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Introduction

● CEPC produces large amount of Higgs and other events with 

high signal to background ratio.

○ Bosons (𝑊, 𝑍), quarks (𝑡𝑡, 𝑏, 𝑐) and leptons (𝜏)

● Physics objects of those events need high-precision detectors and 

particle identification capability.

● Dual-Readout calorimeter has excellent energy resolution. 

○ It directly measures hadronic and electromagnetic components.

● Machine learning applications at HEP have demonstrated 

improvements in data processing.

○ Such as particle identification and signal/background discrimination.

● Dual-readout calorimeter with machine learning will maximize the 

potential of CEPC project.
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CEPC baseline 

Cross sections for 𝑒+𝑒‐ collision



Dual-Readout Calorimeter

● There are two different, Scintillation and Cerenkov, 

fibers components.

○ EM shower fraction (𝑓𝑒𝑚) is directly measured by 

scintillation and Cerenkov response.

○ Using 𝑓𝑒𝑚 we measure energy wit igh precision

Its base structure is suitable at machine learning.

EM and hadronic components are in same geometry.
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https://arxiv.org/pdf/1712.05494.pdf



Why Deep Learning?

● Deep learning is one of ML methods, which are based on 

neural networks 

○ Multi-layer application of weights and activation functions provides 

estimates of output values from input conditions. 

○ There are variations, such as convolutional neural networks(CNN) 

powerful for images processing.

● Deep learning can be used in very general cases.

○ Input can be any dataset. Output can be setup for regression or 

classification or both.

○ DL is already being applied in HEP researches.

● All infrastructures of CEPC should be ML friendly!

○ Maximizing physics performance can only be achieved by using 

machine learning methods to solve a wide range of problems.

○ Fast simulation can also be improved by DL methods.
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Goals of Deep Learning Application

● Our goals

●

● DL studies and DR calorimeter developments should evolve in parallel.

○ Optimization to ML approaches, including DL, will be considered for maximal 

performance.

○ For DL, raw energy deposit by fibers is being used.
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Application areas Technical goals Works ongoing

Jet reconstruction
Mass and energy reconstruction. Applying regression for quark/gluon jet discriminant 

variables.

Particle identification
Shower object identification, lepton and 

quark flavor tagging.

Investigating DL methods for 𝜏, quark/gluon jet 

discrimination, 𝑒‐, 𝛾, 𝜋+ shower identification.

Physics analysis
Higgs decay, Z boson decay, QCD 

measurements, flavor physics.

Validating MC sample production.

Fast simulation(GAN) GAN based shower generator. Applying GAN for electron shower image generation.



Software Setup for Simulation

● Detector Simulation

○ For calorimeter developments and pre-analysis 

of samples.

○ Current setup is DD4HEP with GEANT4 full 

simulation.

○ Detector description has been implemented in 

DD4HEP in the process of migration to Key4HEP

○ Developing fast simulation of optical photons in 

fibers

● Deep learning

○ Keras (Tensorflow) and PyTorch implemented for 

deep learning.
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SW structure

Detector geometry for ongoing studies



Calibration with electron beam

● Calibration is needed for 

correct energy measurement.

○ The calibration constants 

obtained from energy deposit 

and photoelectron counts.

● Calibration for barrel region 

has done with 20 𝐺𝑒𝑉 electron 

beam.

● End-cap region is ongoing.
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Energy resolution Study

● EM energy resolution :~11%/ 𝐸

○ Measured in 5 energy points (5, 10, 20, 30, 

50 𝐺𝑒𝑉) 

○ Combined channel gives better resolution 

than single channel. 
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● Jet energy resolution : ~26%/ 𝐸

○ Measured in 4 energy points (50, 70, 90, 120 

𝐺𝑒𝑉) 

○ Anti-kt algorithm (𝑑𝑅 = 0.8) is used for jet 

clustering.
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Position resolution Study

● Position resolution along 𝑧 direction

○ Tested with 𝑒‐ beam with energy 10, 20, 40, 60, 80 and 

100 𝐺𝑒𝑉 in 0 × 40 𝑚𝑚 beam spot which covers from the 

center of one tower to that of a neighbor tower.

○ Position reconstructed by center of gravity of the 

energies and compared with generated position.

○ Position resolution : 4.2/ 𝐸 + 0.41 𝑚𝑚.
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Inputs to Deep Learning

● Data preparation is most critical part while implementing DL.

● Two types of inputs data are considered for variety of models.

○ Image : Energy and number of photon image from fibers in 

the (𝜂, 𝜙) area. With CNN implementation.

○ Point cloud : list of energy deposit positions (𝜂, 𝜙, depth) 

with scintillation and Cerenkov energies. With PointNet 

implementation.
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● Regression for jet discriminant variables 

of quark, gluon jet.

