Geometry and Acceptance for CEPC LumiCal

Luminosity criteria

Luminosity of e^+e^- collisions

by QED Bhabha elastics scattering theoretical precision < 0.1 %

Bhabha detected

0.04

10

0.02

In a fiducial region

0.06

0.08

0.1

 $\theta(p2)$ (Rad)

 $\frac{\mathbf{e}^+\mathbf{e}^- \to \mathbf{e}^+\mathbf{e}^-}{\text{crosss section}} \ \sigma = \frac{16\pi\alpha^2}{s} \cdot \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2}\right)$ e^+e^- collision Integrated luminosity $\mathcal{L} = \frac{1}{c} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}}$ Events Scattered electron 10 theta distribution **Detecting** 10 ³∍ **Bhabha** event 10 ²-

Reference to Z-lineshape

Bhabha detection

e⁺e⁻ → e⁺e⁻ elastics scattering
 Event signature
 1. E(e[±]) = E_{beam}
 2. e⁺, e⁻ Back-to-Back

• NLO
$$e^+e^- \rightarrow e^+e^-\gamma$$

~1% of total events
1. e⁺, e⁻ approximately Back-to-Back
2. one electron E' < E_{beam}
3. e/γ ID, spatial resolution

Luminosity precision

LumiCal design goal:

- Spatial res.: narrow binning
- "Standard error of the mean" on θ_{min}: σ/VN < 15 μRad

offset on fiducial edge
 → Systematics to
 "the mean on θ_{min}"
 → LUMINOSITY error

 $\pmb{\theta}_{\min}$

Bhabha boosted by CEPC 33 mRad beam crossing

- **BHlumi QED** calculation \succ for Bhabha *e*⁺*e*⁻ *scattering*
- boosted for the 33 beam crossing \succ e^+, e^- shift by ~16.5 mRad to +x direction

10 ⁷ -60 (mm) × 40 CM frame All gen eletron hits at Z=1m $\theta > 20$ mRad Lab frame 10 ⁶ - θ , s'/s > 0.5 at CMS $\mathsf{R} > \mathsf{R}_{\mathsf{b},\mathsf{pipe}}$ 20 5 10 0 10 -20 3 10 -40 boost for 33 mR beam crossin -60± 20 -60 -40 -20 40 60 Ω 0.04 -0.01 -0 0.01 0.02 0.03 0.0 x (mm) $\Delta R (e^+, e^-) Rad$

Opening angle –pi of the scattered e^+, e^-

Electrons shifted from CMS to LAB

Bhabha electron x-y distribution at Z=1m

LumiCal acceptance, compare BHlumi with Beampipe design

*latest beampipe before Flange @Z=655 mm, acceptance suggested for θ_{min} >38 mRad \rightarrow LumiCal Acc < 40 nb

GEANT, multiple scattering off beampipe

Si-ladders surrounding beampipe

minimal smearing by multiple scattering/shower

Electron traversing 1 mm thick Al beampipe

@30 mRad, Z = 0.5 m, dZ traversing beampipe = 33 mm

GEANT TUBE beam-pipe, Si-ladders

acos(.99) = 141.54 mRad @Z=118 \rightarrow r= 16.81 (=tanQ*118) acos(.992)=126.58 mRad @Z=118 → r= 15.02 mm $@Z=118 \rightarrow r=11.84 \text{ mm} @Z=153 \rightarrow r=15.35 \text{ mm}$ Q= 100mRad

Z=0~115 mm

Z=0~115 mm inner radius 28/2+1 mm 0.35mm thick inner r=28/2+1 mm, 0.35 mm thick

Position(Hits) – Electron shower

Options of LumiCal assembly

• **2D Si-ladder** assembled on CNC table

z-strips for theta position: <200 μ m pitch for resolution <25 μ m *phi-strips:* ~ 1 mm pitch to correct boosted direction alignment **pin** to beampipe support \rightarrow precision ~5 μ m CNC survey of Si strip position ~ 3 μ m

• Bhabha electron resolution:

@fiducial edge, assuming $\theta_{min} = 30 \text{ mRad}$ $\delta L/L < 10^{-4} \rightarrow \delta \vartheta = 1.5 \mu Rad$ @ Z= 0.5 m, corresponding to dr= 0.75 μ m; dz = dr/tan(.03)= 25 μ m

• Heat dissipation:

8 pairs of z-phi ladders, 30 chips → 100 W /per z-side (APV25 0.4 W/chip, 28 chips in Z, 128 ch, 0.1 mm pitch z-coverage = 360mm)

for event counting over $\boldsymbol{\vartheta}_{min}$

LumiCal Si-wafer option

LumiCal Si wafer volume

GEANT for round beampipe $\varphi = 28 mm$

 θ = 30 mRad @ z=500 mm

Multi. Scattering at Si wafer: **RMS = 50 µm**

Assuming Si strip 300 μ m thick, pitch = 100 μ m,

resolution by the fraction of entrance strip (low z)

- ➔ fire 100 strips @ 30 mRad
- rather extreme for Si strip resolution by charge sharing at the edge strips

LumiCal Calo options

• Calorimeter option: LYSO + SiPM to minimize space for electronics

Si-layers in flange/Calo front

as preshower layers for e/γ ID, NLO photon

• Calo Assembly:

LYSO in 2x2 cm² bars ~50 kg ring, mounted on Magnet fabrication may be better than $10 \ \mu m$

More detailed works needed !!

Si-strip in z

Upstream to Calo:

z=620 mm

beam-pipe, flange, possibly ~5 X₀ shower center ~1 mm precision

LumiCal

Summary

- **Bhabha detection** studied for luminosity $\delta L/L \sim 10^{-4}$ optimizing acceptance for Z(qq) pole cross section
- Detecting electron, resolution at ϑ_{min} edge : $\delta L/L \sim 10^{-4} \rightarrow \sigma_{\vartheta min} = 1.5 \ \mu Rad$

Si-ladders surrounding beam-pipe: electron Z position (@30mRad), $\sigma_{\vartheta min} \rightarrow \sigma_z = 25 \ \mu m$ measuring Bhabha electrons with impact position smeared by Multiple-Scattering

Calo (LYSO+SiPM) for e/γ identification further details to be studied !

