Crystal dual readout electromagnetic calorimetry for lepton colliders Barrel Trystals Duel-Readout Fiber Calorimetr Endcap Crystals Endcap Crystals

Sarah Eno, U. Maryland International Workshop on CEPC 2020 27 October 2020 (slides brazen stolen from Marco Lucchini)

beam

Detector specs for future electron positron colliders

Well established specifications for the physics program of future electron-positron colliders. The predominance of Z,W, H decays to jets puts a premium on hadron calorimetry.

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
$H \to b \bar{b}/c \bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \rightarrow q \bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Challenging spec for jets (roughly $30\%/\sqrt{E}$). Modest spec on EM calorimetry $(20\%/\sqrt{E})$.

Satisfying the calorimetry specifications

In this talk, I present a new twist on an old variant of dual readout calorimetry, <u>https://arxiv.org/abs/2008.00338</u> (**Lucchini**, Tully, Eno, Lai: accepted for publication in JINST. With dual-readout electromagnetic calorimetry, though, can have the required excellent jet resolution with state-of-the-art electromagnetic resolution

Comparing HGC's and Dual Readout

HGC's are the most popular option for future calorimeters. HGC's achieve excellent jet resolution by via the tracker and shower pattern recognition

Calorimeter resolution requirements not that stringent. 50% HAD and 10% EM stochastic terms

Slide: F. Richard at International Linear Collider – A worldwide event

High granularity

There is a large active international community working on designing high granularity calorimeters that satisfy these requirements, including e.g. the CALICE collaboration (in exploring the possibilities), the CMS collaboration (who is building one for the HL-LHC), and within the CEPC community.

There are some challenges

PFA Fast simulation (Preliminary)

Fast simulation reproduces the full simulation results, factorize/quantifies different impactsSame cleaning condition as in the Full simulation appliedEarly phase of modeling/tuning28/10/19LCWS 201917

Figure 4: The main topological rules for cluster merging: i) looping track segments; ii) track segments with gaps; iii) track segments pointing to hadronic showers; iv) track-like neutral clusters pointing back to a hadronic shower; v) backscattered tracks from hadronic showers; vi) neutral clusters which are close to a charged cluster, vii) a neutral cluster rear to a charged cluster, viii) come association; and ix) recovery of photons which overlap with a track segment. In each case the arrow indicates the track, the filled points represent the hits in the associated cluster and the open points represent the hits in the neutral cluster.

Pattern recognition Hadronic resolution

At the circular machines at least, it would be nice to have a calorimeter with complementary challenges

Dual Readout

Another approach is to build a calorimeter with the best possible resolution IDEA/RD52/DREAM.

Improving hadronic resolution

DREAM/IDEA/RD52: Use Cherenkov light to measure, shower-by-shower, the fraction of the shower energy in pizeros. Use scintillation light to measure all ionizing energy deposits. Apply a scale correction that depends on this ratio.

8

Cherenkov radiation

Can be produced by dedicated Cherenkov radiators, or can be identified in scintillators via

- Angle
- Wavelength
- Timing

$$\frac{d^2 N}{dx d\lambda} = \frac{2\pi \alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \,.$$

10/27/Passage of particles through matter (pdg.lbl.gov)

Can generate in • Quartz

Sarah Eno CEPC 2020

- Clear plastic fibers
- Crystals like BGO, PbWO4

(basically need some transparent material, the higher the n the better)

But since this is only sensitive to the relativistic portion of the shower, need something else to generate signal from the entire energy deposit

- plastic scintillator (advantage of sensitivity to neutrons)
- Crystals like BGO, PbWO4

RD52/IDEA

RD52 started by studying dual readout in crystals. But then they moved to the following geometry

Satisfies the canonical specs for electronpositron Higgs factory calorimetry

However, this method also works in crystals

Fig. 2. The PWO matrix consisted of seven crystals with dimensions of $3 \times 3 \times 20$ cm³. These were arranged as shown in the figure and the beam entered the matrix in the central crystal. All crystals were individually wrapped in aluminized mylar. Both the upstream and downstream end faces were covered with filters. See text for details.

