

~ 中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

High-granularity Crystal Calorimeter: R&D status

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

International Workshop on High Energy Circular Electron-Positron Collider Oct. 26-28, 2020

Motivations

- Background: future lepton colliders (e.g. CEPC)
 - Precision measurements with Higgs and Z/W
- Why crystal calorimeter?
 - Homogeneous structure
 - Optimal intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Corrections to the Bremsstrahlung of electrons
 - Capability to trigger single photons
 - Flavour physics at Z-pole, potentials in search of new physics, ...
- Fine segmentation
 - PFA capability for precision measurements of jets

High-granularity crystal ECAL: workshops

- Ideas firstly proposed: CEPC calorimetry workshop (March 2019)
- Follow-up workshop: Mini-workshop on a detector concept with a crystal ECAL
 - R&D efforts targeting key issues and technical challenges

Virtual mini-workshop on a detector concept with a crystal ECAL, July 22-23, 2020, <u>https://indico.ihep.ac.cn/event/11938/</u>

R&D efforts targeting key issues and technical challenges

- Key issues: performance studies and optimization
 - Segmentation: in longitudinal and lateral directions
 - Performance: single particles and jets with PFA -> separation, energy splitting
 - Impacts from dead materials: upstream tracker, services (cabling, cooling)
 - Fine timing: e.g. for positioning
 - Dual-gated or dual-readout techniques (to improve hadronic energy resolution)
- Critical technical questions/challenges
 - Detector unit: crystal options (BGO, PWO, etc.), SiPMs (HPK, NDL, etc.)
 - Front-end electronics: cornerstone for instrumentation of high-granularity calorimetry
 - Multi-channel ASIC: high signal-noise ratio, wide dynamic range, continuous working mode, minimal dead time, etc.
 - Cooling and supporting mechanics design
 - Calibration schemes and monitoring systems: SiPMs, crystals and ASICs
 - System integration: scalable detector design (modules), mass assembly, QA/QC

High-granularity crystal ECAL: 2 major designs

Design 1

Design 2

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

- Long bars: 1×40cm, double-sided readout
 - Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels
- Timing at two sides: positioning along bar

High-granularity crystal ECAL: 2 major designs

Design 1

Design 2

- Design optimisations
 - Transverse: separation power
 - Longitudinal: leakage correction
- Neutral pion reconstruction (in plan)

- Multiplicity of incident particles (jets)
 - Based on physics benchmarks
- Digitisation in each long bar
- Time stamps, #photons detected
- Event display and (pattern) reconstruction

Longitudinal segmentation optimisation

- Full simulation with SiW-ECAL via the benchmark Higgs to 2 gluons
 - 10 longitudinal layers or more in ECAL can help achieve better than 4% of BMR
 - Expect small impact from ECAL intrinsic energy resolution (PFA fast simulation)
- Guidance for the longitudinal segmentation
 - Will perform more benchmark studies for crystal ECAL in the CEPC detector simulation

Crystal transverse size optimisation

- Study of the separation performance of γ and merged π^0
 - Can not be distinguished in transverse shower profiles
- Energy-related variables defined for TMVA (training)
 - S1/S4, S1/S9, S1/S25, S9/S25, S4/S9, F9, F16

Chunxiu Liu (IHEP)

Crystal transverse size optimisation

Transverse size 1x1cm2

100% separation with most variables

100% separation with variables like S1/S4, S1/S25 and F9

Transverse size 2x2cm2

9

Chunxiu Liu (IHEP)

Crystal granularity optimisations

- Longitudinal depth
 - Use shower profiles in segmented layers to correct for tails (energy leakage)
 - Aim for shorter crystal depth (cost), balance with performance (correction precision)
- Longitudinal segmentation: impact from inter-layer services (next pages)

Longitudinal segmentation: impact from services

Yuexin Wang (IHEP)

- Energy resolution with different numbers of sampling layers
 - 24X0 total depth for crystals (fixed) in all scenarios
 - Used copper to model the inter-layer services (e.g. cooling)
 - Light materials will be considered for realistic cooling designs: Al, carbon-fibre...

