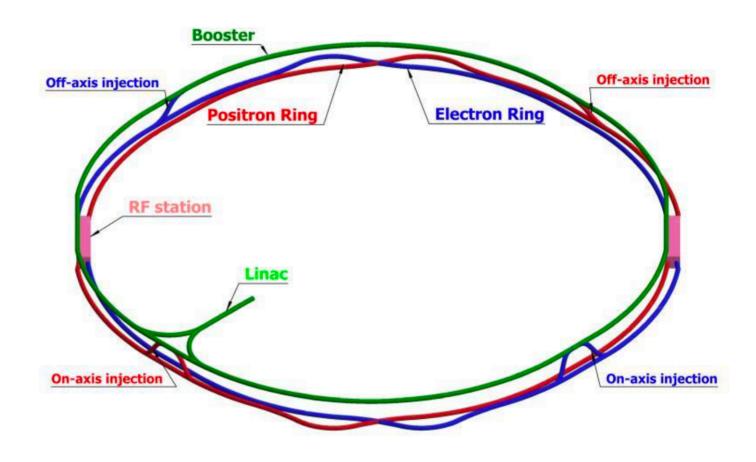
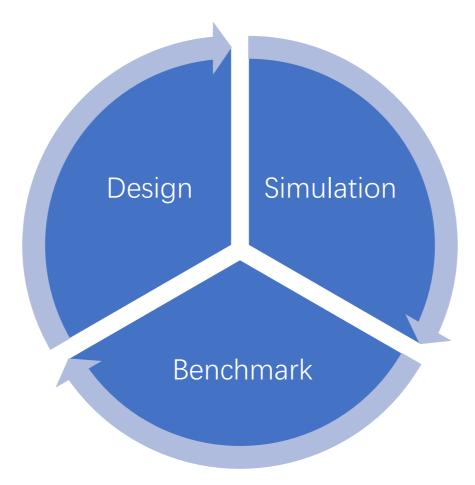
CEPC MDI Radiation Backgrounds Study


Haoyu SHI IHEP On Behalf of the CEPC MDI BG Study Group CECP Workshop, Shanghai, 2020

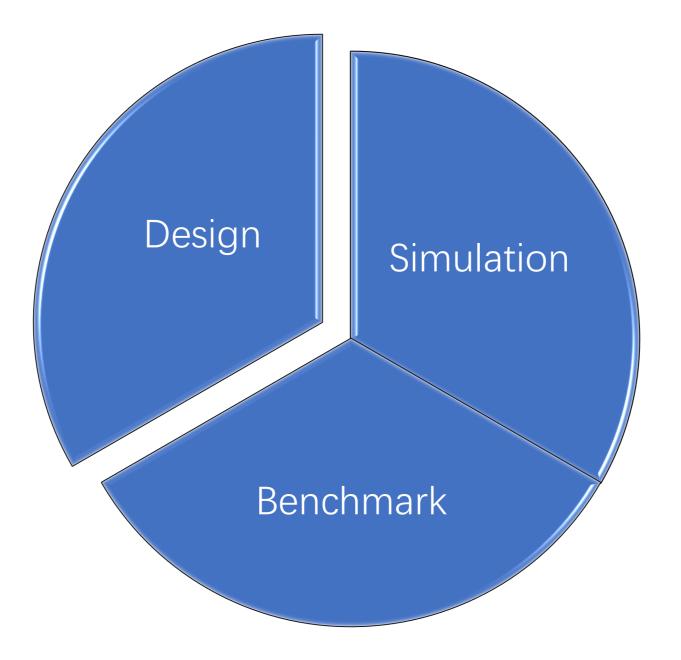
Outline

Motivation & Workflow
 Background Study Status in detail
 Summary & Outlook

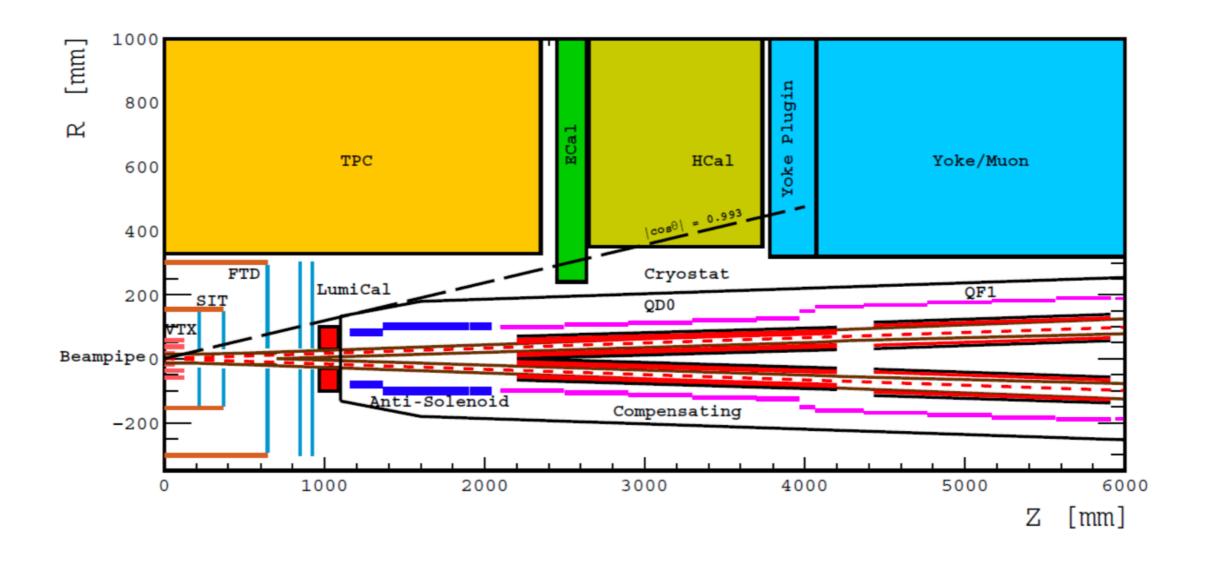
Motivation


Backgrounds may impact IR components, especially detectors in several ways, so that they are important inputs to the detecto r(also accelerator) design, such as radiation tolerance, detector occupancy...