○ Particle multiplicity, jet width, 𝑝𝑇𝐷 (jet 

fragments variable) are used in jet 

discrimination.

○ Trained with images of 50 𝐺𝑒𝑉 𝑢 quark and 

gluon jets.

● Jet mass and energy reconstructions 

are in pipeline.

○ This will improve jet flavor study.
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Jet, 𝜏 Identification
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Average scintillation energy images

~80% gluon rejection 

with 80% quark efficiency

● Classification of quark and gluon jets.

○ Performed for 50 𝐺𝑒𝑉 𝑢 quark and gluon jets with image 

and point cloud format.

○ Model structures need to be developed.

● 𝛕 identification with deep neural networks also 

shows promising performance

● Jet flavor tagging is in pipeline.
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Shower identification

● Discrimination of pion with respect to electron and 

gamma showers.

○ Performed for 20, 50 𝐺𝑒𝑉 showers with image and point 

cloud format.

○ Applying more statistics is in pipeline.
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Fastsim with GAN

● Generative Adversarial Networks (GAN) consist of 

a Generator and a Discriminator network.

○ Generator create fake images trying to not be 

discriminated as fake.

● GAN can be applied for shower images.

○ Previous study with CMS ECAL showed electron 

shower can be generated using GAN.

○ It is much faster than fast simulation. 

● We can produce larger datasets with GAN shower 

fastsim.

○ Massive computing facilities are needed for GEANT4 

simulation
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Institute Computing facilities

KISTI 400 cores

KNU 300 cores

UOS
300 cores 

+ 8 GPU for DL

SNU 200-300 cores

Concept of GAN

Maximum availability



Fake shower generator

● Previous GAN study about CMS ECAL showed good 

performance.
○ Trained with 50 𝐺𝑒𝑉 electron shower images.

○ GAN total-energy distribution matched to GEANT4 predictions.

● Reproducing GAN result with DR calorimeter GEANT4 

simulation. 
○ Working on matching GAN images with GEANT4 images of 

electron showers.

○ Training using larger statistics from GEANT4 fast simulation in 

the pipeline.
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Snowmass21

● Snowmass 2021 is a scientific study for future in HEP.

○ https://www.snowmass21.org

● International dual-readout calorimeter R&D team submitted a single letter of 

interest (LoI) for overall R&D plan in our team.

○ https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6-008.pdf

○ Include world-wide community of the dual-readout calorimeter R&D: Asia, Europe, US.

● Additional seven LoIs related to the dual-readout calorimeter R&D project have 

been submitted too!

○ All topics of seven LoIs are potentially based on ML application.

○ ML study can be boosted and extended with the Snowmass 2021 campaign, stay tuned!

● Various MC productions such as Multi-jets, Higgs and 𝜏 events are underway.
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https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6-008.pdf


List of (ML-based) LoIs
Topic 1: Feasibility study of combining a MIP Timing Detector with the Dual-Readout Calorimeter at future 𝑒+𝑒‐ colliders. 

(link)

- Collaborators : David Stuart (UCSB), C.S. Moon (KNU), J.H. Yoo (Korea Univ.)

Topic 2: Heavy flavor tagging using machine learning technique with silicon vertex detector and Dual-Readout Calorimeter 

at future 𝑒+𝑒‐ colliders. (link)

- Collaborators: J. Huang (BNL), Q. Hu (LLNL), S.H. Lim (PNU) 

Topic 3: 𝜏 reconstruction and identification using machine learning technique with Dual-Readout Calorimeter at future 𝑒+𝑒‐

colliders. (link)

- Collaborators : M. Murray (U. of Kansas), Y.S. Kim (Sejong Univ.), Y.J. Kwon (Yonsei Univ.)

Topic 4: Sensitivity study of 𝐻𝑍→𝑍𝛾 with Dual-Readout Calorimeter at future 𝑒+𝑒‐ colliders. (link)

- Collaborators : Y. Maravin (Kansas State Univ.), K.W. Nam (Kansas State Univ.)

Topic 5: Multi-object identification with Dual-Readout Calorimeter at future 𝑒+𝑒‐ colliders. (link)

- Collaborators : P. Chang (UCSD) 

Topic 6: Dual-Readout Calorimeter for the future Electron-Ion Collider. (link)

- Collaborators : S.H. Lim (PNU), H.S. Jo (KNU), Y.S. Kim (Sejong Univ.)