Fig. 3. The time structure of typical signals measured in a single BGO crystal, placed perpendicular to the beam line. The crystal was equipped on one side with a yellow filter, and on the other side with a UV filter, and read out with small, fast PMTs. The signals were measured with the sampling oscilloscope at a rate of 0.5 GHz, or 2.0 ns per sample.

Fig. 5. Emission and absorption characteristics relevant to the PbWO₄ crystal matrix. Diagram (a) shows the emission spectrum of the scintillation light, as well as the transmission characteristics of three filters used to obtain the Čherenkov signals. In diagram (b), the Čherenkov spectrum is plotted, together with the self-absorption coefficient of the PbWO₄ crystals, as a function of the wavelength [5].

Detection of electron showers in dual-readout crystal calorimeters (https://www.sciencedirect.com/science/article/pii/S0168900212014520)

Sarah Eno CEPC 2020

Some crystal options

- **PWO**: the most compact, the fastest, the cheapest
- BGO/BSO: in between (potential for dual readout)
- CsI: the less compact, the slowest, the brightest

better stochastic term

12

Crystal	Density	$\lambda_{ m i}$	Xo	R_{M}	Relative LY	peak emission	Decay time	refractive	Cost
	$ m g/cm^2$	cm	cm	cm	@RT	nm	ns	index	$/cm^2$
PWO	8.3	20.9	0.89	2.00	1	410-500	10	2.2	8
BGO	7.1	22.7	1.12	2.23	70	480	300	2.15	7
BSO	6.8	23.4	1.15	2.33	14	480	100	2.06	10.5
\mathbf{CsI}	4.5	39.3	1.86	3.57	550	300, 480	1220	1.79	4.3

Values from: Journal of Physics: Conference Series 293 (2011) 012004

crystals

Why did they move away from crystals? Crystals would allow EM resolutions of $3\%/\sqrt{E}$?

- Not a compelling case for precision EM resolution
- At the time they did these studies, Sipms were not well developed. PMTs are expensive, and they thought they could only afford one per crystal. But to see the small Cherenkov signal over the large scintillation signal, had to cut down the scintillation signal, ruining the precision EM resolution. All the cost of crystals and none of the benefits
- Also because of the readout constraints, thought the calorimeter could not be high granularity with crystals
- Readout costs also limited longitudinal segmentation, but Cherenkov self absorption below (but not above) the scintillator peak problematic in long crystals

But Sipmms change this.

Technological advancements (SiPMs)

- Many technological advancements in the field of photodetectors
- Compact and robust SiPMs with small cell size (high dynamic range) extending and enhancing sensitivity in a broad range of wavelengths

Cherenkov detection in PWO and BGO

- Sensitivity in both the UV and infrared region with Silicon Photomultipliers
- Detect Cherenkov photons in either the UV (BGO) or infrared region (PWO) (or maybe both)

Fraction of S and C photons detected with dual SiPM

- RGB and UV SiPM are used to detect Cherenkov and scintillation photons
- All the photons detected by UV SiPM are considered as S
- The 550nm filter is added to RGB SiPM, so only photons with wavelength > 550nm could be detected. In this region, C is dominant
- The left plot shows spectrum of S and C when they are produced, arrived at the end and collected by SiPM
- The number of photons at different stages are shown in the table below, but it is a rough estimate, as the scintillation spectrum we are using is clearly rough up when wavelengths > 550nm.

	S	С
Generate	4.5×10 ⁵ /GeV	5.655×10 ⁴ /GeV
Arrive at the End	5%	3.8%
Detected by SiPM	UV (1.1%) RGB (0.014%)	UV (0.49%) RGB (0.28%)
D Meeting, Yihui Lai Misidentification as C		entification as C ⁴

.6

Dual readout crystal ECAL

Drawing from the pioneering work of RD52, but upgrading for new developments in inexpensive, high-QE, tailored-

wavelength sipmms See: https://arxiv.org/abs/2008.00338 Also see Snowmass LOI: SNOWMASS21-IF6-008.pdf