Note: energy fluctuations and leakages dominate; impacts of digitization in the next page

Longitudinal segmentation: with digitisation

- Digitisation tool
 - Photon statistics (crystal and SiPM): reasonably high light yield
 - Electronics resolution for single photons: taken from the existing ASIC

Note: for copper, X0=14.36mm, 1mm Cu = 0.07X0; for Aluminum, 0.07X0 = 6.2mm (X0=88.97mm) 0.84X0 copper in total will degrade the stochastic term to ~2.5%

Critical questions for crystal ECAL: technical part

- Detector unit: crystal options (BGO, PWO, etc.), SiPMs (HPK, NDL, etc.)
- Front-end electronics
 - Cornerstone for successful instrumentation of high-granularity calorimetry: e.g. CALICE prototypes, CMS HGCAL project
 - Multi-channel ASIC: high signal-noise ratio, wide dynamic range, continuous working mode, minimal dead time, etc.
- Cooling and supporting mechanics design
 - Power consumption (solid inputs from electronics)
 - Impacts of cooling structure to performance
- Calibration schemes and monitoring systems
 - For SiPMs, crystals and ASICs in the long term
- System integration: scalable detector design (modules), mass assembly, QA/QC

Crystal options

	BGO	PbWO4
Density (g/cm ³)	7.13	8.3
Radiation Length X ₀ (cm)	1.12	0.89
Moliere Radius Rм (сm)	2.259	1.959-2.19
Minimum ionization (MeV/cm)	8.918	10.2
Refractive Index	2.15	2.20
Decay Time (ns)	fast 60	fast <10
	slow 300	slow 30
Light Yield (photons/MeV)	8000-12000	100-150

- PWO
 - Pros
 - Compact (smallest X0, cost saving), fast scintillation (timing)
 - Dynamic range suitable for the linear region of SiPM (high-density pixels)
 - Cons: low intrinsic light yield: ~100 photons/MeV
- BGO
 - Pros: high intrinsic light yield: 8k~12k photons/MeV, therefore high sensitivity to low energy particles
 - Cons
 - Less compact than PWO, larger volume for the same depth (e.g. 24X0)
 - Much slower scintillation → other techniques (e.g. TOT) considered to enlarge the dynamic range (studies placed in the backup)

Studies with PWO crystal bar and NDL-SiPM

NDL-SiPM 3x3mm² with 10um pixels

Note: a larger SiPM (e.g. 6x6mm²) can be used for better light collection efficiency

First studies on new-generation of NDL-SiPM

NDL-SiPMs Parameters	11-3030C-S	Latest prototype NDL 22-1313-15S
Breakdown Voltage	27.5 V	19 V
Pixel Pitch	10 µm	15 µm
Peak PDE	31% @420nm	45% @400nm
Pixels	90k	7.4k
Sensitive Area	3×3 mm ²	2.6×2.6mm ²
MIP response with 0x10x45 mm ³ PWO bar	19.5 p.e./MIP	16.6 p.e./MIP

- Many improvements: lower dark count noise, higher PDE,... (highly desirable)
- Foresee further tests with new NDL-SiPMs (better candidates for crystal readout)
 - High density: 3×3 mm², 6µm, 245k pixels, PDE~30% (e.g. for BGO)
 - Large area: 6×6 mm², 15µm, 170k pixels, PDE~40% (e.g. for PWO)

Hist QDC

Gsigma 5.443 ± 0.420

100 120

~16.6 p.e./MIP with

2.6x2.6mm² SiPM

Entries

Mean

RMS

Width

MP

Area

40 60 80

Light output[p.e.]