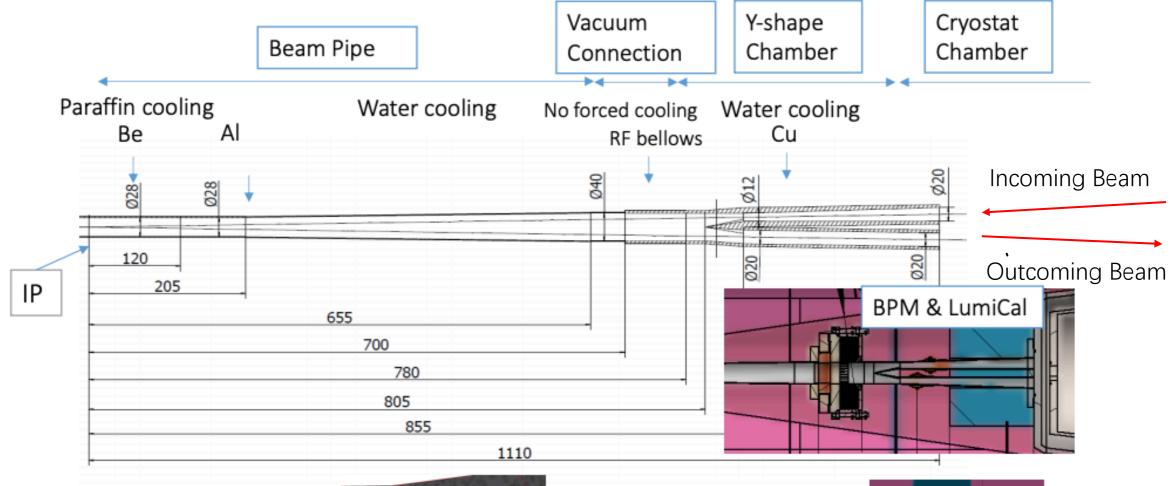
Motivation & Workflow

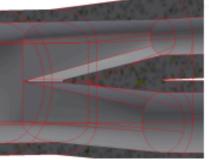

Backgrounds may impact IR components, especially detectors in several ways, so that they are important inputs to the detecto r(also accelerator) design, such as radiation tolerance, detector occupancy...

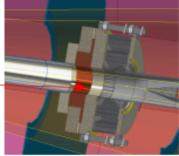
Workflow – Step 1


CEPC Parameters -- CDR

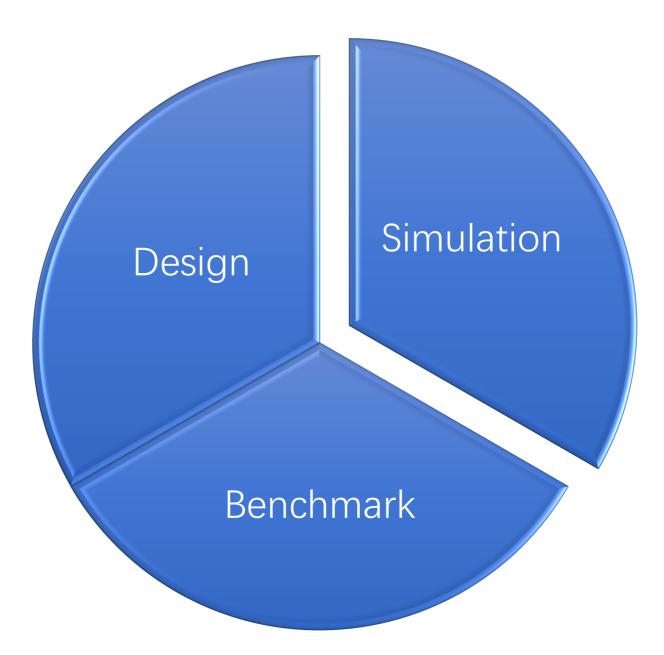
	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2	•	•		
Beam energy (GeV)	120	80	45.5			
Circumference (km)		100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	36		
Crossing angle at IP (mrad)		16.5×2				
Piwinski angle	2.58	7.0	23.	8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0)		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns	+10%gap)		
Beam current (mA)	17.4	87.9	461	.0		
Synchrotron radiation power /beam (MW)	30	30	16.	5		
Bending radius (km)		10.7				
Momentum compact (10-5)		1.11				
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072		
RF voltage V_{RF} (GV)	2.17	0.47	0.10			
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.4	2		
Bunch length σ_z (mm)	3.26	5.9	8.5	5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.9	4		
Natural energy spread (%)	0.1	0.066	0.038			
Energy acceptance requirement (%)	1.35	0.4	0.23			
Energy acceptance by RF (%)	2.06	1.47	1.7			
Photon number due to beamstrahlung	due to beamstrahlung 0.1 0.05 0.023		23			
Lifetime _simulation (min)	100					
Lifetime (hour)	0.67	1.4	4.0	2.1		
F (hour glass)	0.89	0.94	0.9	9		
Luminosity/IP L (1034cm-2s-1)	2.93	10.1	16.6	32.1		