CMS ECAL crystals are 22x22x230 mm

SCEPCAL e.m. resolution

- Contributions to energy resolution:
 - Shower containment fluctuations
 - Longitudinal leakage
 - Tracker material budget
 - Services for front layer readout
 - Photostatistics
 - Tunable parameter depending on:
 - SiPM choice
 - Crystal choice

• Noise

- Negligible with SiPMs
 - low dark counts, high gain
- Channels intercalibration
 - ~0.5% constant term (not in the plot)

Cost and power breakdowns for SCEPCal

	T1+T2 (TIMING)	E1+E2 (ECAL)	
Area barrel	53	53	
Area endcap	19	19	
Total area (barrel+endcaps)	72 m²	72 m²	
# Channels barrel	977k	859k	
# Channels endcaps	344k	374k	
Total # of channels (barrel + endcaps)	1.3 M	1.2 M	
Crystal cost	10 M€	78 M€	
SiPM cost (+monitoring for ECAL only)	8 M€	8.5 M€	
Electronics cost	5 M€	4.5 M€	
Cooling+power+mechanics cost	5 M€	5 M€	
Sub-total cost (barrel+endcaps)	28 M€ 96 M€		
Total cost (barrel+endcaps)	~124 M€		

	T1+T2 (TIMING)	E1+E2 (ECAL)	
# of readout channels	~1.3M	~1.2M	
SiPMs (kW)	2.7	2.5	
Electronics (kW)	34.3	33.5	
Sub-total (kW)	38	36	
Total (kW)	~74 kW		

Hadronic resolution

- 1. Correct the energy deposit in the HCAL with DRO
- 2. Correct the energy deposit in the back section of the ECAL with DRO
- 3. Calibrated sum of ECAL+HCAL

High e.m. resolution potential for PFA

- Many photons from π⁰ decay at ~20-35° angle wrt to jet momentum can get scrambled across closeby jets
- Effect becomes more pronounced in 4 and 6 jets topologies

7->hhha

 p_{T} (jet) > 10 GeV

antikt, R=0.4

— H->bbba

— H->ZZ

Improvements in photon-to-jet assignment

- High e.m. resolution enables photons clustering into π⁰'s by reducing their angular spread with respect to the corresponding jet momentum
- Improvements in the fraction of photons correctly clustered to a jet sizable only for e.m. resolutions of ~3-5%/√(E)

 $z \rightarrow e^+e^-$ Brem recovery

Example from <u>CEPC CDR</u> reference design (electron tracks with no Bremsstrahlung recovery)

► $Z \rightarrow \mu^+ \mu^-$ Recoil

► Z→e⁺e⁻ Recoil

10/27/2020

Electron momentum at ECAL

- Electron momentum at the entrance of ECAL smeared by 0.3 %
- 120 GeV electrons
- Adding back brem photons with ECAL resolution

Flavor physics

Precision EM resolution and timing could benefit flavor physics program

Implementation in dd4hep

We are working with the dd4hep team on implementing the crystal ECAL in dd4hep so it can be used with tracking etc components from their SiD implementation. Barrel is almost ready. Implementation of the spaghetti calorimeter in dd4hep is done by Sanghyuan Ko (Seoul National).

Also working with Lorenzo Pezzotti for a standalone full detector

May have jet studies for crystal dual readout calorimeter soon.

Open questions

Almost everything

- How to support it mechanically?
- What is the jet as opposed to single particle resolution?
- How does upstream material affect the jet reconstruction?
- What is the best tracking system to go with this calorimeter? (current proposal is TPC, but this doesn't work really for high intensity Z running)
- Can cms-style particle flow improve event reconstruction?
- How would segmentation affect tau reconstruction?
- Scintillation/Cherenkov separation can be achieved by wavelength filtering, timing, polarization. The default plan is wavelength separation. But can inexpensive electronics that includes timing help? Can pulse shape measurements in the readout help ()?
- The crystal dual readout hasn't been done with modern photodetectors. But only those (according to simulation) allow this to work. We need to purchase crystals and do test beam measurements.
- Which crystal should we use? PbWO4, BGO, BSO?
- Would the timing layer solve the beam background problems at muon colliders?
- Assembly needs to be understood

conclusion

- There are two quite different, complementary ways to achieve the performance goals for an electron-positron Higgs factory
- Dual readout also allows close to state-of-the-art electromagnetic resolution
- Much work remains; join us!

