form factors & polarization

Charmonium decays provide an ideal lab for light hadron physics

What's the role of gluonic excitation and how does it connect to the confinement?

- Clean high statistics data samples
- Well defined initial and final states
 - Kinematic constraints
 - I(J^{PC}) filter
- "Gluon-rich" process

$f_0(1710)$ largely overlapped with scalar glueball

Scalar glueball candidate

Recent interpretations

Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays

Andrey V. Sarantsev, Igor Denisenko, Ulrike Thoma, Eberhard Klempt

A coupled-channel analysis of BESIII data on radiative J/ψ decays into $\pi\pi$, $K\bar{K}$, $\eta\eta$ and $\omega\phi$ has been performed. The partial-wave amplitude is constrained by a large number of further data. The analysis finds ten isoscalar scalar mesons. Their masses, widths and decay modes are determined. The scalar mesons are interpreted as mainly SU(3)-singlet and mainly octet states. Octet isoscalar scalar states are observed with significant yields only in the 1500-2100\,MeV mass region. Singlet scalar mesons are produced over a wide mass range but their yield peaks in the same mass region. The peak is interpreted as scalar glueball. Its mass and width are determined to M = 1865 Ver25^{+10}_{-30} {Vrm MeV} and $\Gamma = 370 \text{Ver50}^{+30}_{-20}$ {Vrm MeV}, its yield in radiative J/ψ decays to $(5.8 \pm 1.0) \ 10^{-3}$.

Comments:11 pages, 4 figuresSubjects:High Energy Physics - Phenomenology (hep-ph)DOI:10.1016/j.physletb.2021.136227Cite as:arXiv:2103.09680 [hep-ph]

Scalar and tensor resonances in J/ψ radiative decays

JPAC Collaboration: A. Rodas, A. Pilloni, M. Albaladejo, C. Fernandez-Ramirez, V. Mathieu, A. P. Szczepaniak

We perform a systematic analysis of the $J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K_S^0 K_S^0$ partial waves measured by BESIII. We use a large set of amplitude parametrizations to reduce the model bias. We determine the physical properties of seven scalar and tensor resonances in the 1-2.5 GeV mass range. These include the well known $f_0(1500)$ and $f_0(1710)$, that are considered to be the primary glueball candidates. The hierarchy of resonance couplings determined from this analysis favors the latter as the one with the largest glueball component.

 Comments:
 17 pages, 11 figures + 28 pages of Supplemental Material

 Subjects:
 High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hepex); Nuclear Theory (nucl-th)

 Cite as:
 arXiv:2110.00027 [hep-ph]

To-do:

Implement coupled channel analysis in BESIII analysis

The X(2120) and X(2370)

- Observed in J/ψ→γη'π⁺π⁻ at BESIII
 [PRL106, 072002 (2011)][PRL117, 042002(2016)]
- Combined analysis of $J/\psi \rightarrow \gamma K^+ K^- \eta'$ and $\gamma K_S K_S \eta'$
- Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

No evidence of $X(2370) \rightarrow \eta \eta \eta'$

 $X(p\overline{p})/X(18??)$ from J/ ψ radiative decays

8

1960

PRL106,072002

PRL108,112003

PRL115,091803

PRD87,032008

PRD88,091502

PRL107,182001

1940

M (MeV/c²)

0-

 0^{++}

JPC?

1920

----- n(1475) ----- X(1835) ----- f₁(1285)

X(1835)

1.8

interference

 φ π⁰ π⁰

 Mis-combination of γe

2.2

Any relations? What is the role of the $p\bar{p}$ threshold ?

Selected topics

- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU
- Hadronic corrections to muon g-2 : HPV & HLbL
- Baryons: form factors & polarization

Charmonium and exotics at BESIII

direct production of vectors: ψ , Y radiative and hadronic transitions to others

10

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Compare running at **Belle and BaBar**, with one month at **BESIII** !

Y(4260) → Y(4220) and new Y's

 $e^+e^- \rightarrow \gamma \chi_{cI}$ at \sqrt{s} =3.8-4.6 GeV No signals for $e^+e^- \rightarrow \gamma \chi_{c0}$ • arXiv:2107.03604 • Observations of $e^+e^- \rightarrow \gamma \chi_{c1,2}$ 10 - Data 40 🗕 Data — fit result ₃^B(e⁺e⁻→γχ_{c0}) (pb) 3(0 20 20 0 20 20 30 (qd) ψ(3686) upper limit (90% C.L.) b(3770 (4040)ری ۲²⁰ ۲ (4160) σ(e⁺e⁻ σ(e⁺e 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.2 4.3 4.1 4.4 4.5 4.6 s (GeV) √s (GeV) vs GeV