Interaction Region Layout




Latest design of the central beampipe

Asymmetric design to prevent direct hitting of synchrotron radiation photons


Remaining issue: difficult to dissipate the heat around the RF finger

Workflow – Step 2

Source Analysis

• Effects

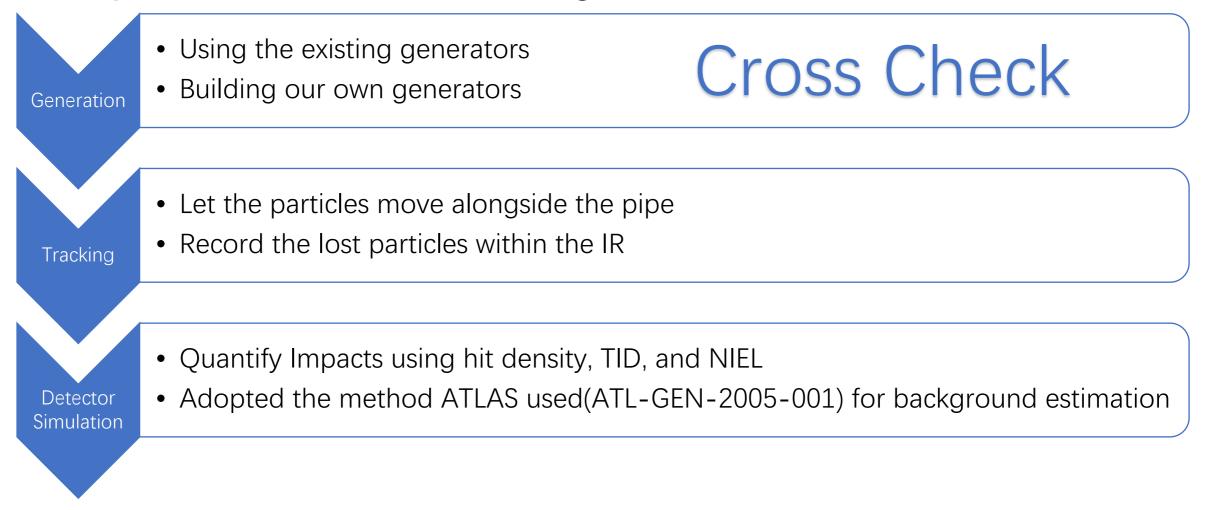
- Single Beam
 - Touschek Scattering
 - Beam Gas Scattering
 - Beam Thermal Photon Scattering
 - Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Injection

Source Analysis

• Effects

- Single Beam
 - Touschek Scattering
 - Beam Gas Scattering
 - Beam Thermal Photon Scattering
 - Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Injection

Photons


Off Energy Beam Particles

Steps

• Steps used for one fixed Design&Parameters:

CEPC Parameters CDR - Higgs

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2	•		
Beam energy (GeV)	120	80 45.5			
Circumference (km)		100	100		
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	36	
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	23.	8	
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0)	
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns	+10%gap)	
Beam current (mA)	17.4	87.9	461	.0	
Synchrotron radiation power /beam (MW)	30	30	16.	5	
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x/\varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.07	
RF voltage V_{RF} (GV)	2.17	0.47	0.1	0	
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)				
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.1 0.05		0.02	0.023	
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (1034cm-2s-1)	2.93	10.1	16.6	32.1	

CEPC Workshop 2020, H. SHI

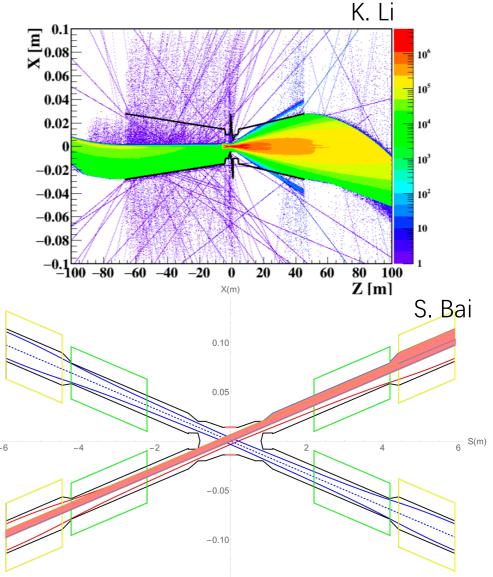
Source Analysis

• Effects

• Single Beam

- Touschek Scattering
- Beam Gas Scattering
- Beam Thermal Photon Scattering
- Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung(Pair Production)
 - Radiative Bhabha Scattering

