Lepton Flavor Violation at CEPC

Introduction

- In Standard Model(SM): lepton flavor numbers are strictly conserved.
- Neutrino oscillation: $\mathcal{B}_{\tau \to \mu \gamma} \leq 10^{-50}$.

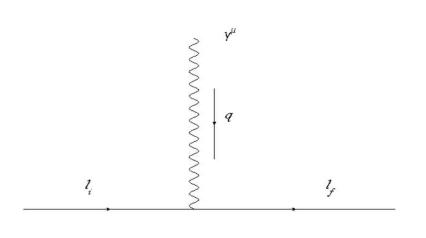
LFV In The BSM

The effective Lagragian for lepton-flavor-violating(LFV) processes

$$\mathcal{L}_{l_i \to l_f \gamma} = \frac{-4G_f}{\sqrt{2}} (m_i A_R \bar{l}_{iR} \sigma^{\mu\nu} l_{fL} F_{\mu\nu} + m_i A_L \bar{l}_{iL} \sigma^{\mu\nu} l_{fR} F_{\mu\nu}) + H \cdot C \cdot .$$

The Feynman rule of the $l_i l_f \gamma$ vertex

$$-i[e\gamma^{\mu}\delta_{fi} + \frac{4G_f}{\sqrt{2}}m_i\sigma^{\mu\nu}(A_RP_L + A_LP_R)q_{\nu}]$$



The total branch ratio is given by

$$Br(l_i \to l_f \gamma) = \frac{G_f^2 m_i^5}{2\pi\Gamma_{l_i}} (|A_R|^2 + |A_L|^2)$$

The up limit of the branch ratio

•
$$Br(\tau \to \mu \gamma) \le 4.4 \times 10^{-8}$$

•
$$Br(\tau \rightarrow e\gamma) \le 3.3 \times 10^{-8}$$

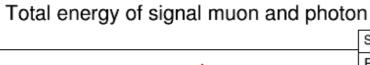
•
$$Br(\mu \to e\gamma) \le 5.7 \times 10^{-13}$$

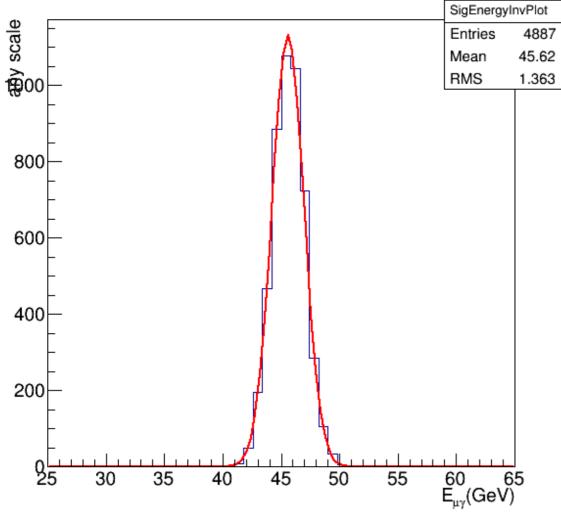
The differential angular distribution

$$\frac{dBr(l_i \to l_f \gamma)}{dcos\theta_f} = \frac{G_f^2 m_i^5}{2\pi} [|A_R|^2 (1 + P_i \cos \theta_f) + |A_L|^2 (1 - P_i \cos \theta_f)]$$

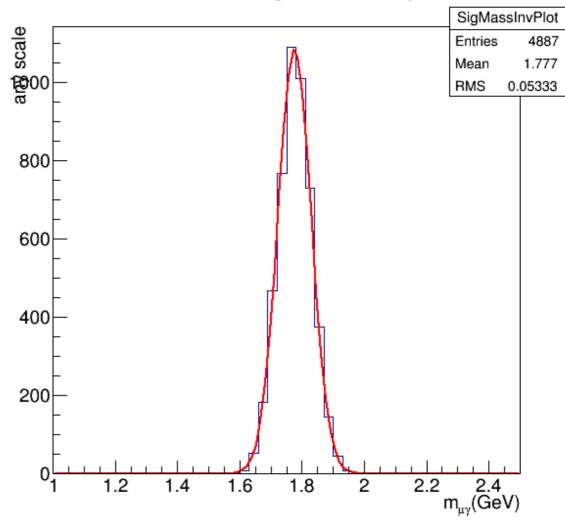
Where P_i is the magnitude of the muon spin polarization, θ_f is the angle between the lepton i polarization and lepton f momentum vectors.

