τ decay mode classification

Shenjian Chen, <u>Bowen Zhang</u>, Lei Zhang NJU-tau-meeting Nanjing University

Introduction

- Improve the five-way τ decay mode classification using machine learning techniques:
- Categorized by the number of charged and neutral products
- Previously use kinematics of the decay products, the identification score of pi0 and the number of photons

Decay mode test	$N(\pi_{\text{cand}}^0)$	$N(\pi_{ m ID}^0)$	Variables		
$h^{\pm} \{0, 1\} \pi^0$	≥ 1 1	0 1	$S_1^{\text{BDT}}, f_{\pi^0,1}, \Delta R(h^{\pm}, \pi^0), D_{h^{\pm}}, N_{\gamma}$		
$h^{\pm}\{1,\geq 2\}\pi^{0}$	≥ 2 ≥ 2	$1 \\ \ge 2$	$S_2^{\text{BDT}}, f_{\pi^0}, m_{\pi^0}, N_{\pi^0}, N_{\gamma}$		
$3h^{\pm} \{0, \ge 1\}\pi^0$	≥ 1 ≥ 1	$\begin{array}{c} 0\\ \geq 1 \end{array}$	$S_{1}^{\text{BDT}}, f_{\pi^{0}}, \sigma_{E_{\text{T}},h^{\pm}}, m_{h^{\pm}}, N_{\gamma}$		

10/02/2020

arxiv:1512.05955

Introduction

- The algorithm will be upgraded to neural network version in Run3
- RNN study by Christopher : link
- Use information from:
 - Charged PFO, Neutral PFO, Photon Shots and Conversion Tracks

Input variables

- Last presentation repeated the machinery and studied the high level inputs
 - Conclusion: PanTau BDT inputs doesn't improve the results. See
- Continue on study input variables
 - Kinematics of each object
 - Replace Pi0 BDT score by the Pi0 BDT ID inputs

Baseline

- The training sample is mc16d Gammatautau
 - mc16_13TeV:mc16_13TeV.425200.Pythia8EvtGen_A14NNPDF23L0_Gam matautau_MassWeight.merge.AOD.e5468_s3126_r10201_r10210
 - ~12M taus after baseline selection (backup)
- Subset is used: 4M for training (20% of it for validation) 1M for testing

Baseline

- Slightly change the implementation of the model
 - Implemented using PyTorch framework so far.
 - Remove the TimeDistributed+Dense layer before the LSTM Training becomes much faster on GPUs.
 - Use bidirectional RNN hope it can learn both the forward and the backward relation
 - Use the RNN output of the full sequence pass more information to the final dense layers. (need to check if this is really helpful)
- Use two layers of RNN proved to be better than just one.
 10/02/2020

Next step needs to deal with the overtraining

A little bit worse then the previous run (80.4 diagonal). But here the dataset is smaller. And the model is different.

NN output from left to right: 1p0n 1p1n 1pXn 3p0n 3pXn

Efficiency dependences on number of primary vertices

10/02/2020

Especially 1p1n drops at high pile up → Left orange,
 Right blue

Efficiency dependences on tau pT

- RNN (Left) only trained on tau with pT<100GeV and doesn't require medium tau ID.
- Trend is different.

Kinematics (4-vectors)

- Only keep pt of the object, pt , eta, phi of tau and the relative eta, phi between the object and the tau axis in the input.
- The length of the sequence, the pt (relative) of the object, and the relative eta, phi are crucial to the classification. e.g.

- N Charged PFO = 1, 3

• Result shows ~76.9% diagonal efficiency.

Pi0 BDT ID score and the inputs

Pi0 BDT score is a powerful discriminant:

- The BDT input variables are cluster properties of the pi0 candidates:
- *Path to Pi0 BDT weight file

Cluster pseudorapidity, $|\eta^{clus}|$

Magnitude of the energy-weighted η position of the cluster

Cluster width, $\langle r^2 \rangle^{clus}$ Second moment in distance to the shower axis

Cluster η width in EM1, $\langle \eta^2_{\rm EM1} \rangle^{\rm clus}$ Second moment in η in EM1

Cluster η width in EM2, $\langle \eta^2_{\rm EM2} \rangle^{\rm clus}$ Second moment in η in EM2

Cluster depth, λ_{centre}^{clus} Distance of the shower centre from the calorimeter front face measured along the shower axis