BACKUP

A Segmented Crystal Electromagnetic Precision Calorimeter (SCEPCal) for future colliders

29/05/20

S.Eno², Y.Lai², <u>M.Lucchini¹</u>, C.Tully¹

¹Princeton University, ²University of Maryland

Calorimetry for future e⁺e⁻ Higgs and Z factories

HIGGS BOSON PHYSICS 319

Higgs can be identified independent of decay mode using the "missing mass " or "boson recoil mass" method, where you identify the Z and use its 3-momentum as the 3-momentum of the recoil particle and the center-of-mass collision energy minus the visible energy as the energy, requiring that to be consistent with the Higgs mass. Mass peak can distinguish ZH from WW, ZZ.

Process	Cross section	Events in 5.6 ab ⁻¹				
Higgs boson production, cross section in fb						
$e^+e^- \rightarrow ZH$	196.2	1.10×10^{6}				
$e^+e^- \! \rightarrow \nu_e \bar{\nu}_e H$	6.19	3.47×10^4				
$e^+e^- \! \rightarrow e^+e^- H$	0.28	1.57×10^3				
Total	203.7	$1.14 imes 10^6$				
Background processes, cross section in pb						
$e^+e^- ightarrow e^+e^- (\gamma)$ (Bhabha)	930	5.2×10^{9}				
$e^+e^- ightarrow q \bar{q} \left(\gamma ight)$	54.1	3.0×10^8				
$e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ [or $\tau^+\tau^-(\gamma)$]	5.3	$3.0 imes 10^7$				
$e^+e^- \rightarrow WW$	16.7	$9.4 imes10^7$				
$e^+e^- \rightarrow ZZ$	1.1	6.2×10^6				
$e^+e^- \rightarrow e^+e^-Z$	4.54	2.5×10^7				
$e^+e^- \to e^+\nu W^-/e^-\bar\nu W^+$	5.09	$2.6 imes 10^7$				

Table 11.2: Cross sections of Higgs boson production and other SM processes at $\sqrt{s} = 240 \text{ GeV}$ and numbers of events expected in 5.6 ab⁻¹. Note that there are interferences between the same final states from different processes after the W or Z boson decays. Their treatments are explained in the text. With the exception of the Bhabha scattering process, the cross sections are calculated using the Whizard program [14]. The Bhabha scattering cross section is calculated using the BABAYAGA event generator [15] requiring final-state particles to have $|\cos \theta| < 0.99$. Photons, if any, must have $E_{\gamma} > 0.1 \text{ GeV}$ and $|\cos \theta_{e^{\pm}\gamma}| < 0.99$.

Separate EWK bosons

Massive Boson Separation

Jet resolution is essential to e⁺ e ⁻ Higgs factory calorimetry

Boson Mass Resolution (BMR)

The precision for many of the key measurables are steepish functions of the resolution

Particle flow

Particle Flow Calorimetry and the PandoraPFA Algorithm (<u>https://arxiv.org/abs/0907.3577</u>) 10/27/2020 Warco Lucchini studies using hepsim <u>https://arxiv.org/abs/2008.00338</u> Sarah Eno CEPC 2020

Final States of e⁺e⁻ Higgs Physics @~246 GeV

- SM Higgs
 - **0 jets: 3%:** $Z \rightarrow II$, vv (30%); $H \rightarrow 0$ jets (~10%, $\tau\tau$, $\mu\mu$, $\gamma\gamma$, $\gamma Z/WW/ZZ \rightarrow Ieptonic)$

decay Final state

- 97% of the SM Higgsstrahlung Signal has Jets in the final state
- 1/3 has only 2 jets: include all the SM Higgs decay modes
- 2/3 need color-singlet identification: grouping the hadronic final sate particles into color-singlets
- Jet is important for EW measurements & jet clustering is essential for differential measurements
Role of calorimeters on PFA jet performance