- $\gamma \chi_{c1}$: Well describe with conventional charmonium states
- $\gamma \chi_{c2}$: Along with conventional ones, an additional Y state is needed

 $M = 4371.7 \pm 7.5 \pm 1.8 \text{ MeV}/c^2$, $\Gamma = 51.1 \pm 17.6 \pm 1.9 \text{ MeV}$

- \checkmark statistical significance of 5.8 σ
- \checkmark consistent with the Y(4360)/Y(4390)

More X(3872) decay information

- Observation of X(3872) $\rightarrow \omega J/\psi$ ٠ BESIII, PRL 122, 232002 (2019)
- Observation of X(3872) $\rightarrow D^0 \overline{D}^{*0}$ BESIII, PRL 124, 242001 (2020)

Transition of $X(3872) \rightarrow \gamma J/\psi, \gamma \psi(2S)$

Belle(<2.1), while challenges $Babar(3.4\pm1.1)$ and LHCb results (2.46± 0.70)

3.95

The Zc Family at BESIII

Which is the nature of these states? If exists, there should be SU(3) counter-part Zcs state with strangeness

Selected topics

- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU
- Hadronic corrections to muon g-2: HPV & HLbL
- Baryons: form factors & polarization

• Single tag (ST): fully reconstruct one *D*⁻

 $\Delta E = E_{D^-} - E_{\text{beam}}$ $M_{\text{BC}} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_{D^-}|^2}$

Double tag (DT): in the recoil ST $D_{(s)}^-$, analyze the signal $D_{(s)}^+$ $MM^2 = E_{miss}^2 - |\vec{p}_{miss}|^2$ $E_{miss} = E_{cm} - \sqrt{\left|\vec{p}_{D_{(s)}^-}\right|^2 + M_{D_{(s)}^-}^2} - E_X$ $\vec{p}_{miss} = -\vec{p}_{D_{(s)}^-} - \vec{p}_X$ $U_{miss} = E_{miss} - |\vec{p}_{miss}|$

• Single tag (ST): fully reconstruct one D_s^-

$$M_{\rm rec} = \sqrt{\left(E_{\rm cm} - \sqrt{\left|\vec{p}_{D_s^-}\right|^2 + m_{D_s^-}^2}\right)^2 - \left|-\vec{p}_{D_s^-}\right|^2}$$

ST yield: $N_{ST}^{i} = 2 \times N_{D\overline{D}} \times B_{ST}^{i} \times \varepsilon_{ST}^{i}$ **DT yield:** $N_{DT}^{i} = 2 \times N_{D\overline{D}} \times B_{ST}^{i} \times B_{sig} \times \varepsilon_{ST vs.sig}^{i}$ **Average eff.:** $\overline{\varepsilon}_{sig} = \sum_{i=1}^{N} (N_{ST}^{i} \times \varepsilon_{ST vs.sig}^{i} / \varepsilon_{ST}^{i}) / \sum_{i=1}^{N} N_{ST}^{i}$

Absolute Br. $B_{\text{sig}} = \frac{N_{\text{DT}}^{\text{tot}}}{N_{\text{ST}}^{\text{tot}} \times \overline{\varepsilon}_{\text{sig}}}$

Pure leptonic decay

$$\Gamma(D_{(s)}^{+} \to l^{+}\nu) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} \left| V_{cd(s)} \right|^{2} m_{l}^{2} m_{D_{(s)}^{+}}^{2} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}} \right)^{2}$$

• Decay constant $f_{D_{(s)}^+}$

Exp. decay rate + $|V_{cs(d)}|^{CKMfitter}$ \rightarrow calibrate LQCD @charm & extrapolate to Beauty

• CKM matrix element $|V_{cs(d)}|$

Exp. decay rate + LQCD \rightarrow CKM matrix elements

$$D_s^+ \to \mu^+ \nu_\mu$$
 and $D_s^+ \to \tau^+ \nu_\tau$ via $\tau^+ \to \pi^+ \bar{\nu}_\tau$

• An unbinned simultaneous maximum likelihood fit to two-dimensional distributions

Phys.Rev.D 104 (2021), 052009

For all data samples

$$N_{D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}}^{\text{signal}} = 2198 \pm 55$$

$$N_{D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}}^{\text{signal}} = 946_{-45}^{+46}$$

$$\longrightarrow Data$$

$$\longrightarrow Best fit$$

$$\implies Sig: D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau} \text{ via } \tau \rightarrow \pi^{+} \nu_{\tau}$$

$$\implies Sig: D_{s}^{+} \rightarrow \tau^{+} \nu_{\mu}$$

$$\implies Sig: D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\implies Total \text{ background}$$

$$\implies 0 \times \text{MC sample scaled}$$

$$B(D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}) = (5, 35 \pm 0, 13)$$