The energy and invariant mass of signal

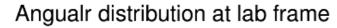


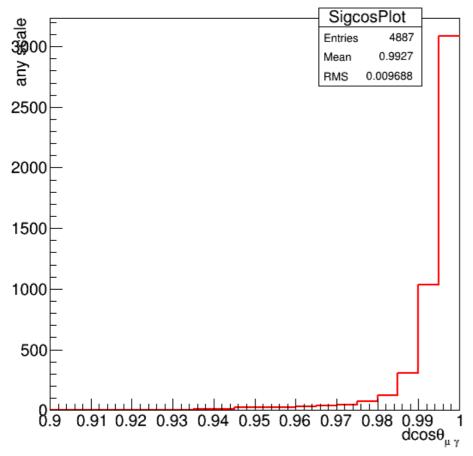


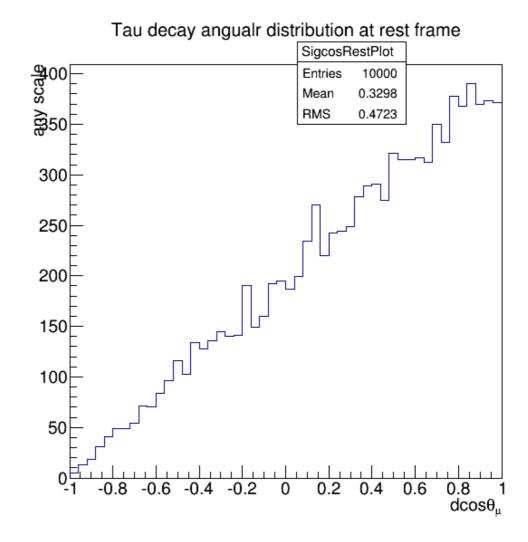
Invariant mass of signal muon and photon



The angular distribution of the signal muon and photon

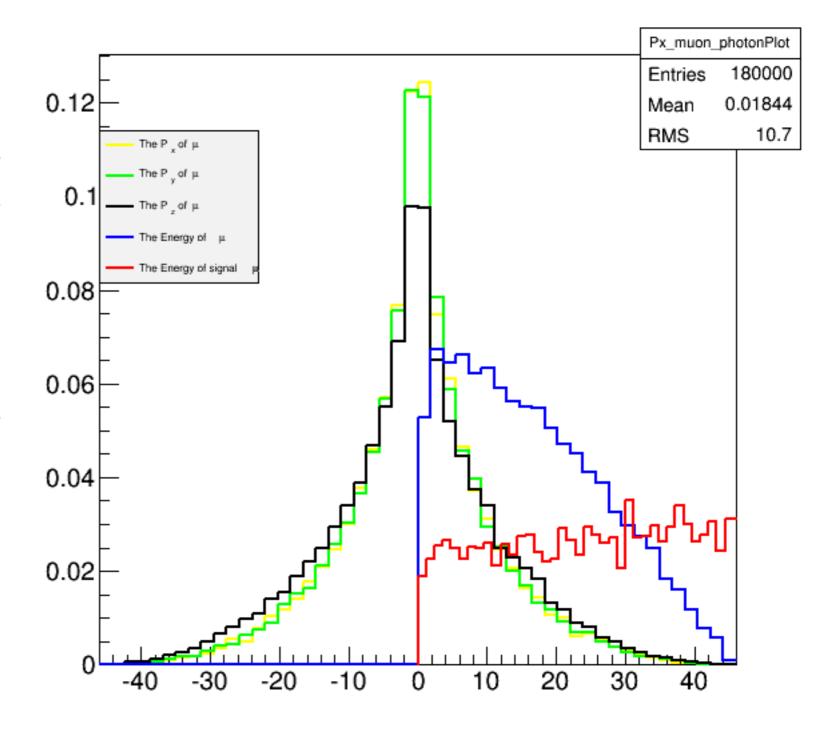






The cut flow of muon and photon

	Bkg
total generated	180000000
$N_{\mu^+} \geq 1$	31314000
$40.6 \text{ GeV} < E_{\mu\gamma} < 50.6 \text{ GeV}$	157000
$1.6 \text{ GeV} < M_{\mu\gamma} < 2 \text{ GeV}$	7000
$E_{\gamma} > 10 \text{ GeV}$	1000
$E_{\mu} > 10 \text{ GeV}$	600



The energy limit for two body decay

Generally one particle $(p_0 = (E_0, \vec{P}_0))$ decay to two particles $(p_1 = (E_1, \vec{P}_1), p_1 = (E_1, \vec{P}_1))$, we could express E_1 as

$$E_{1} = E_{0} - E_{2}$$

$$= E_{0} - \sqrt{P_{2}^{2} + M_{2}^{2}}$$

$$= E_{0} - \sqrt{(\vec{P}_{0} - \vec{P}_{1})^{2} + M_{2}^{2}}$$

$$= E_{0} - \sqrt{P_{0}^{2} - 2P_{0}P_{1}\cos\theta + P_{1}^{2} + M_{2}^{2}}$$

$$(1)$$

then we have

$$(E_0 - E_1)^2 = P_0^2 - 2P_0P_1\cos\theta + P_1^2 + M_2^2$$

$$2E_0E_1 - 2P_0P_1\cos\theta = M_0^2 + M_1^2 - M_2^2$$
(2)

This is a quadratic equation of one variable.

Next the apprioximation is made that $E_1 \gg M_1(E_1 \simeq P_1)$ and the result is get by

$$E_1 = \frac{M_0^2 + M_1^2 - M_2^2}{2(E_0 - P_0 \cos \theta)} \tag{3}$$

The maximal value of E_1 is get as $\cos \theta = 1$ and the minimal value of E_1 as $\cos \theta = -1$.

$$E_{1max} = \frac{M_0^2 + M_1^2 - M_2^2}{2(E_0 - P_0)}$$

$$= \frac{(M_0^2 + M_1^2 - M_2^2)(E_0 + P_0)}{2M_0^2}$$

$$E_{1min} = \frac{M_0^2 + M_1^2 - M_2^2}{2(E_0 + P_0)}$$
(4)