IMPERFECTION AND CORRECTION FOR CEPC

Bin Wang and Yuanyuan Wei (on the behalf of the CEPC error correction

Institute of High Energy Physics

wangbin@ihep.ac.cn

October 26, 2020

The 2020 International Workshop on the High Energy Circular Electron Positron Collider

CONTENT

- Errors definition and requirements
- The correction scheme
- The correction results
- Summary and to do list

LATTICE AND REQUIREMENTS

- The error correction is based on CEPC CDR lattice.
- Small emittance ration (0.2%) and small beta functions.
- Dynamics aperture (DA) requirements: $8\sigma_x \times 15\sigma_y \& 0.0135$ (on-axis injection).

ERRORS DEFINITION AND CHALLENGES

IR=50µm

	Component	$\Delta x (mm)$	$\Delta y (mm)$	$\Delta \theta_{z}$ (mrad)	Field error	
	Dipole	0.10	0.10	0.1	0.01%	
	Arc Quadrupole	0.10	0.10	0.1	0.02%	
<	IR Quadrupole	0.05	0.05	0.05		
	Sextupole	0.10	0.10	0.1		

IR=100µm

	Component	$\Delta x (mm)$	Δy (mm)	$\Delta \theta_{\rm z} ({\rm mrad})$	Field error	
	Dipole	0.10	0.10	0.1	0.01%	
	Arc Quadrupole	0.10	0.10	0.1	0.02%	
<	IR Quadrupole	0.10	0.10	0.10		
	Sextupole	0.10	0.10	0.1		

- The lattice with small beta functions is very sensitive to FF misalignments.
- The small emittance ratio requires a small vertical dispersion and the coupling correction.
- 1000 lattice seeds are generated for further correction.

THE CORRECTION SCHEME

- Software: SAD and AT
- COD correction with sextupoles off
- **Turn on the sextupoles** and perform COD correction again.
- Dispersion correction (DFS)
- Beta beating correction (LOCO)
- Coupling and vertical dispersion correction (Local coupling parameter correction)

COD CORRECTION

- > BPMs placed at quadrupoles (~1500, 4 per betatron wave) Horizontal correctors placed beside focusing quadrupoles (~1500)
- Vertical correctors placed beside defocusing quadrupoles (~1500)
- Orbit correction is applied using orbit response matrix and SVD method.

DISPERSION CORRECTION

Dispersion free steering principle (DFS): θ_{c}

- \vec{u} : Orbit vector
- \vec{D}_u : Dispersion vector
- $\vec{\theta}$: Corrector strengths vector
- α : Weight factor
- A: Orbit response matrix
- **B:** Dispersion response matrix

DISPERSION CORRECTION

 $\Delta D_{x,rms}$ decreased from 31mm to 2.2mm Factor 14 improvement

s (km)

BETA-BEATING CORRECTION

Correct the beta functions with sextupoles on.

- Based on AT LOCO: model based correction
 - Establish lattice model M_{mod} , multi-parameter fit to the orbit response matrix

M_{meas} to obtain calibrated model:

- ◆ Parameters fitted: K, KS ...
- Use calibrated model to perform correction and apply to machine.
- ◆ Application to correct beta-beating, dispersion and coupled response matrix.

 $\chi^{2} = \sum_{i,j} \frac{\left(M_{\text{mod},ij} - M_{\text{meas},ij}\right)^{2}}{\sigma_{i}^{2}} \equiv \sum_{i,j} V_{ij}^{2}$

Result of one seed

LOCO correction1

OPTIMIZATION OF BETA-BEATING CORRECTION

LOCO correction2

- More variables fitted in LOCO to improve the beta beating correction.
- Fit dispersion at the same time with beta beating correction.
- Constraint the strength of skew component in coupling correction.

- The beta beating of the LOCO correction2 is much better than that of the correction1.
- The passing rate is dramatically decreased in the LOCO correction1, but almost not decreased in the LOCO correction2.

BEAT-BEATING CORRECTION

 $\Delta\beta/\beta_{x,rms}$ decreased from 37.6% to 7.0% Factor 5 improvement $\Delta \beta / \beta_{x,rms}$ decreased from 37.7% to 11.2% Factor 3 improvement

OPTIMIZATION OF BETA-BEATING CORRECTION

Component	$\Delta x (\mu \mathbf{m})$	$\Delta y (\mu \mathbf{m})$	$\Delta \theta_z$ (µrad)	
Arc quadrupole	100	100	100	
IR Quadrupole	50	50	50	
FF Quadrupole	50	50	50	
Sextupole	100	100	100	

Component	$\Delta x (\mu \mathbf{m})$	Δy (μ m)	$\Delta \theta_z$ (µrad)	
Arc quadrupole	100	100	100	
IR Quadrupole	100	100	100	
FF Quadrupole	100	100	100	
Sextupole	100	100	100	

Observable	Before correction	After correction	Observable	Before correction	After correction
Hori. disp.	29.0 mm	4.3 mm	Hori. disp.	31 mm	2.2 mm
Vert. disp.	102.0 mm	2.3 mm	Vert. disp.	42.7 mm	5.9 mm
Hori. Beta-beating	26.4%	2.8%	Hori. Beta-beating	11.7%	5.1%
Vert. Beta-beating	37.6%	7.0%	Vert. Beta-beating	37.7%	11.2%

COUPLING CORRECTION

- Neglecting beam-beam effects $\varepsilon_y \simeq \varepsilon_{y0} + \kappa \varepsilon_x + r E^2 (D_v^{\rm rms})^2$
- Local coupling parameter matching was developed for BEPCII.
- Both coupling and vertical dispersion are controlled.
- Using the trim coils of the sextupoles (~1000), which providing skew-quadrupole field, to perform emittance tuning for CEPC.
- The vertical orbit distortion due to a horizontal deflection at a BPM is:

$$\frac{\Delta y_{cod}}{\Delta x_{cod}} = \bar{c}_{b,22}k_1 + \bar{c}_{b,12}k_2 + \bar{c}_{c,11}k_3 + \bar{c}_{c,12}k_4$$

 k_1, k_2, k_3, k_4 : only related to the decoupled linear optics

 $\bar{c}_{b,22}, \bar{c}_{b,12}, \bar{c}_{c,11}, \bar{c}_{c,12}$: local coupling parameters, $\bar{c}_{b,12} = M_c \overrightarrow{ks}$

 $M_c: \bar{c}_{b,12}$ response matrix $\overrightarrow{ks}:$ skew-quadrupole vector

RESULTS OF EMITTANCE TUNING

RESULTS OF EMITTANCE TRACKING

- The vertical emittance from tracking result is higher than that of mapping result by 10 times.
- ✓ Both emittance results satisfy the coupling requirements.
- \checkmark Further study of the emittance tracking is necessary.

RESULTS OF EMITTANCE TRACKING

 \checkmark Further study of the effects of coupling, synchro-beta resonance and SR in

each magnet are ongoing.

DA RESULTS

SUMMARY

- > The optics correction is very challenging for the relaxed tolerance of the imperfections.
- The lattices with IR=50µm and IR=100µm case are corrected, the passing rates are increased to 89.1% and 72.4%, respectively.
- The emittance tracking is estimated, further study is ongoing.
- Optimize the DA plots which include the lower limit DA and the DA from bare lattice.

TO DO LIST

- > Include more types of imperfections.
- Optimize the correction strategy to achieve finer tuning of optics.
- Study off-momentum correction.
- The development of the error correction algorithm for high luminosity lattice.

Thanks for your attention!