The most precise result to date

$$B(D_s^+ \to \mu^+ \nu_{\mu}) = (5.35 \pm 0.13_{\text{stat.}} \pm 0.16_{\text{syst.}}) \times 10^{-3}$$

$$B(D_s^+ \to \tau^+ \nu_{\tau}) = (5.21 \pm 0.25_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-2}$$

$$D_s^+ \to \tau^+ \nu_\tau$$
 via $\tau^+ \to e^+ \nu_e \bar{\nu}_\tau$

 $\checkmark E_{\text{extra}}^{\text{tot}}$: the total energy of the good EMC showers, excluding those associated with the ST D_s^- candidates and those within 5° of the initial direction of the positron.

(in signal
$$E_{\text{extra}}^{\text{tot}} < 0.4 \text{ GeV}$$
)

The most precise result to date

BESIII results			
Mode	${\cal B}(D^+_s o au^+ u_ au)$	${\cal B}(D^+_s o \mu^+ u_\mu)$	
$\tau^+ o \pi^+ \pi^0 \bar{\nu}_{\tau}$	$(5.29\pm0.25\pm0.20)\%$	-	
$\tau^+ \to \pi^+ \bar{\nu}_{\tau}$	$(5.21\pm0.25\pm0.17)\%$	$(0.535\pm 0.013\pm 0.016)\%$	
$\tau^+ ightarrow e^+ \nu_e \bar{\nu}_{ au}$	$(5.27 \pm 0.10 \pm 0.12)\%$	-	
Average	$(5.26 \pm 0.09 \pm 0.09)\%$	$(0.535\pm 0.013\pm 0.016)\%$	

Combining our results with world averages

$$\mathcal{B}_{D_s^+ \to \tau^+ \nu_\tau} / \mathcal{B}_{D_s^+ \to \mu^+ \nu_\mu} = 9.72 \pm 0.37$$

SM prediction 9.75 ± 0.01

No LFU violation is found with the current precision ²⁰

$$f_{D_S^+}|V_{cs}| = (244.4 \pm 2.3 \pm 2.9)MeV$$

Input $|V_{cs}| = 0.97320 \pm 0.00011$ from CKM global fit ETM(2+1+1) PRD91(2015)054507 247.2±4.1 ----**FMILC**(2+1+1)PRD98(2018)074512 249.9±0.4 FLAG19(2+1+1) arXiv:1902.08191 [hep-lat] 249.9±0.5 HFLAV18 254.5±3.2 EPJC81(2021)226 CLEO **PRD79(2009)052002**, τ_eν 251.8±11.2±5.3 ┣──╋──╢ **PRD80(2009)112004**, τ_oν CLEO 257.0±13.3±5.0 -----CLEO PRD79(2009)052001, τ.ν 277.1±17.5±4.0 **PRD82(2010)091103**, τ_{e,u}ν BaBar 244.6±8.6±12.0 **JHEP09(2013)139**, $\tau_{e,u,\pi}v$ Belle 261.1±4.8±7.2 H++H BESIII 0.482 fb⁻¹ **PRD94(2016)072004**, μν 245.5±17.8±5.1 CLEO PRD79(2009)052001, μν 256.7±10.2±4.0 BaBar PRD82(2010)091103, μν 264.9±8.4±7.6 H + H Belle **JHEP09(2013)139**, μν 248.8±6.6±4.8 ╫╺╢ BESIII 3.2 fb⁻¹ PRL122(2019)071802, μν 253.0±3.7±3.6 Hell BESIII 6.3 fb⁻¹ PRD104(2021)052009, μν Hall 249.8±3.0±3.9 BESIII 6.3 fb⁻¹ **PRD104(2021)052009**, τ_πν 249.7±6.0±4.2 ╟─╺─┨ PRD104,032001, $\tau_{a}v$ 251.6±5.9±4.9 BESIII 6.3 fb⁻¹ H-+-H PRL122(2021)071802, τ_eν 251.1±2.4±3.0 BESIII 6.3 fb⁻¹ H $\mu v + \tau v$ BESIII 6.3 fb⁻¹ 250.6±1.7±2.0 Combined 100 200 300 0 f_{D⁺} [MeV]

Input $f_{D_s^+} = 249.9 \pm 0.5$ from LQCD calculations (FLAVG19)

