The 2020 International Workshop on the High Energy Circular Electron Positron Collider (CEPC) October 26-28, 2020, Shanghai Jiao Tong University, Shanghai, China

Belle II beam background simulation

On behalf of the Belle II Beam Background Group

Dr. Andrii Natochii

Postdoctoral researcher at the University of Hawaii Belle II Collaboration Email: <u>natochii@hawaii.edu</u>

SuperKEKB: design parameters of the "Low Energy Ring" (LER) & "High Energy Ring" (HER)

	LER (e^+)	HER (e^-)	
Energy	4.000	7.007	${\rm GeV}$
Half crossing angle	41.5		mrad
Horizontal emittance	3.2	4.6	nm
Emittance ratio	0.27	0.25	%
Beta functions at IP (x/y)	$32 \ / \ 0.27$	$25 \ / \ 0.30$	$\mathbf{m}\mathbf{m}$
Beam currents	3.6 (2.8*)	2.6 (2.0*)	A
Beam-beam parameter	0.0881	0.0807	
Luminosity	8 (6.5*) x 10 ³⁵		$\rm cm^{-2} s^{-1}$

* new design conditions extrapolated from the current machine/detector performance.

- Recent achievements.
- Beam background sources & countermeasures.
- Collimation system description.
- **&** Background simulation tools.
- Single-beam particle tracking.
- ✤ Improvements.
- Benchmark of the code.
- Collimator misalignment.
- Summary.

- Over the last year, we have made many modifications to the background simulation.
- We have resolved the long-standing HER simulation problem (e.g., Touschek, see yellow fields).
- For the first time, data and MC agree within one order of magnitude: data/MC ratio = $10^2 10^3 \rightarrow 1 10$.
- This presentation is about how we achieved this significant improvement.

Sub-detector	BG type	Data/MC BEFORE LER / HER	Data/MC AFTER LER / HER	Belle II Detector
PXD	Beam-gas	1.4 / 6.5	2.6 / 4.8	BKLM TOP VXD
	Touschek	1.7 / 251.7	2.5 / 0.6	4 GeV positrons
SVD	Beam-gas	4.4 / 15.0	4.6 / 5.5	7 GeV electrons
	Touschek	1.9 / 490.0	2.0/0.2	EKLM 7 GeV electrons
CDC	Beam-gas	5.5 / 50.0	5.5 / 12.0	4 GeV positrons
	Touschek	4.5 / 80.0	4.0 / 1.2	
ТОР	Beam-gas	6.7 / 24.0	6.7 / 1.8	
	Touschek	2.1 / 72.0	2.0 / 0.3	3

Beam background sources

The SuperKEKB design has **x30-40 higher luminosity** than KEKB with **x1.5-2 higher beam** currents (*I*) and **x20 smaller vertical beta functions** (β^*) at the interaction point (IP). This implies higher beam-induced background in the Belle II detector.

$$L = \frac{\gamma_{\pm}}{2er_e} \cdot \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \cdot \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_y^*}\right) \cdot \left(\frac{R_L}{R_{\xi_{y\pm}}}\right)$$

Beam background countermeasures

The SuperKEKB design has **x30-40 higher luminosity** than KEKB with **x1.5-2 higher beam** currents (*I*) and **x20 smaller vertical beta functions** (β^*) at the interaction point (IP). This implies higher beam-induced background in the Belle II detector.

 $L = \frac{\gamma_{\pm}}{2er_e} \cdot \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \cdot \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_y^*}\right) \cdot \left(\frac{R_L}{R_{\pm,u\pm}}\right)$

Particle scattering (Single-beam)

Collimators (off-momentum particles stop), Vacuum scrubbing (residual gas pressure reduction), Heavy-metal shield outside the IR beam pipe (detector protection against EM showers)

Colliding beams (Luminosity)

Steelandpolyethyleneshieldsflux reduction)

Synchrotron radiation

Beryllium beam pipe is coated with a gold layer + ridge surface of the beam-pipe (to avoid direct SR hits at the detector)

Injection

Damping ring for positrons (to reduce the emittance), injection trigger veto

6

- LER \rightarrow 11 collimators (7 horizontal & 4 vertical) & HER \rightarrow 20 collimators (11 horizontal & 9 vertical)
- SuperKEKB keeps beam currents constant by performing top-up (continuous) injection.

The crucial & the most complicated part of the background simulation

• Single-beam background:

SAD (multi-turn particle tracking)
 basf2/Geant4 (detector modeling)

- Luminosity background:
 - basf2/Geant4 (single-turn effect, colliding beams)
- Synchrotron radiation background:

• basf2/Geant4 (close to the Belle II detector)

Strategic Accelerator Design (SAD) is a computer program complex for accelerator design. It has been developed at KEK since 1986.

Functionality:

- Design of accelerator beams.
- Optics calculation & matching.
- Emittance calculation.
- 6D full symplectic tracking of macroparticles.
- Mathematica-like scripting language.

CEPC 2020 WORKSHOP | A.Natochii

The main SAD simulation settings:

- 1. Start by splitting each ring into a set of 500 equidistant scattering points per each ring with randomly distributed bunches of scattered particles.
- 2. An intrinsic weight calculated using specific scattering theories is assigned to each particle.
- 3. The vacuum level is uniform around the machine at 1 nTorr (\approx 133 nPa).
- 4. Lost particle coordinates are collected after 1000 machine turns (synchrotron radiation & acceleration by radiofrequency cavities are ON).