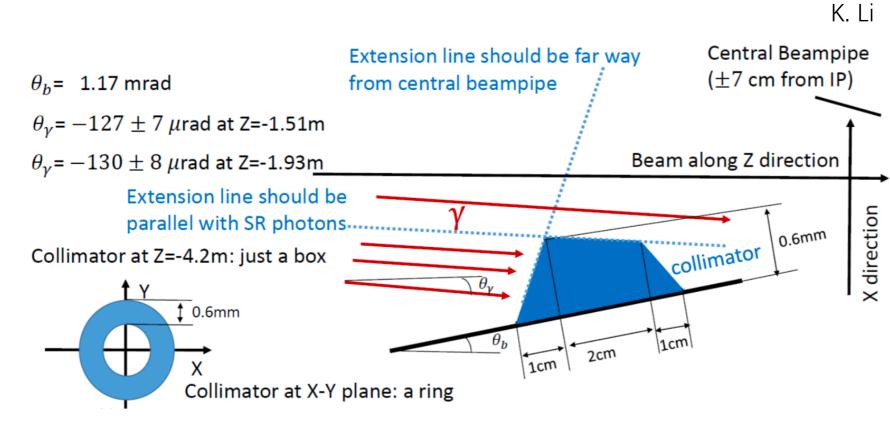
Photons


Off Energy Beam Particles

Synchrotron Radiation

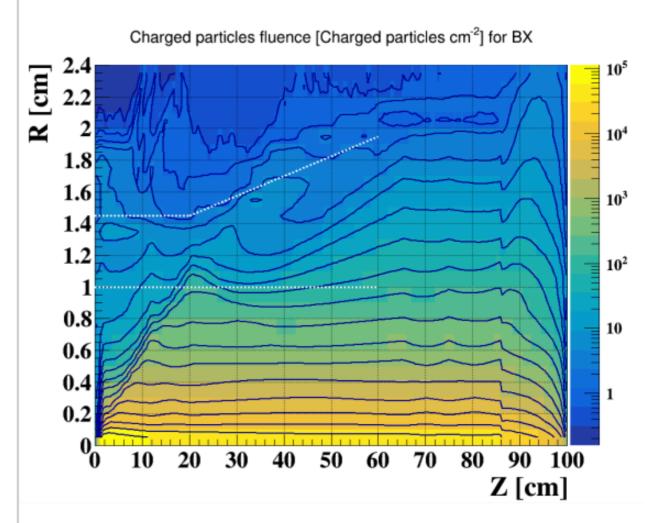
- Synchrotron radiation were emitted by magnets when bending beams, sometimes would be critical at circular machines.
- Using BDsim&Geant4 as the tool to transport beam particles from the last dipole to the interaction region and record the photons hitting the central beryllium pipe.
- The newly designed central beam pipe will let SR pass -855mm~855mm even with the error of (5mm+2mrad).
- Some SR photons may hit the beampipe, and scattered into central beam pipe.
 - Masks might be needed.

Detector hit numbers down from 7.73*10⁴ to 111 per bunch.


TID down from ~5800 kRad/yr to 15.65 kRad/yr

• This is the original SR Mask design based on the original design.

• We need update the design to fit the new demands.



W. Xu

Pair Production

- Charged Particles attract by the opposite beam emit photons(beamstrahlung), followed by an electronpositron pair production.
- Using Guinea-pig++ as the generator and implementing the external magnetic field by code updating.

Source Analysis

• Effects

• Single Beam

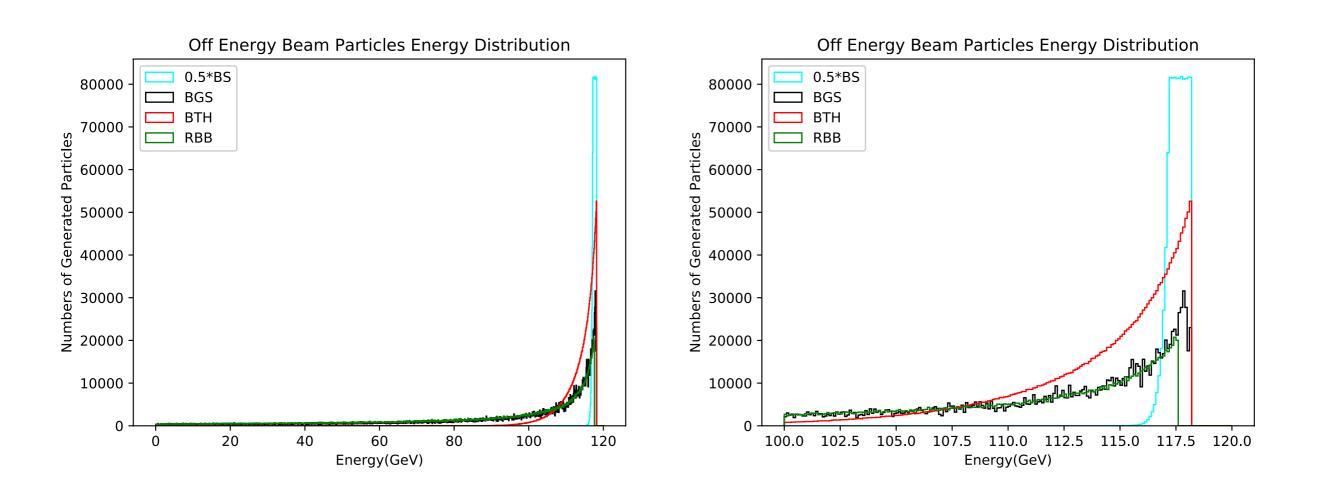
- Touschek Scattering
- Beam Gas Scattering
- Beam Thermal Photon Scattering
- Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering

Off Energy Beam Particles

Photons

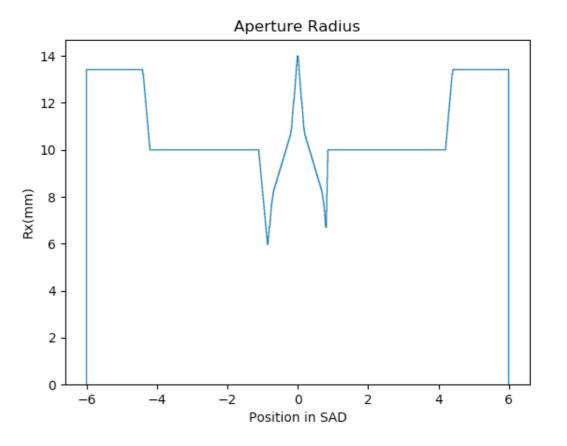
CEPC Beam Lifetime

	Beam Lifetime	Others
Touschek effect	>1000 h	
Beam Gas Coulomb	>400 h	$CO_{10}^{-7} D_{2}$
Beam Gas Bremsstrahlung	63.8 h	CO, 10 ⁻⁷ Pa
Beam Thermal Photon Scattering	50.7 h	
Radiative bhabha Scattering	74 min	
Beamstrahlung	80 min	


