

"Tell me that you have found no sign of New Physics again, I dare you. I double dare you. Tell me one more goddamn time!" Highlights and future perspective of the CEPC Physics

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Shanghai/virtual, 10/2020

- Status of the field
- Highlights at this workshop
- Outlook / what is needed for the future

Q: What will the CEPC (or another e^+e^- collider) add to the (HL-)LHC?

Q: What will the CEPC (or another e^+e^- collider) add to the (HL-)LHC?

A: The CEPC will add precision \Rightarrow CEPC <u>delivers</u> \oplus <u>needs</u> precision!

The CEPC can make discoveries \Rightarrow What can the CEPC detect/discover?

Q: What will the CEPC (or another e^+e^- collider) add to the (HL-)LHC?

A: The CEPC will add precision \Rightarrow CEPC delivers \oplus needs precision! The CEPC can make discoveries \Rightarrow What can the CEPC detect/discover?

Where are we in this respect? (Status? What is needed? Achievement?)

- SM/EW \rightarrow 13 talks
- QCD \rightarrow 7 talks
- Higgs \rightarrow 14 talks
- BSM \rightarrow 9 talks
- Flavor \rightarrow 8 talks

Q: What will the CEPC (or another e^+e^- collider) add to the (HL-)LHC?

A: The CEPC will add precision \Rightarrow CEPC delivers \oplus needs precision! The CEPC can make discoveries \Rightarrow What can the CEPC detect/discover?

Where are we in this respect? (Status? What is needed? Achievement?)

- SM/EW \rightarrow 13 talks
- QCD \rightarrow 7 talks
- Higgs \rightarrow 14 talks
- BSM \rightarrow 9 talks
- Flavor \rightarrow 8 talks

 $\Rightarrow Impossible (and useless) to cover every single talk$ $\Rightarrow Flavor of what has been discussed$

Further complications for an overview:

Everything is connected:

. . .

- SM must be fully understood to find BSM physics
- SM predictions require SM parameter determination, BSM impact?
- Higgs talks in Higgs, BSM, Flavor
- BSM talks in Higgs, BSM, Flavor

Even some of the parallel talks were already overview talks . . .

Each "subfield" itself is multi-dimensional ⇒ example: Higgs

Some important questions:

- \Rightarrow that partially have been addressed at this workshop \ldots
- **Q:** Is SM Higgs physics a done deal?
- **Q:** Are we prepared for rare/BSM Higgs decays?
- **Q:** Does **SMEFT** cover all relevant BSM Higgs physics?
- **Q:** Are we prepared for light BSM Higgs bosons?
- **Q:** Are we happy with the λ_{hhh} situation?
- **Q:** Are EWPO a done deal?
- **Q:** Is CEPC350 just a nice extension of the main programe?
- **Q:** How relevant is polarization?

Can we always compensate with high lumi?

- **Q:** Are we ready for LLPs?
- **Q:** Often we see FCC-ee results. Can they always be taken over?

Some important questions:

- \Rightarrow that partially have been addressed at this workshop \ldots
- **Q:** Is SM Higgs physics a done deal?
- **Q:** Are we prepared for rare/BSM Higgs decays?
- **Q:** Does **SMEFT** cover all relevant BSM Higgs physics?
- **Q:** Are we prepared for light BSM Higgs bosons?
- **Q:** Are we happy with the λ_{hhh} situation?
- **Q:** Are EWPO a done deal?
- **Q:** Is CEPC350 just a nice extension of the main programe?
- **Q:** How relevant is polarization?

Can we always compensate with high lumi?

- **Q:** Are we ready for LLPs?
- **Q:** Often we see FCC-ee results. Can they always be taken over?

Most of the time: A: NO (or at least: not yet)

SM Higgs physics

hZ production:

 O(α) corr. to hZ production and Z decay

Kniehl '92; Denner, Küblbeck, Mertig, Böhm '92 Consoli, Lo Presti, Maiani '83; Jegerlehner '86 Akhundov, Bardin, Riemann '86

• Technology for $\mathcal{O}(\alpha)$ with off-shell Z-boson available Boudjema et al. '04 Denner, Dittmaier, Roth, Weber '03

- Can be combined with h.o. ISR QED radiation
- $\mathcal{O}(\alpha \alpha_{s})$ corrections

Greco et al. '17

Gong et al. '16 Chen, Feng, Jia, Sang '18

Theory error: $\Delta_{\text{th}} \sim O(1\%)$

With full 2-loop corrections for $ee \rightarrow HZ$: $\Delta_{th} \leq O(0.3\%)$

Parametric error: negligible if $\delta M_{\rm H} < 100 \ {\rm MeV}$

\Rightarrow more work is needed to get to the required precision

[Freitas]