20

 χ^2 / ndf

592

22.03

12.35

27.09/39

 1.454 ± 0.279 1658 ± 046

721.2 ± 31.3

Future plans on crystal studies

- BGO and PWO crystal samples: varying dimensions, surface treatment
 - With a major focus on timing performance: e.g. Cherenkov photons

BGO crystals ready for shipment to IHEP (photo by courtesy of Junfeng Chen, SIC-CAS)

Front-end electronics for SiPM readout

- ASIC "KLauS": developed within the CALICE collaboration
 - Designed by U. Heidelberg (KIP), originally for CALICE AHCAL (scintillator-SiPM)
 - Promising candidate: 36-channel, low-power
 - Excellent S/N ratio: stringently required by high-dynamic SiPMs (small pixels)
 - Continuous working mode: crucial for circular colliders (no power pulsing)
 - Need to quantitatively verify its performance and power consumption

Wire-bonded Klaus5 chip

Front-end electronics for SiPM readout

- Test boards for KLauS-5 in BGA
 - Boards produced after several iterations of designs/debugging
 - Boards tested first at Heidelberg and later at IHEP
 - Synergies with the JUNO-TAO team

U. Heidelberg, IHEP

Klaus5 tests with NDL-SiPM

- NDL-SiPM features: small pixel pitch (10µm or smaller), high PDE
 - Requires high S/N ratio in electronics to resolve single photons (small gain)
- Klaus5 proved to be able to resolve the single photons (32fC/p.e.)
 - Benefits from its high S/N ratio and high resolution

Klaus5: first tests with SiPM and light sources

- LED for SiPM gain calibration: done for various SiPMs
- Laser for the first test of dynamic range: qualitative results

• Low Gain modes: LG (1:40), Ultra-LG (1:100)

Klaus5 tests with charge injection

- Testing of all 36 channels
 - Different working modes (high gain and low gain)
 - Dynamic range: ~550pC as the maximum charge (preliminary results)

Output ADC versus Input Voltage

Klaus5: dead time measurements

- Varying time interval between 2 injection pulses: 100ns 10µs
- When time interval > 500ns, 100% efficiency of separating the two pulses
 - Promising feature for 100% duty cycle at circular colliders
 - Tests were made for a single channel
 - 36 channels: bottleneck of data transmission speed in DAQ (RaspberryPI-based)

Similar results at arXiv:2005.08745

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

Design 2: long bars

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

Advantages

- Longitudinal granularity: 24 layers, 1X0/layer
- Save #channels, ~15 times less
- De facto 3D calorimeter: timing for hit positions for transverse granularity

• Key issues

- Ambiguity: multiple incident particles within one super cell
- Separation of nearby showers
- Impact on the Jet Energy Resolution (JER)

Studies on physics requirements

- Estimate the multiplicity level of jets: fast simulation
 - Mean ~4 particles within the hottest tower

Multi-jet events at generator level:

- Calculate the impact point of visible final states on the inner surface of ECAL
- See 240GeV, ZH (Z→qq, H→gg) (4-jet event) as an example

Parameters in calculation:

- A simple cylinder ECAL
- Inner Radius, R=1800mm
- Barrel Length, L=4700mm
- Magnetic Field, B=3T

Analysis level:

- Hottest tower (with maximum energy)
 - multiplicity and energy ratio to √s
- Average proportion of towers with multiparticle

Yuexin Wang (IHEP)

Hottest 40cm × 40cm tower

Studies on physics requirements

- Estimate the multiplicity level of jets: fast simulation
 - Detailed studies with 2 incident particles (from a jet) hitting the hottest tower

→aa

Yuexin Wang (IHEP)

cReconstruction with 2 incident particles

Yuexin Wang (IHEP)

Patterns in event display: 2 photons

Shower profiles: 2 photons

Reconstruction with 2 incident particles

- How can we separate two close-by electrons/photons?
- EM shower profiles in 3D: ongoing studies
 - Input to the weights for energy splitting

Yuexin Wang, YL (IHEP)

Pattern studies using Event Display

- Patterns for first impression, but still complex
- Need further studies on positioning and energy splitting

RU3 RUReconstructed hits with

New developments in CEPC software

- Crystal calorimeter in CEPCSW
 - Geometry implemented with long crystal bars
 - Digitisation: based on Geant4 full simulation of a single crystal bar
 - Reconstruction with single particles

Summary

- High-granularity crystal ECAL
 - Aim to keep optimal energy resolution and PFA capability
 - Key issues for optimization and technical challenges (partially) identified
 - Further discussions and iterations
 - Steady R&D progress
 - Optimisation studies: longitudinal/transverse segmentation, depth
 - Technical developments:
 - SiPMs and crystals
 - Characterisations of SiPM-dedicated low-power readout ASIC (KLauS)
 - Dynamic range: TOT technique (in backup)
 - Simulation studies on the detector layout with long bars
- Welcome broader collaborations
 - Early R&D stage, many open questions/issues