.80.0 <u>e</u>

0.07

0.05

0.04

0.03

0.02

0.01

٥Ľ

 $\alpha^{\text{eff}} \times (E)$

ш

- Baseline jet performance depends on particle composition and the relevant sub-detector resolutions
- Calorimeter resolution requirements to achieve target jet resolution of ~3%
 - EM (photons) 0 better than 20%/VE
 - Neutral hadrons 0 (mostly $K^{0,L}$ of $\langle E \rangle^{-5}$ GeV) better than 45%/VE

Jet reconstruction in PFA

- Key features of PFA in Jet reconstruction:
 - Swaps out hadronic resolution for tracks (charged hadrons)
 - Corrects momentum direction at the vertex

High e.m. resolution potential for PFA

- Many photons from π⁰ decay at ~20-35° angle wrt to jet momentum can get scrambled across closeby jets
- Effect becomes more pronounced in 4 and 6 jets topologies

7->hhha

 p_{T} (jet) > 10 GeV

antikt, R=0.4

— H->bbba

— H->ZZ

— H->WW

Improvements in photon-to-jet assignment

- High e.m. resolution enables photons clustering into π⁰'s by reducing their angular spread with respect to the corresponding jet momentum
- Improvements in the fraction of photons correctly clustered to a jet sizable only for e.m. resolutions of ~3-5%/√(E)

Brem recovery

Example from <u>CEPC CDR</u> reference design (electron tracks with no Bremsstrahlung recovery)

► Z→µ⁺µ⁻ Recoil

> Z→e⁺e⁻ Recoil

41

The combination of a high precision ECAL with an excellent HCAL would be *IDEAL* to take up the challenge of precision physics at future e⁺e⁻ colliders

- Design optimization of a segmented crystal ECAL
- Integration of crystal ECAL with a Dual ReadOut HCAL
- Optimization of Dual ReadOut in crystal ECAL

Overview of a SCEPCal module

- SCEPCAL: a Segmented Crystal Electromagnetic Precision Calorimeter
- **Transverse and longitudinal segmentations** optimized for particle identification, shower separation and performance/cost
- Exploiting **SiPM readout** for contained cost and power budget

Some crystal options

- **PWO**: the most compact, the fastest, the cheapest
- BGO: in between (potential for dual readout)
- CsI: the less compact, the slowest, the brightest

Crystal	Density g/cm³	λ _ι cm	X₀ cm	R_м cm	Relative LY @ RT	Decay time ns	Photon density (LY / τ _D) ph/ns	dLY/dT (% / °C)	Cost (10 m³) \$/cm³	Cost*X ₀ \$/cm²
PWO	8.3	20.9	0.89	2.00	1	10	0.10	-2.5	8	7.1
BGO	7.1	22.7	1.12	2.23	70	300	0.23	-0.9	7	7.8
Csl	4.5	39.3	1.86	3.57	550	1220	0.45	+0.4	4.3	8.0

Values from: Journal of Physics: Conference Series 293 (2011) 012004

44

SCEPCAL e.m. resolution

- Contributions to energy resolution:
 - Shower containment fluctuations
 - Longitudinal leakage
 - Tracker material budget
 - Services for front layer readout
 - Photostatistics
 - Tunable parameter depending on:
 - SiPM choice
 - Crystal choice

• Noise

- Negligible with SiPMs
 - low dark counts, high gain
- Channels intercalibration
 - ~0.5% constant term (not in the plot)

Impact of tracker and dead material budget

- Tracker material budget <0.3X₀ for <2% impact on stoch. term
 - Well within the target of the CEPC and IDEA reference tracker designs
- Dead material for services $< 0.3X_0$ for impact on stoch. term < 2%
 - Compatible with estimated material budget from cooling (5 mm Al plate)

Particle ID with longitudinal segmentation

 Topology of longitudinal energy deposits in different layers provides clear electron / π^{+/-} discrimination

Particle ID with time-of-flight

- Excellent time-of-flight capabilities for particle identification:
 - Time tagging of **MIPs with ~30 ps** time resolution with single layer
 - See <u>MTD in CMS Phase 2 upgrade</u>
 - Time resolution of 30 ps to e.m. showers with E >20 GeV with the ECAL (rear) segment(s)
 - See <u>Phase 2 CMS ECAL Upgrade</u>