CEPC 2020 WORKSHOP | A.Natochii

Old tracking scheme:

- track stray particles until they are lost from the beam;
- or until stopped by collimator;
- record loss position.

New tracking scheme:

- track stray particles from collimator to collimator *tracking by segments*;
- apply collimator mask and store 6D coordinates;
- continue to track survived particles;
- record loss position.

Benefits:

- allows to study the beam dynamics turn by turn;
- greatly reduced CPU time for the collimator optimisation (days \rightarrow hours).

Goals:

- reduction of the BG level at the interaction region (IR);
- ensure beam losses occur mainly at collimators.

Bottlenecks:

- aggressive closing of the mask:
 - degradation of the injection efficiency (IE);
 - very short beam lifetime;
 - increase of local losses at collimators (activation).
- wide open collimators:
 - the Belle II BG level increase.

Optimal collimation is a compromise between injection performance and particle losses in the machine.

Single-beam background simulation. Collimation system optimization

CEPC 2020 WORKSHOP | A.Natochii

Method I:

(i) The optics phase-advance analysis (so-called *betatron collimation*) - a half-integer phase-advance between IR and a given mask is the most effective.

(ii) At a low beam current an accurate **manual tuning of each mask** one by one. Monitoring IE and IR background.

Pros & Cons:

(+) a real machine & detector response;

(-) time-consuming & does not provide the most advantageous settings \rightarrow many degrees of freedom (11 + 20 collimators).

Method II:

(i) A Monte-Carlo simulation of the single-beam background at a wide-open collimator aperture, collecting beam history (*online* simulation) using SAD tracking segmentation approach.

(ii) A linear scan for each mask, keeping a constant beam lifetime and lowest IR losses (*offline* simulation) using ROOT/C++-based scripts.

(iii) Bunch current limitation check due to the Transverse Mode Coupling Instabilities (TMCI, head-tail, wake-field effects [https://accelconf.web.cern.ch/e00/PAPERS/TUP4A12.pdf]).

Pros & Cons:

(+) the optimal settings in a few hours for a single-beam BG suppression \rightarrow a guideline for the machine operator;

(-) does not take into account injection steering errors which limits the aperture of the mask due to the beam-lifetime.

Offline aperture scan. **Top**: beam lifetime as a function of the collimator aperture. **Bottom**: IR BG as a function of the collimator aperture.

$$I_{
m thresh.} = rac{C_1 f_{
m s} E/e}{\sum_j eta_j k_j(\sigma_z,d)}$$

Limitation of a single-bunch current by a half-width of the mask (*d*) to avoid TMCI.

Single-beam background simulation. Realistic mask profile & particle scattering

Single-beam background simulation. Residual gas pressure estimation

CEPC 2020 WORKSHOP | A.Natochii

- There are ~300 Cold Cathode Gauges (CCG) around each ring.
- The actual beam-pipe gas pressure distribution is not uniformly constant around the ring P = f(position, current).
- **\diamond** CCG value saturation (10⁻⁸ Pa) affects <P> calculation (mainly for HER).
- To calculate gas pressure at the center of the beam-pipe (P_{BEAM}), P_{CCG} has to be scaled (see left plot, where P_0 base pressure).

Schematic drawing of the vacuum system for the gas pressure measurements at SuperKEKB.

Behaviour of the beam current and average gas pressure during the beam decay w/o injection.

LER

HER

14

Benchmark of the code

Installed in

Sep. 2020

D03

D04

D05

D03H1

LER

D06V2 D06V1

Installed in Jan. 2020

Upgraded in Sep. 2020

D06H3

Goal: to validate the collimator simulation in detail

Method: measure dose rate at interaction region versus collimator aperture.

<u>D06V1</u> – most recently installed collimator, Tantalum head was recently upgraded with a Low-Z material (Graphite). D02H4 – collimator closest to IR, tip-scattering can reach Belle II.

Belle II HV - OFF; $I_{LEP} = 200 \text{ mA}$; Continuous injection; 978 bunches; a step of the aperture scan = 0.2 mm Setup: $(5\sigma_{B} \rightarrow D06V1 \& 1\sigma_{B} \rightarrow D02H4)$; Physics Run collimation system settings.

Result: good agreement between experiment and simulation, thanks to all implemented features discussed above.

QCS Forward Diamonds (~60cm upstream IP)

Beam-pipe Diamonds (± 10 cm from IP)

15

Collimator misalignment

- Simulation suggests a possible misalignment of the collimator with respect to the beam centre.
- Performing a set of simulations with different offsets, one can find the **physical shift** of the collimator chamber.

Beam-pipe Diamonds (±10cm from IP)

Schematic drawing of the vertical offset (Δd) between the position reference of the D06V1 collimator and the beam core induced by the alignment uncertainty ($\sim 0.2mm$).

- A new multi-turn particle tracking software framework based on SAD was developed.
- Several additional refinements (realistic gas pressure distribution, collimator profile, tip-scattering, and updated IR geometry) were also implemented.
- This led to significantly (up to factor 100-1000) improved agreement between measured and simulated beam backgrounds.
- Comparing simulated and experimental collimator scans appears sensitive to collimator misalignments.
- The new framework is used extensively at KEK for further collider optimisation and background mitigation towards design luminosity.