Backup slides

LOI for US Snowmass 21

- Letter of Intent on crystal calorimeter in the Instrumentation Frontier
 - <u>https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF0_Yong_Liu-064.pdf</u>

High-Granularity Crystal Calorimetry Letter of Intent – Snowmass 2021

August 31, 2020

High-Granularity Crystal Calorimetry Letter of Intent

Future lepton colliders provide a unique opportunity to probe the Standard Model and potentially uncover new physics beyond the Standard Model with Higgs, *W*, and *Z* bosons richly produced in the exceptionally clean environment. The recently released European Strategy Updates on the Particle Physics [1] elaborates this consensus that an electron-positron Higgs factory is the highest-priority next collider, including implementations such as the Circular Electron Positron Collider (CEPC) [2, 3], the Future Circular Collider (FCC-ee) [4], and International Linear Collider [5]. The precision physic programs set a stringent requirement on the jet energy resolution to separate and measure hadrons and jets. Detectors based on the Particle-Flow Approach (PFA) [6] provide an essential and feasible option to meet this goal and achieve an unprecedented jet energy resolution of around $30\%/\sqrt{E(GeV)}$, which further requires calorimetry to be finely segmented in 3 dimensions. Within the CALICE Collaboration [7], as proof-of-principles, various high-granularity calorimetry options have been extensively studied with prototyping and beam tests.

Considerations on detector layouts

Layout 1: same module for each layer

- Pros
 - Modular design
 - Uniform structure (easy calibration)
- Cons
 - Material budgets (cooling, mechanics)

Layout 2: every two layers share the same cooling service and mechanics

- Save material budget (e.g. a factor of two)
- Cons
 - Non-uniform sampling structure: will need specific considerations for calibration

Longitudinal segmentation: impact from services

- Stochastic and constant terms (extracted from the previous page)
 - Varying thickness of dead materials between layers (services as cooling, cabling, etc.)
 - Effects digitisation in the next page (photon statistics and electronics resolution)

Note: digitization not implemented yet; so energy fluctuations (and leakages) dominate

Digitizer in simulation

- Geant4 hit (energy deposition) \rightarrow ADC signal in electronics (charge)
- Realistic factors that influence energy resolution
 - Photon statistics: #p.e./MIP, guided by Geant4 full simulation (optical photons)
 - Electronics resolution for single photons: #ADCs/p.e.

Digitizer in simulation for crystal ECAL

MC samples: electrons

ECAL-Crystal: Energy Resolution

- Quantitative studies for the impacts of photostatistics and electronics
 - Stochastic terms: ~5% for lower light yield (e.g. PWO), ~2% for higher light yield (e.g. BGO)
 - Negligible impact from single photon resolution at energy regions > 5GeV

ECAL-Crystal: Energy Resolution

Dynamic range: simulation with high-energy electrons

- Maximum energy deposition per cell
 - Depends on the crystal segmentation configurations
 - Provide inputs for the SiPM and its readout electronics

Crystal cells: dynamic range

- Silicon Photomultiplier (SiPM)
 - Non-linear response due to finite #pixels (each as a binary counter)
- Crystal such as BGO produces (too) many photons
 - Stringent requirement on the readout: response linearity

Crystal cells: dynamic range

- Geant4 full simulation of TOT with BGO crystals
 - Realistic simulation of BGO scintillation: detailed properties
 - 8200 photons/MeV, time constants tau1=60ns, tau2=300ns
 - TOT: time duration of the rising and trailing edges at a fixed threshold

Computing intensive for the simulation (>1M photons); techniques developed to fasten the procedure

Dynamic range: TOT simulations

- Energy depositions in a crystal cell: 10MeV 8 GeV
 - TOT values will go beyond 1.5 µs for energy deposition larger than 8 GeV
 - Energy spread: fluctuations due to BGO scintillation long slow slope
 - Future studies: impact from TOT threshold, design with multiple thresholds