SM Higgs physics: progress in calculations

Higgs at e+e- colliders: couplings and ZH

Lepton colliders as Higgs factories		Estimated P	recision
	m_H	5.9 M	eV
For the foreseen accuracy, computation of higher orders for H decays will be needed	Γ_H	3.1%	6
	$\sigma(ZH)$	0.5%	6
N4LO QCD: massless 4/5 loop integrals for $H \rightarrow bb/gg$	$\sigma(uar{ u}H)$	3.2%	6
inclusive $\Omega(\alpha^4)$ corrections to $H \rightarrow bh$ (Baikov Chetwisin Kuha han $ah/0511063$)	Decay mode	$\sigma(ZH) \times BR$	BI
	$H ightarrow bar{b}$	0.27%	0.56
considering the inclusion of top mass effects at N3LO QCD	$H \to c \bar{c}$	3.3%	3.3
	H ightarrow gg	1.3%	1.4
- ² .	$H \to WW^*$	1.0%	1.1
NNLO EW: massive 2 loop vertex correction	$H ightarrow ZZ^*$	5.1%	5.1
$ \leq \uparrow \zeta$	$H ightarrow \gamma \gamma$	6.8%	6.9
not available, but within reach	$H ightarrow Z\gamma$	15%	15
× 2'	$H ightarrow au^+ au^-$	0.8%	1.0
	$H o \mu^+ \mu^-$	17%	179
This program will depend also on advances on NNLO EW corrections to $a^+a^- \rightarrow 7H$		12	< 0.3

2 loop corrections to $e^+e^- \rightarrow ZH$

Form-factor type corrections

Could be approached with known techniques

\Rightarrow progress possible, but difficult

conceptual and computing

[Buccioni]

BR

0.56% 3.3%

1.4% 1.1% 5.1%

6.9% 15%

1.0% 17% < 0.30%

211		CEPC CDR Oct 18
	2 loop corrections to $e^+e^- \rightarrow Z(I^+I^-)H$	
	Extremely challenging.	
	Beyond current technologies and methods.	
	It will require a huge concentual and comp	uting effort

Why Loop Integrals ?

Precision computation of the cross-section in perturbation theory requires the computation of multi-leg / multi loop Feynman Integrals.

The main bottleneck

Progress for loop integrals (II)

[Mandal]

Evaluation of MIs

Analytical approac	 Stable and fast numerical evaluation Not Flexible
☑ Direct Integration (Feyn	man Parameter, Mellin Barnes Method) Smirnov (1999); Tausk (1999); Czakon (2005); Czakon, Gluza, Reimann (2005); Brown (2009); Panzer (2015);
☑ Differential Equation	Kotikov (1991); Remiddi (1997); Gehrmann, Remiddi (2000); Argeri, Mastrolia (2007) Henn(2013)
Numerical approach	h University of the second sec
Sector Decomposition	Hepp (1966); Roth, Denner (1996); Binoth, Heinrich (2000); Carter, Heinrich (2010); Borowka, Carter, Heinrich (2012); Smirnov, Smirnov, Tentyukov (2011), Bogner, Weinzierl (2008); Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke (2017)
☑ Loop-Tree Duality	Catani, Gleisberg, Krauss, Rodrigo, Winter (2008); Bierenbaum, Catani, Draggiotis, Rodrigo (2010); Runkel, Szr, Vesga, Weinzierl (2019); Capatti, Hirschi, Kermanschah, Ruijl (2019); Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Bobadilla (2020); Ramrez-Uribe, Hernndez-Pinto, Rodrigo, Sborlini, Bobadilla (2020)
M Differential Equation	Boughezal, Czakon, Schutzmeier (2007); Czakon (2008); Liu, Ma, Wang (2017); MKM, Zhao (2018)

SM physics: progress in calculations - lepton PDFs

[Frixione]

Goal: increase the accuracy in the computations of e^+e^- cross sections

Framework: a factorisation formula

▶ aka structure-function approach: best to *not* use this terminology

 $\sigma = \mathsf{PDF} \star \mathsf{PDF} \star \hat{\sigma}$

PDFs collect (universal) small-angle dynamics

SM physics: progress in calculations - lepton PDFs

Goal: increase the accuracy in the computations of e^+e^- cross sections

Framework: a factorisation formula

▶ aka structure-function approach: best to *not* use this terminology

The inclusion of NLL contributions into the electron PDF has an impact between 0.1% and 0.5%. We expect this to be somewhat observable dependent

PDFs collect (universal) small-angle dynamics

[Pellen]

Automatised NLO EW for e^+e^- already achieved!

- Not working and public for all generators yet
- Electron PDF, non-perturbative effects etc. to be implemented
- \rightarrow All this will be there before any e⁺e⁻ machine is built!

Higgs beyond κ approximation

 σ

if BSM induces new Lorentz structures in hZZ interaction

 \Rightarrow more complicated coupling structure \Rightarrow more complicated analysis

CEPC / FCC-ee: important role by *Z-pole run*, ~x2 better δg_{HVV}

 \mathcal{F}

- ILC/ CLIC: important role by *beam polarizations*, made up ∫L
- \Rightarrow Luminosity can compensate for missing polarization! Always?