CEPC Beam Lifetime

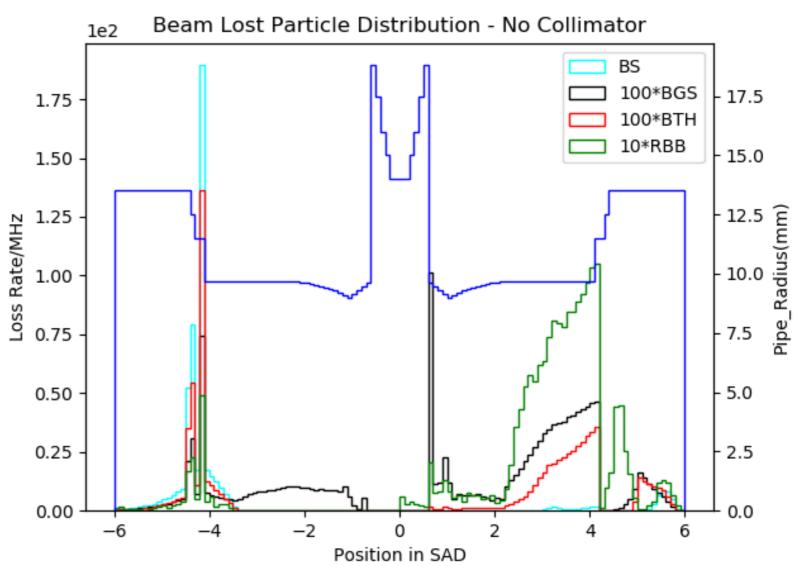
	Beam Lifetime	Others
Touschek effect	>1000 h	
Beam Gas Coulomb	>400 h	00.10^{-7} D
Beam Gas Bremsstrahlung	63.8 h	CO, 10 ⁻⁷ Pa
Beam Thermal Photon Scattering	50.7 h	
Radiative bhabha Scattering	74 min	
Beamstrahlung	80 min	

Energy Spectrum



Update of the Tracking Method

- In previous work, we only generate BGB/BTH in -200~6m.
- Now we generate BGB/BTH in whole ring, at the beginning of every components which length is longer than 0.001m.
- We insert the aperture with "real" radius between any two components.
 - In "double pipe" region, we use the real radius of the aperture.
 - In "single pipe" region, we use the smallest radius.
- Then we track the scattered particles for 50 turns, using the SAD built-in TrackParticle function with LOSSMAP, FLUC, RFSW & RAD ON(SAD Version 1.1.6.16.3k64).
- Updating code to output the particle position at the beginning of(rather than at the end of) the lost components, then let Mokka handle the "last step tracking" and the interaction.



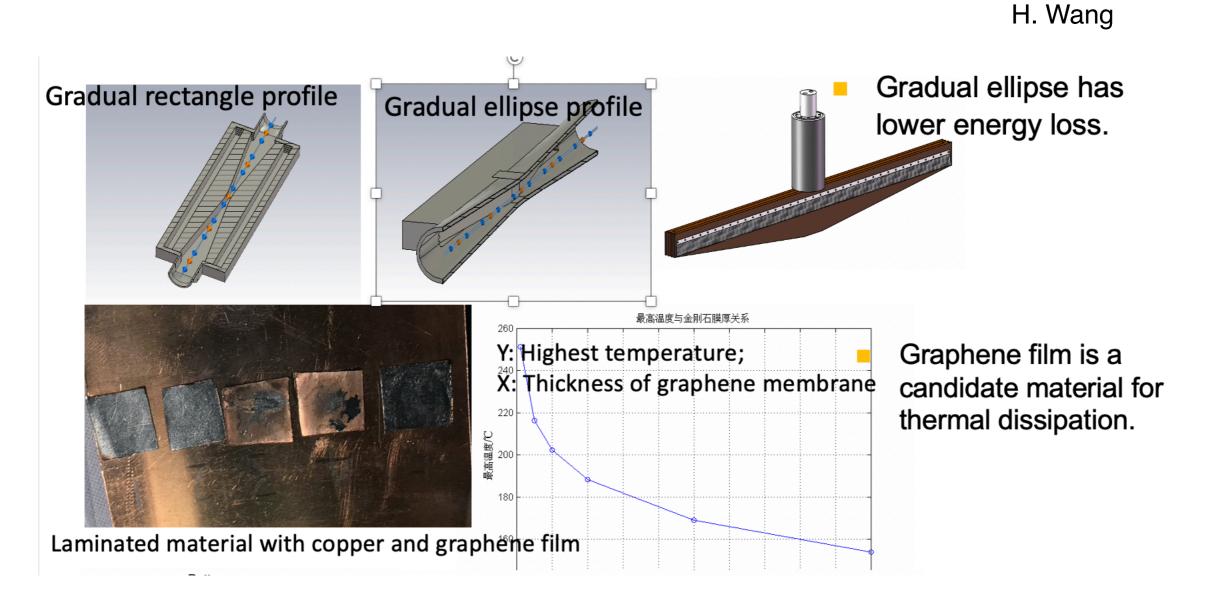
Old Tracking Method

Lost Distribution without Collimators

- 4 types of Backgrounds
- Normalized to loss rate in MHz(one beam)
- BS contributes the most