Topic 7: Fast optical photon transport at GEANT4 with Dual-Readout Calorimeter at future 𝑒+𝑒‐ colliders. (link)
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https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF3_Hwidong_Yoo-059.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF3_Hwidong_Yoo-061.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF0-EF1_EF0_Hwidong_Yoo-063.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF0-EF1_EF2_Hwidong_Yoo-062.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF0-EF1_EF2_EF3_EF4_Philip_Chang-024.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF3-EF7_EF6_Hwidong_Yoo-081.pdf
https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6_IF0-CompF2_CompF0_Hwidong_Yoo-060.pdf


Summary

The dual-readout calorimeter is simulated with GEANT4 simulation with DD4HEP

Simulation performance studies are performed with GEANT4 full simulation

EM energy resolution : ~11%/ 𝐸 , Jet energy resolution : ~26%/ 𝐸 .

Position resolution : ~4.2/ 𝐸 + 0.41 𝑚𝑚

Deep learning application shows promising performance for particle identification.

Jet discrimination : ~80% gluon rejection with 80% quark efficiency

Mass and energy reconstruction for jets is in pipeline.

GAN shower fastsim is ongoing with electron shower images.

We are progressing various projects for dual-readout calorimeter with ML application
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Backups
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Backups

ML Application for Physics Analyses
● Machine learning is widely used for LHC physics analysis with sensible improvements.

○ Most LHC physics analyses apply the ML separately to between object tagging and event level selection

● Our ultimate goal is to apply ML techniques to the CEPC project and maximize the performance.

○ A more comprehensive event level tagging could be performed using raw input from DR calorimeter for 

maximal performance.
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VBF analysis with 𝐻→𝜇𝜇 decay (HIG-19-006) Event selection for 𝐻𝐻→𝑏𝑏𝑍𝑍 decay(HIG-18-013)



Backups

Calibration with 20GeV electron beam
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𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑒𝑞. 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑆𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝐸𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑝𝑜𝑠𝑖𝑡

# 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
= ቊ

𝑆𝑐𝑖𝑛𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 0.87 𝑀𝑒𝑉/𝑝. 𝑒.
𝐶𝑒𝑟𝑒𝑛𝑘𝑜𝑣 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 12.9 𝑀𝑒𝑉/𝑝. 𝑒.

Scale factor = ቊ
𝑆𝑐𝑖𝑛𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 0.99
𝐶𝑒𝑟𝑒𝑛𝑘𝑜𝑣 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 0.95

Scale factor



Backups

Model structure

Image model

(90,90) jet image or (20,20) shower image

64 channels (3,3) kernel Convolution layer

(2,2) Max pooling

Batch normalization

32 channels (3,3) kernel Convolution layer

(2,2) Max pooling

Batch normalization

128 channels (1,1) kernel Convolution layer

Average whole image(128 outputs from channels)

Batch normalization

64 feature Dense layer

Regression or classification

● ReLU activation function, Adam optimizer
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Point cloud model

2048*5 channel 

Matrix multiply (2048,5) input and transform matrix

16 channels 1D convolution((2048,5) to (2048,16))

Batch normalization

Matrix multiply with transform matrix

64 channels 1D convolution((2048,16) to (2048,64))

Batchnormalzation

2 channels 1D convolution((2048,64) to (2048,2))

Batchnormalzation

Flatten

classification

● ReLU activation function, Adam optimizer

Transform matrix{

64 channels 1D convolution((2048,16) to 

(2048,64))

Batchnormalization

Max pooling over points ((2048,64) to 64)

64 features Dense layer

Batch normalization

16*16 features Dense layer

Batch normalization

Reshape (16,16) for transform matrix}

Transform matrix{

64 channels 1D convolution((2048,5) to 

(2048,64))

Batchnormalization

Max pooling over points ((2048,64) to 

64)

64 features Dense layer

Batch normalization

5*5 features Dense layer

Batch normalization

Reshape (5,5) for transform matrix}

[arXiv:1612.00593]



Backups

Position resolution Study with (𝜃, 𝜙) = (0,1°)

● Position resolution for 𝑧

○ Tested by 𝑒‐ beam with energy 10, 20, 40, 60, 80 

and 100 𝐺𝑒𝑉 in 𝑧(0 − 35𝑚𝑚).

○ Fastsim for optical photon was implemented

○ z position resolution : ~
4.1

𝐸
𝑚𝑚+ 𝑐𝑜𝑛𝑠𝑡.
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𝑧𝑖 : position of 𝑖𝑡ℎ SiPM

𝐸𝑖 : calibrated signal count at 𝑖𝑡ℎ SiPM

𝑧𝑟𝑒𝑐𝑜 =
σ𝑖 𝐸𝑖 × 𝑧𝑖
σ𝑖 𝐸𝑖

𝑥

𝑧

𝑧𝑐𝑜𝑟𝑟 − 𝑧𝑀𝐶𝑚𝑚

Scintillation Cerenkov Sum



Backups

Position resolution
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