Cost-power drivers and optimization

- Channel count in SCEPCal is limited to ~2.5M
 - 625k channels/layer (2 "timing layers" + "ECAL layers")
- Cost drivers in **ECAL** layers (tot ~95M€):
 - ~81% crystals, 9% SiPMs, 10% (electronics+cooling+mechanics)
 - ~19% of cost scales with channel count
- Power budget driven by electronics: ~74 kW
 18.5 kW/layer
- Room for fine tuning of the segmentation and of the detector performance/cost optimization (see backup)

cost ~ 95M€

Integrating excellent ECAL with excellent HCAL

• <u>Ultra-thin solenoid</u> (~0.6X₀) between ECAL and HCAL

• Ease the HCAL design (cost/performance) from the 'burden' of e.m. resolution

Reference dual readout HCAL

- HCAL-only performance studied by selecting events that do not interact in the ECAL
- Dual readout correction works as expected,
 - delivering ~25%/VE \oplus 1% to hadrons
 - linearity and gaussian distributions are restored

Response to e.m. showers

channelling at 0 deg

- Energy resolution: ~17%/√(E) ⊕ 2% (at 0 deg angle)
- Non-uniformities for impact angles <~3deg (requires pon-pointing design?)

(requires non-pointing design?)

Combining ECAL&HCAL dual readout

- 1. Correct the energy deposit in the HCAL with DRO
- 2. Correct the energy deposit in the ECAL with DRO
- 3. Calibrated sum of ECAL+HCAL

Implementing dual readout in crystal ECAL

• First test of combination of a DRO crystal ECAL with DREAM HCAL back in 2009 with BGO modules (<u>N.Ackurin et al., NIM A 610 (2009) 488-501</u>)

Technological advancements (SiPMs)

- Many technological advancements in the field of photodetectors
- Compact and robust SiPMs with small cell size (high dynamic range) extending and enhancing sensitivity in a broad range of wavelengths

Cherenkov detection in PWO and BGO

- Sensitivity in both the UV and infrared region with Silicon Photomultipliers
- At least two crystal candidates for a compact, cost-contained ECAL with DRO capabilities:
 - **PWO** (e.g. CMS) and **BGO** (e.g. L3)
 - Detect Cherenkov photons in either the UV (BGO) or infrared region (PWO)

Validation of Geant4 ray-tracing simulation

F. Bedeschi, G. Gaudio, et al. https://www.sciencedirect.com/science/article/pii/S0168900212014520

- Geant4 simulation for ray-tracing of Cherenkov photons validated
- **Reproducing experimental results from test beam**

Hamamatsu R8900-100 tubes

(thanks to G.Gaudio for help in retrieving details of the setup!)

Geometry and material description in the paper

 \geq 7 crystals with dimensions of 30 \times 30 \times 200 mm³

> All crystals were individually wrapped in aluminized mylar.

with a large optical transmission filter (U330 or UG5)

> Both the upstream and downstream end faces of the matrix were covered

PMT2

consisted of seven crystals with dimensi ³. These were arranged as shown in the figure and the beam entered in the central crystal. All crystals were individually wrapped in zed mylar. Both the upstream and downstream end faces were covered

PMT1

- - Crystal wrapped with aluminum sheet of 0.985 reflectivity
- > 0.1 mm silicone gap between crystal and PMT Borosilicate glass window
- > Interface between gap and PMT window is set as the filter
- > PMT surface is set as sensitive

Silicone gap refrac_idx 1.403 $25 \times 25 \times 0.1 \ mm^3$

Simulation of optical filters and

MC to data comparison: simulation predicting ~40% more Cherenkov photons (fine tuning ongoing)

	Detected photons (50 GeV e-)		Number in paper (50 GeV e-)
Filters	Upstream	downstream	
No filter /No filter	9950	14860	
No filter/U330	9146	781	
No filter/UG5	9199	1278	
U330/U330	517	774	650
U330/UG5	513	1246	1250

4/29/20

Ray-tracing in the SCEPCal

- Study impact of various parameters on light collection efficiency for both S and C:
 - LCE grows linearly with SiPM active area
 - LCE grows with shorter crystals