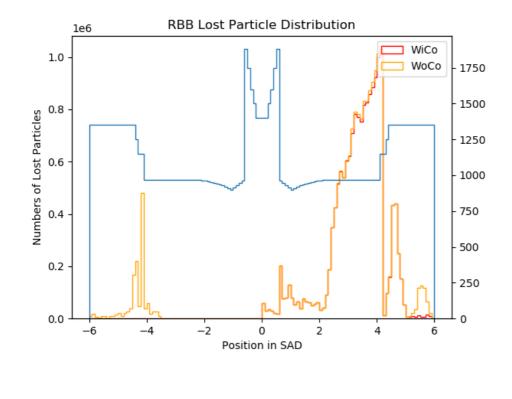
Collimator

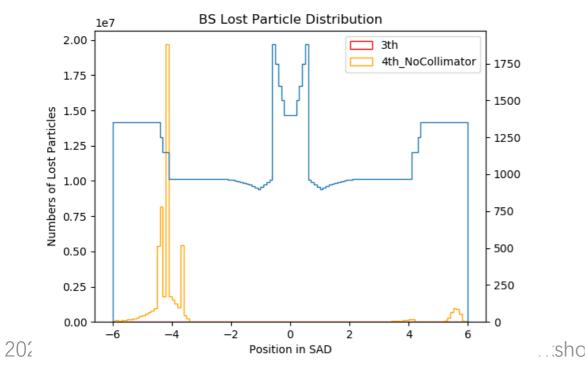
- Collimators are need.
- Now we put 2 sets of horizontal collimators.
- We only take primary into consideration.
- In higgs mode, the radius of the aperture is 5mm(Z is 2.5).

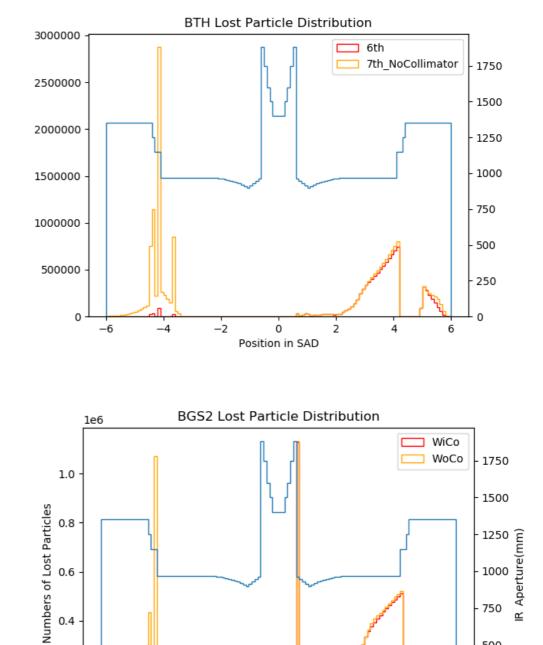

S. Bai

Name	Location	Distance to IP
APTX1	D1I.1897	2139.06
APTX2	D1I.1894	2207.63
APTX3	D1O.10	1832.52
APTX4	D10.14	1901.09

Collimator




- In simulation, we thought the collimators were "perfect"
- More collimators are sure to be needed, we should start study.



Collimator Effects

-2

0

Position in SAD

2

4

-4

0.2

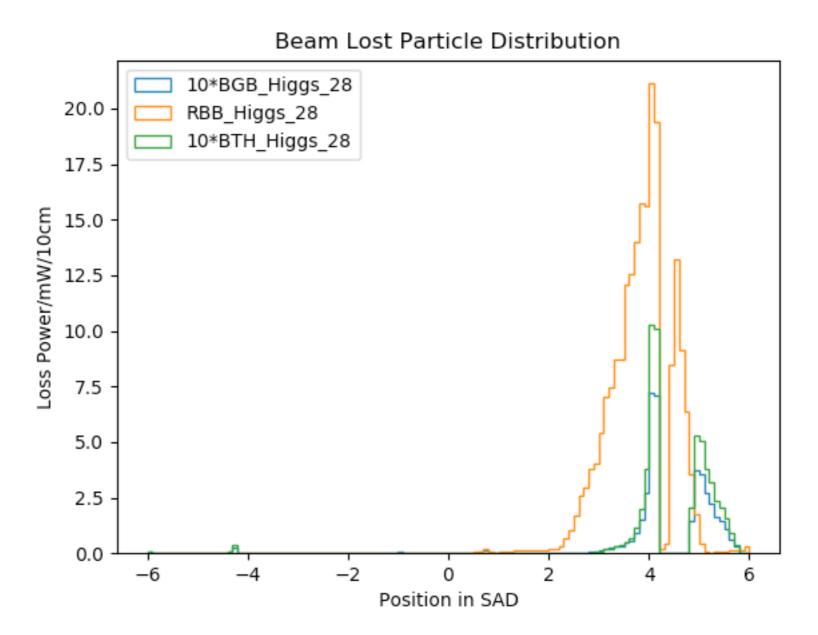
0.0

-6

500

250

0


6

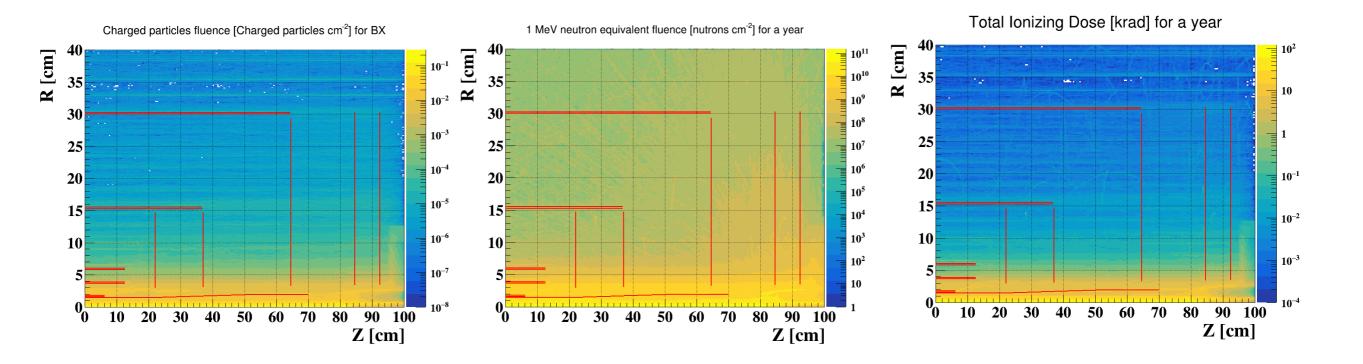
Lost Distribution with Collimators(Higgs)

- Including Radiative Bhabha, Beam-Gas, Beam Thermal Photon. Almost No Beamstrahlung.
- Normalized to loss power in mW(one beam)

Combine Results

Higgs Backgrounds on 1^{st} layer of Vertex. With a safety factor of 10.