Cluster PS energy fraction, f_{PS}^{clus} Fraction of energy in the PS

Cluster core energy fraction, f_{core}^{clus} Sum of the highest cell energy in PS, EM1 and EM2 divided by the total energy

Cluster logarithm of energy variance, $\log \langle \rho^2 \rangle^{clus}$ Logarithm of the second moment in energy density

Cluster EM1 core energy fraction, $f_{core,EM1}^{clus}$ Energy in the three innermost EM1 cells divided by the total energy in EM1

Cluster asymmetry with respect to track, $\mathcal{A}_{\text{track}}^{\text{clus}}$ Asymmetry in η - ϕ space of the energy distribution in EM1 with respect to the extrapolated track position

Cluster EM1 cells, N_{EM1}^{clus} Number of cells in EM1 with positive energy

Cluster EM2 cells, N_{EM2}^{clus} Number of cells in EM2 with positive energy

Pi0 BDT ID score and the inputs

- Replace the pi0 score with the BDT inputs
- Select the important variables of Neutral PFO:
- Using "Boruta" feature selection techniques (scikit-learn)
 - Compare the performance of the ensemble ML algorithms (like BDT or Random Forest) running on the original dataset and the dataset with one variable shuffled.
 - Details: paper, python version
- "NeutralPFO.ENG_FRAC_EM" and "NeutralPFO.nHitsInEM1" are rejected

• Remove them in the input. 10/02/2020

Pi0 ID inputs performance vs baseline *check more plots later

No obvious difference

10/02/2020

Current setup

 Training/Testing with ML packages: JupyterLab provided by https://www.atlas-ml.org/

Summary

- Start to look at the performance of the RNN classifier
- Checked the impact of input variables:
 - 4-vectors are important
 - Can use pi0 ID inputs instead of pi0 BDT score → might avoid retraining of pi0 BDT
- To-do:
 - Finalize the current study
 - Deal with overtraining, improve baseline model, decide tau pt cut, ...
 - Start to implement in C++ and evaluate performance in THOR
 - convert the model to lwtnn format(?)

Backup

Selection

Kinematics (4-vectors)

• Or to visualize what the neural network would see (the relative positions in tau axis)

10/02/2020

Red = ChargedPFO Green = NeutralPFO Blue = ShotPFO

Neutral PFO vars

"NeutralPFO.FIRST ETA", "NeutralPFO.SECOND R", "NeutralPFO.DELTA_THETA", "NeutralPFO.CENTER LAMBDA", "NeutralPFO.LONGITUDINAL", "NeutralPFO.SECOND ENG DENS", "NeutralPFO.ENG_FRAC_EM", "NeutralPFO.ENG_FRAC_CORE", "NeutralPFO.NPosECells EM1", "NeutralPFO.NPosECells EM2", "NeutralPFO.nHitsInEM1", "NeutralPFO.ptSubRatio", "NeutralPFO.energyfrac_EM2", "NeutralPFO.EM1CoreFrac", "NeutralPFO.secondEtaWRTClusterPosition_EM1", "NeutralPFO.firstEtaWRTClusterPosition EM1", "NeutralPFO.secondEtaWRTClusterPosition EM2",

Input vars

Input vars

NeutralPFO.FIRST ETA

NeutralPFO.SECOND_R

NeutralPFO.CENTER_LAMBDA

Input vars

Pi0 ID inputs performance

Efficiency, Diagonal=79.14%								
3pXn	0.12	0.47	0.69	5.66	73.53			
3p0n ep	0.76	0.24	0.13	90.69	19.44			
Decay Decay	1.23	7.84	58.09	0.43	2.32			
lpln	14.11	83.65	39.78	1.70	4.26			
1p0n	83.78	7.79	1.32	1.52	0.45			
	1p0n 1p1n 1pXn 3p0n 3pXn True Decay Mode							

Purity, Diagonal=79.14%								
3pXn-	0.31	2.88	1.89	11.80	83.13			
3p0n- əp	0.92	0.69	0.16	87.99	10.23			
∑ Decav 1pXn-	1.49	22.57	74.29	0.42	1.23			
b ₩ 1p1n-	5.49	76.98	16.27	0.53	0.72			
1p0n-	79.78	17.55	1.32	1.16	0.19			
1p0n 1p1n 1pXn 3p0n 3pXn True Decay Mode								