SCEPCal key features for DRO optimization

- High granularity increases light collection efficiency (both C and S)
 - \circ 1 cm² cross section compared to ~ 3 cm² in L3/CMS
 - crystal length reduced by ~2x
- SiPM active area can be tuned to achieve target resolution (stoch. term)
 - light collection efficiency increasing linearly with SiPM area
- SiPM with smaller dynamic range but high PDE can be selected for C-detection

Photo-statistic requirements for S and C

 Poor S directly impact the ECAL resolution stochastic term

(even without DRO):

- S > 400 phe/GeV to limit the contribution to HCAL stoch. term below 20%
- A limited resolution to C (photostatistics) impacts the C/S and thus the precision of the event-by-event DRO correction
 - C > 60 phe/GeV to limit the contribution to HCAL stoch. term below 20%

DRO in the **rear** SCEPCal segment **only**

- Majority of the energy deposit from hadron is in the rear ECAL section
- Dual readout can be implemented in the rear section only
 - No degradation in performance wrt a full (front+rear) DRO ECAL
 - +50% in channel count wrt to non-DRO ECAL can be mitigated by decreasing granularity in the rear compartment where shower radius is larger

Summary

- Highlights of a segmented crystal ECAL (SCEPCal):
 - Excellent DRO hadron calorimetry with 27%/√(E) ⊕ 2% is achieved with a segmented crystal EM calorimeter in front of the thin solenoid in the IDEA detector
 - Addition of ~3%/√(E) ⊕ 1% EM resolution for photons and brem recovery for electrons
 - Enables efficient pre-clustering of pizero photons, shown to reduced photon misassignment in the 4th jet by a factor of 4.5 and the 6th jet by a factor of 8 impacting 2/3 of all HZ events.
- Optimization of DRO capabilities:
 - Methods to extract C from rear crystals significantly improved with SiPMs and shorter crystals, relative to previous tests (<u>2009 DREAM+BGO</u>, <u>2013 BGO/PWO</u> <u>DRO studies</u>)
 - Option for interleaved pure-C radiating crystals with PWO also being studied.
- Combination of DRO ECAL and DRO HCAL allows for separate optimizations of channel count, readout and cost

Additional slides

Outlook

- Progress on standalone simulation for further cost/performance optimization of the SCEPCal layout and its integration with a DRO HCAL
- Experimental (beam) tests to consolidate parameters
- Looking forward to a more quantitative PFA benchmark for a comparison of calorimeter designs

Jet composition

- 30% photons, 50% charged hadrons, 10% neutral hadrons
- Neutral hadrons are mainly kaons with mean energy of ~5 GeV

Crystal based Spaghetti Calorimeters

- Technology wise, a lot of progress in high granularity crystal calorimeters
 - New materials and new production processes
 - Undoped LuAG crystals as excellent cherenkov radiators
 - Crystal based SPACAL being studied for LHCb HL-LHC upgrade

Increase of C/S ratio in irradiated PWO crystals

• An example of high wavelength Cherenkov detection

- Radiation damage in PWO crystals filtering out the scintillation and enhancing the relative contribution of C photon (with lambda>500 nm) to the signal
- Pulse shapes also get faster

Figure 4.5: Left: wavelength dependence of Cherenkov and scintillation light compared with the transmission of hadron damaged crystals and the quantum efficiency (QE) of the photodetector. Right: contribution of scintillation and Cherenkov signal to the total light output at different μ_{ind} .