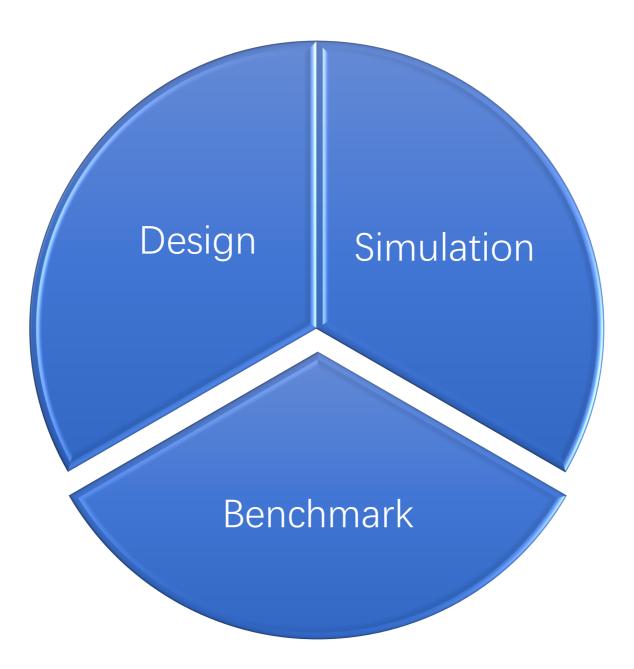
Background Type	Hit Density(<i>cm</i> ⁻² · <i>BX</i> ⁻¹)	TID(krad · yr ⁻¹)	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$
Pair production	1.91	526.11	1.05×10^{12}
Synchrotron Radiation	0.026	15.65	
Radiative Bhabha	0.34	592.66	1.44×10^{12}
Beam Gas	0.9607	1235.9	3.37×10^{12}
Beam Thermal Photon	0.02	22.31	6.20×10^{10}
Total	3.2567	2392.63	5.922×10 ¹²


CEPC Parameters CDR – Z(3T)

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	13.	8	
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25us	+10%gap)	
Beam current (mA)	17.4	87.9	461	.0	
Synchrotron radiation power /beam (MW)	30	30	16.	5	
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x/\varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0 10		
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_z (mm)	2.72			2 42	
Bunch length σ_z (mm)	3.26	5.9	.5		
HOM power/cavity (2 cell) (kw)	0.54	0.54 0.75		1.94	
Natural energy spread (%)	0.1	0.066	0 038		
Energy acceptance requirement (%)	1.35	0.4	0.2	3	
Energy acceptance by RF (%)	2.06	1.47	1.7	7	
Photon number due to beamstrahlung	0.1	0.05	0.02	23	
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.9	9	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Initial results of detector impact on Z

Background Type	Hit Density(<i>cm</i> ⁻² · <i>BX</i> ⁻¹)	TID(krad · yr ⁻¹)	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$	
Pair production	0.012	239.59	4.50×10^{11}	
Beam Gas	2.89×10^{-3}	181.97	4.99×10^{11}	


2020/10/27

CEPC Workshop 2020, H. SHI

Workflow – Step 3

Experiments - Benchmark

- Important to validate the modellings and Monte Carlo Simulation codes for the CEPC beam background simulation with real data where they are applicable
 - BEPC II/BES III, SuperKEKB/Belle II, LEP I/II...
- Basic Principles
 - Single beam mode: three dominant contributions from Touschek, beam-gas and electronics noise & cosmic rays.

•
$$O_{single} = O_{tous} + O_{gas} + O_{noise+\mu} =$$

 $S_t \cdot D(\sigma_{x'}) \cdot \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$

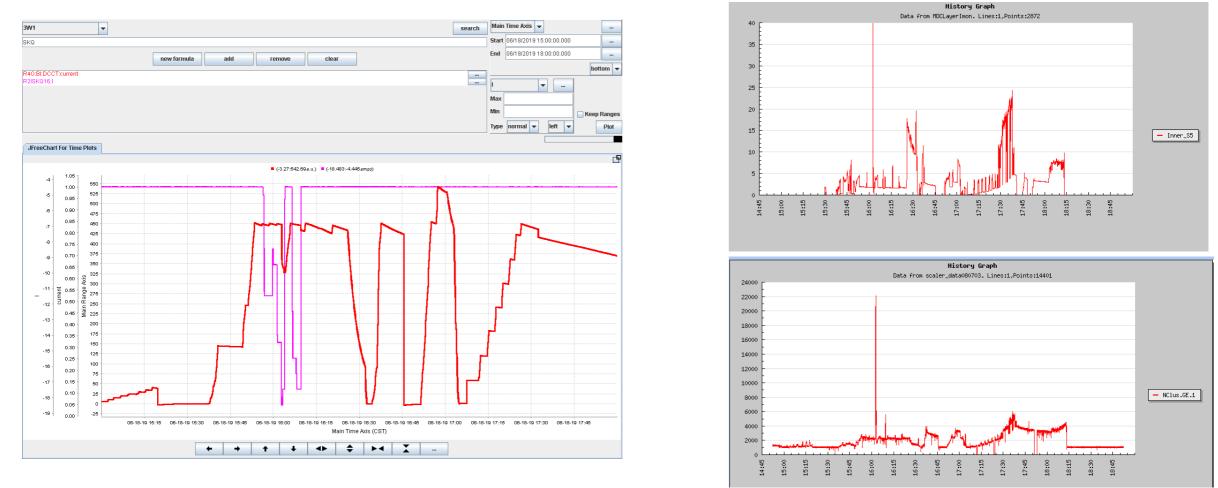
 Double beam mode: additional contributions from luminosity related backgrounds, mainly radiative Bhabha scattering