CKMFitter HFLAV18	PTEP2020(2020)083C01 EPJC81(2021)226	0.97320±0.00011 0.969±0.010	•
CLEO	PRD79(2009)052002, $\tau_e v$	0.981±0.044±0.021	HH
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	$1.001 \pm 0.052 \pm 0.019$	<mark>⊩</mark> •-l
CLEO	PRD79(2009)052001 , $\tau_{\pi}v$	$1.079 \pm 0.068 \pm 0.016$	⊢⊷
BaBar	PRD82(2010)091103 , $\tau_{e,\mu}v$	0.953±0.033±0.047	H• <mark>+</mark> H
Belle	JHEP09 (2013)139, $\tau_{e,\mu,\pi}$ V	$1.017 \pm 0.019 \pm 0.028$	Hait
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020	⊢ <mark>+</mark> -1
CLEO	PRD79(2009)052001, μν	$1.000 \pm 0.040 \pm 0.016$	<mark>⊦</mark> +1
BaBar	PRD82(2010)091103, μν	1.032±0.033±0.029	H+1
Belle	JHEP09(2013)139 , μν	0.969±0.026±0.019	l <mark>e</mark> l
BESIII 3.2 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014	iei
BESIII 6.3 fb ^{.1}	PRD104(2021)052009, μν	0.973±0.012±0.015	l <mark>e</mark> l
BESIII 6.3 fb ⁻¹	PRD104(2021)052009 , $\tau_{\pi}v$	0.972±0.023±0.016	l <mark>e</mark> l
BESIII 6.3 fb ⁻¹	PRD104(2021)032001 , $\tau_{\rho}v$	0.980±0.023±0.019	H
BESHI 6.3 fb ⁻¹	PRL122(2021)071802 τ _e v	$0.978 {\pm} 0.009 {\pm} 0.012$	H I
BESIII 6.3 fb ⁻¹	$\mu v + \tau v$	0.976±0.007±0.008	 Combined
	-1	0	1
	V		

Semi-leptonic decay

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 p^3}{24\pi^3} |f_+(q^2)|^2 |V_{cd(s)}|^2 (X = 1 \text{ for } K^-, \pi^-, \bar{K}^0, \eta^{(\prime)}; X = \frac{1}{2} \text{ for } \pi^0)$$

- Analyze exp. partial decay rates $\rightarrow q^2$ dependence of $f_+^{K(\pi)}(q^2)$, extract $f_+^{K(\pi)}(0)$ with $|V_{cs(d)}|^{CKMfitter}$ as input ---- calibrate QCD
- Exp. + LQCD calculation of $f_{+}^{K}(0)$ and $f_{+}^{\pi}(0) \rightarrow V_{cs(d)}$ ---- constrain CKM

First observation of $D^+ \rightarrow \eta \mu \nu_{\mu}$

2.93f $b^{-1}@E_{cm} = 3.773$ GeV $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

BESIII: PRL 124, 231801 (2020)

$$B[D^+ \to \eta \mu^+ \nu] = (0.104 \pm 0.010 \pm 0.005)\%$$

$$R_{D\eta}=\frac{\Gamma[D^+\to\eta\mu^+v]}{\Gamma[D^+\to\eta e^+v]}=0.\,91\pm0.\,13$$

(SM prediction: 0.93-0.96)

 $f_{+}^{D \to \eta}(0) |\mathbf{V}_{cd}| = 0.087(08)(02)$

Selected topics

- Light hadrons: glueballs & more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU
- Hadronic corrections to muon g-2: HPV & HLbL
- Baryons: form factors & polarization

Standard Model contributions to muon g-2

Uncertainty: dominated by strong interactions

BESIII contribution to Hadronic light-by-light scattering: transition form factors

$$\gamma\gamma^* \to \pi^0, \,\eta, \,\eta', \,\pi^0\pi^0, \,\pi^+\pi^-, \,K\bar{K}$$

Selected topics

- Light hadrons: glueballs& more
- XYZ particles: Y(4260), X(3872), Zcs(3985)
- Charm decays: CKM, decay constants, form factors, LFU
- Hadronic corrections to muon g-2: HPV & HLbL
- Baryons: form factors & polarization

Oscillation Structure in neutron Form Factor

- a similar periodic structure of $|G_{eff}|$ as proton
- Simultaneous fit to $|G_{eff}|$ of neutron and proton yields a shared frequency 5.55 \pm 0.28 GeV^{-1}
- a large phase difference $\Delta b^{osc} = |b_{2p}^{osc} b_{2n}^{osc}| = (125 \pm 12)^{\circ}$

Weak phase and CP-symmetry tests in sequential decays of entangled $\Xi^+\Xi^-$ pairs