From "Evolution of the CMS ECAL Performance and R&D Studies for Calorimetry Options at High Luminosity LHC", M.Lucchini

Linearity (SCEPCal + DRO HCAL)

• Gaussian distributions and response linearity restored

More on performance/cost optimization

Detector **cost** drivers

- Crystal options
 - LYSO:Ce for timing layer (optimal choice for the CMS MTD)
 - PWO (very compact CMS and PANDA ECALs preferred choid
 - Many other crystals on the market may allow further optimi
- Crystal costs used as reference
 - Quotes from crystal vendors
 - **PWO:** ~7€ /cc (for 10 m³, cut and polished)
 - LYSO: ~30€ /cc (for cut, polished and wrapped elements)
- SiPMs
 - Recent estimates from CMS Upgrade experience:
 - ~6€/SiPM (9x9 mm² active area)
 - can embed a LED for monitoring: additional ~1€/channel
 - Cost constantly dropping and technology improving in the land technology improving improving in technology improving improving in technology improving improvin
 - can aim at a factor ~2-4 reduction in the next decade

Cost and power breakdowns for SCEPCal

	T1+T2 (TIMING)	E1+E2 (ECAL)
Area barrel	53	53
Area endcap	19	19
Total area (barrel+endcaps)	72 m ²	72 m ²
# Channels barrel	977k	859k
# Channels endcaps	344k	374k
Total # of channels (barrel + endcaps)	1.3 M	1.2 M
Crystal cost	10 M€	78 M€
SiPM cost (+monitoring for ECAL only)	8 M€	8.5 M€
Electronics cost	5 M€	4.5 M€
Cooling+power+mechanics cost	5 M€	5 M€
Sub-total cost (barrel+endcaps)	28 M€	96 M€
Total cost (barrel+endcaps)	~12	4 M€

	T1+T2 (TIMING)	E1+E2 (ECAL)	
# of readout channels	~1.3M	~1.2M	
SiPMs (kW)	2.7	2.5	
Electronics (kW)	34.3	33.5	
Sub-total (kW)	38	36	
Total (kW)	~74 kW		

Optimization of crystal volume

Crystal pointing geometry

 →reduce by ~20% crystal volume and channel count

- Optimizing crystal length vs energy resolution
 - with 20 X₀ contribution to constant term from shower leakage comparable to intercalibration precision: O(1%)
 - no substantial impact on stochastic component (negligible wrt photo-statistics term of ~4-5%)

Transverse segmentation (visual impact)

cell size: 1x1 cm²

cell size: 0.5x0.5 cm²

Optimization of segmentation

- Segmentation optimized for performance/cost:
 - **Transverse** segmentation: $\rightarrow 1 \text{ cm} \sim R_M / 2 \text{ (half Molière radius)}$
 - Longitudinal segmentation: 2 segments
 →particle ID with no dead material at
 shower max
 →simple for readout and services (front and
 rear)
- Impact of ch. count on overall detector cost <20% for baseline segmentation choice
- Total cost ~ 95 M€

More on SiPM readout

Fraction of S and C photons detected with dual SiPM

- RGB and UV SiPM are used to detect Cherenkov and scintillation photons
- All the photons detected by UV SiPM are considered as S
- The 550nm filter is added to RGB SiPM, so only photons with wavelength > 550nm could be detected. In this region, C is dominant
- The left plot shows spectrum of S and C when they are produced, arrived at the end and collected by SiPM
- The number of photons at different stages are shown in the table below, but it is a rough estimate, as the scintillation spectrum we are using is clearly rough up when wavelengths > 550nm.

	S	С	
Generate	4.5×10 ⁵ /GeV	5.655×10 ⁴ /GeV	
Arrive at the End	5%	3.8%	
Detected by SiPM	UV (1.1%) RGB (0.014%)	UV (0.49%) RGB (0.28%)	
D Meeting, Yihui Lai Misidentification as C			

'6

Dynamic range with SiPM

- 15 um cell pitch has high PDE (up to 50%) → optimal for T1 and T2 (timing)
- 10 um cell pitch has larger dynamic range → possibly better for E1, E2
 (ECAL)
 Ratio of number of photoelectrons at 1 GeV over SiPM available cells

More Geant4 simulation

SCEPCal layout overview

Electron momentum at ECAL

- Electron momentum at the entrance of ECAL smeared by 0.3 %
- 120 GeV electrons
- Adding back brem photons with ECAL resolution

10 GeV $\pi^0 \rightarrow \gamma\gamma$ (Geant4 events display)

PWO			Csl	
R _M = 2.0 cm			R _M = 3.6 cm	
THALING MAN	TATA A	A A A A A A A A A A A A A A A A A A A	IIIX HAAAAAA	

10 cm