•
$$O_{total} = O_{e^+} + O_{e^-} + O_{\mathcal{L}}$$

Experiments - Benchmark

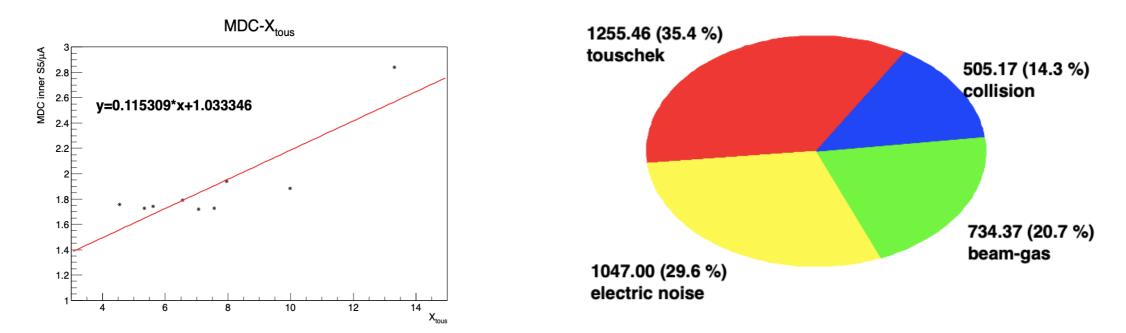
- No Beam, Measure noise: Se
- Single Beam Mode(e-):

$$D = S_t \cdot D(\sigma_{x'}) \cdot \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$$


- Touschek backgrounds: with fixed beam energy and beam total current(I_t), varying bunch number(changing I_b), bunch size(σ_v) -> S_t
- Beam-gas backgrounds: with bunch current and bunch size fixed, increasing the bunch number
- Double Beam Mode:
 - Measure background in e+ with fixed parameters(only one point)
 - Colliding e+ and e- beams

Machine Studies Last Summer

- Two hours of machine time allocated to background studies last summer.
- Recorded parameters: bunch size, beam current, beam lifetime, vacuum pressure, MDC/EMC cluster counts.



We may need one more round

Simulations results DO NOT match the measurements

- Let the accelerator and detector configured properly before study
- Most importantly, longer time, more data.

Summary

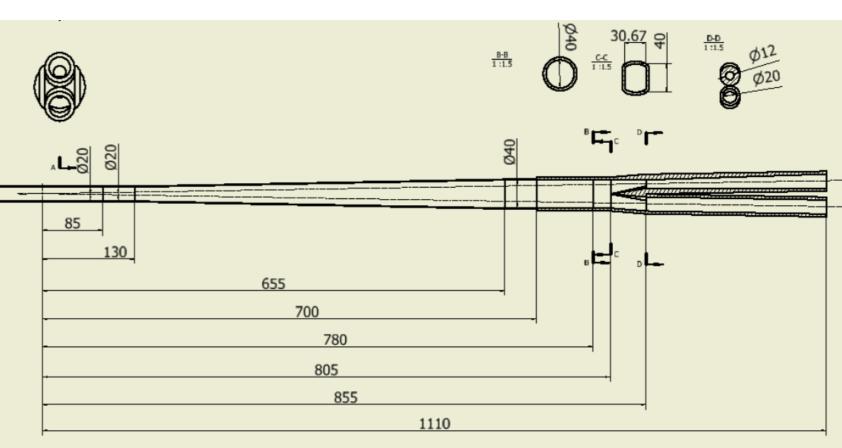
Background Study Checklist

Category	Tasks	Status
Docian	IR Design Optimization	To Do
Design	Collimator Design	Doing
	BG Simulation	Doing
Simulation	Collimator Simulation	To Do
Simulation	Detector Simulation	Doing
	IR Components Simulation	To Do
Denehment	BEPCII/BESIII Machine Study	To Do
Benchmark	Literature Benchmark	Doing

Summary & Outlook

- Detector beam background would effect the component located in the interaction region through several ways.
- It must be well studied starting from the design phase.
- We need to mitigate the impact by adding some masks and collimators or other ways. They must be well designed.
- Extra-shielding may be needed. The designing of it should be started.
- We almost finished the study based on original CDR, and may update the simulation with the new design and new parameters.

Thank You


Back up

Shrink the central beampipe to 20mm

距IP距离	内壁尺寸 (mm)	材料	内面积 mm ²	备注		
0-85	直径20	Be	53406			
85-130	直径20	AI	2827			
130-655	直径20过 渡到直径 40	AI	49489		探测器部 分	
655-700	直径40	AI	5655]	V V
						<u> </u>
700780	直径40	Cu	10052	远程连接 装置预留		820 B2-1 ×
780-805	直径40过 渡到30.7- 40跑道型 。水平方 向40- 40,垂直 方向40- 30.7	Cu	3124			
805-855	分道到面分游20 ,过个人。 动称,到为, 动物,别为, 之。 动物, 动动, 动动, 动动, 动动, 动动, 动动, 动动, 动动, 动动,	Cu	6932	力口3	加速器部分	
855—1110	12过渡到 12过渡到 20。下游 直径20直 管	Cu	30906			