- First measurement of weak phase difference
- First direct measurement of E decay parameters
- Independent measurement of Λ decay parameter
- Strong phase diff. consistent with zero

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	[39]
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	[21]
φΞ	$0.011 \pm 0.019 \pm 0.009$ rad	-0.037 ± 0.014 rad	[21]
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	_	
$\overline{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	_	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	[14]
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$	[14]
$\xi_p - \xi_s$	$(1.2\pm3.4\pm0.8)\times10^{-2}~{\rm rad}$	_	
$\delta_p - \delta_s$	$(-4.0 \pm 3.3 \pm 1.7) \times 10^{-2}$ rad	$(10.2 \pm 3.9) \times 10^{-2}$ ra	d[17]
$A_{\rm CP}^{\Xi}$	$(6.0 \pm 13.4 \pm 5.6) \times 10^{-3}$	Consistent wi	th
$\Delta \phi_{\mathrm{CP}}^{\Xi}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ rad	CP symmetry	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm 12\pm 7)\times 10^{-3}$	[14]
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad	Same precise as Hyper $O(10^3)$ smaller states	CP wit

Planned future data set

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current ($T_{\rm C}$) or upgraded ($T_{\rm U}$) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$	-
1.8 - $2.0~{\rm GeV}$	R values	N/A	$0.1 { m ~fb^{-1}}$	60/50 days	-
	Nucleon cross-sections		(fine scan)		
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days	-
	Cross-sections	(20 energy points)	(additional points)		
J/ψ peak	Light hadron & Glueball	$3.2 { m ~fb^{-1}}$	$3.2 { m ~fb^{-1}}$	N/A	-
•	J/ψ decays	(10 billion)	(10 billion)		to be complete
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 { m ~fb^{-1}}$	$4.5 { m ~fb^{-1}}$	150/90 days	in 2022-23
✓	Charmonium decays	(0.45 billion)	(3.0 billion)		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb}^{-1}$	20.0 fb^{-1}	$610/360 \mathrm{~days}$	-
3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A	
	XYZ/Open charm	(105 energy points)			
$4.180 { m ~GeV}$	D_s decay	$3.2 { m ~fb^{-1}}$	$6 {\rm fb}^{-1}$	140/50 days	_
	XYZ/Open charm				
	XYZ/Open charm				-
4.0 - $4.6~{\rm GeV}$	Higher charmonia	16.0 fb^{-1}	$30 { m ~fb^{-1}}$	770/310 days	
	cross-sections	at different \sqrt{s}	at different \sqrt{s}		
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 { m ~fb^{-1}}$	$15 { m fb}^{-1}$	1490/600 days	_
	cross-sections	at $4.6 \mathrm{GeV}$	at different \sqrt{s}		_
$4.74~{\rm GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	100/40 days	_
$4.91 {\rm GeV}$	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	120/50 days	_
4.95 GeV	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days	-
					- I

Proposal of the upgrade BEPCII

- ✓ An upgrade of BEPCII (BEPCII-U) has been approved in July 2021: the optimized energy is 2.35 GeV with luminosity 3 times higher than current BEPCII and extend the maximum energy to 5.6 GeV
- > Add another cavity per beam to improve the RF power
- Change optics slightly, increase number of bunches
- > Challenges: high beam intensities, backgrounds and aging effect in the detector
- Small risk: can continue running with better performance than BEPCII
- Timescale: 2.5 years construction + 0.5 year installation
- Installation: July December 2024 and the upgraded machine ready in Jan. 2025

		BEPCII	BEPCII-U
	Lum [10 ³² cm ⁻² s ⁻¹]	3.5	11
	$eta_{\mathcal{Y}}^{*}$ [cm]	1.5	1.35
	Bunch Current [mA]	7.1	7.5
	Bunch Num	56	120
	SR Power [kW]	110	250
	$\xi_{y,\text{lum}}$	0.029	0.033
	Emittance [nmrad]	147	152
	Coupling [%]	0.53	0.35
	Bucket Height	0.0069	0.011
	$\sigma_{z,0}$ [cm]	1.54	1.07
	σ_{z} [cm]	1.69	1.22
	RF Voltage [MV]	1.6	3.3

- Data with unprecedented statistical accuracy from BESIII provides great opportunities to hadron physics and flavor physics. Will continue to run for ~10 years
- BESIII is in good status, inner detector upgrade in progress
- High-lumi. fine scan between 3.8 GeV and 5.6 GeV is planned
 BEPCII-U: 3x upgrade on luminosity
- To explore the high statistics data sets, synergies between experiment and theory are essential

Thank you for your attention