[Tian]

[Fang]

Uncertainties on the top have a big effect on the Higgs

- · Higgsstr. run: insufficient
- Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus top@HL-LHC$: top contam. in \bar{c}_{gg} only

 $\Rightarrow e^+e^- \rightarrow t\bar{t}$ becomes important

Higgs EFT analysis

Impact of a hypothetical 350/360 GeV run

- Measurements at 350/360 GeV provides additional handles on the anomalous couplings (e.g. hZ^µZ_µ vs. hZ^{µν}Z_{µν}).
- Also improves the measurements of aTGCs.

$\Rightarrow e^+e^- \rightarrow t\bar{t}$ becomes important

[Fang]

EWPO at CEPC

- \Rightarrow large statistical improvement
- \Rightarrow various theory uncertainties?

[Schwinn]

$\ensuremath{\mathit{M}}_W$ at CEPC (threshold scan)

WW threshold

- Sensitivity to M_W m_w=80.379 GeV, Γ_w=2.085 GeV 10 mw=79.379-81.379 GeV, Гw=2.085 GeV $\Delta \sigma \sim 1\% \Leftrightarrow \Delta M_W \sim 15 \,\mathrm{MeV}$ mw=80.379 GeV, Γw=1.085-3.085 GeV • CEPC sensitivity: (arXiv:1812.09855) **σ** (**pb**) $\Delta M_W \simeq 1 \,\mathrm{MeV}, \,\Delta \Gamma_W \simeq 3.2 \,\mathrm{MeV}$ 5 (FCC-ee: $\Delta M_W \simeq 0.4 \,\mathrm{MeV}, \,\Delta \Gamma_W \simeq 1.1 \,\mathrm{MeV}$) vs=162.3 GeV required theory precision 150 160 155 165 170 $\delta \sigma_{WW}^{\text{th.}} < 0.01 - 0.05\%$ vs (GeV)
- \Rightarrow very high requirements for theoretical precision

[Schwinn]

Is a full NNLO $e^-e^+ \rightarrow 4f$ calculation required? Naive estimate:

 $\sigma_{\rm NNLO}^{\rm 4f}(s) - \sigma_{\rm EFT}^{(2)}(s) \approx \frac{\alpha}{s_w^2} \left(\sigma_{\rm NLO}^{\rm 4f}(s) - \sigma_{\rm EFT}^{(1)}(s) \right) = \sigma_{\rm Born}^{\rm 4f}(s) \times 0.02\%$

 \Rightarrow effects need to be controlled!

 \Rightarrow very high requirements for theoretical precision

EWPO at CEPC

	CEPC	perturb. error	Param. error	main
		with 3-loop		source
M_{W} [MeV]	1	1	2.1	m_{t} , $\Delta lpha$
Γ_Z [MeV]	0.5	0.15	0.15	m_{t}, α_{S}
R_b [10 ⁻⁵]	4.3	5	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	<1	1.5	2	m_t , Δ α

[†] Theory scenario: $O(\alpha \alpha_s^2)$, $O(N_f \alpha^2 \alpha_s)$, $O(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $O(\alpha_t^{4-n} \alpha_s^n)$, $[N_f^n = \text{at least } n \text{ closed fermion loops}, \alpha_t = y_t^2/(4\pi)]$

Parametric inputs:

***CEPC:**
$$\delta m_t = 600 \text{ MeV}, \ \delta \alpha_s = 0.0002, \ \delta M_Z = 0.5 \text{ MeV}, \ \delta(\Delta \alpha) = 5 \times 10^{-5}$$

 \Rightarrow needed: theory improvement, $e^+e^- \rightarrow t\bar{t}$, $\Delta \alpha_{had}$ and α_s

 $\Delta \alpha_{had}$ improvements?

[Passera]

How can we improve the precision of $\Delta \alpha_{had}^{(5)}(M_Z^2)$?

- New low-energy data for σ_{had}(s) (CMD-3, SND, KEDR, BESIII, Belle-2, ...). Radiative Corrections to σ_{had}(s) are crucial.
- Direct determination of Δα_{had}⁽⁵⁾(Mz²) measuring the muon asymmetry A^{µµ}_{FB}(s) in the vicinity of the Z pole Patrick Janot, JHEP 2016
- Euclidean split method (Adler function). Needs spacelike offset $\Delta \alpha_{had}^{(5)}(-M_0^2)$ with $M_0 \sim 2$ GeV and pQCD. Fred Jegerlehner, hep-ph/9901386
- Future muon-electron scattering data at the MUonE experiment may help determine the spacelike offset $\Delta \alpha_{had}^{(5)}(-M_0^2)$ (see later)
- Lattice QCD? Lots of work in progress for the hadronic vacuum polarization contribution to the muon g-2.

 \Rightarrow improvements possible, but far beyond trivial

α_s relevance and improvements

[d'Entierra]

Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

Process	$\sigma(\mathbf{pb})$	$\delta \alpha_s(\%)$	PDF $+\alpha_s(\%$	5) Scale (%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9
Channel	$M_{ m H}[m GeV]$	$\delta lpha_s(\%)$	Δm_b	Δm_c
${\rm H} \rightarrow {\rm c} \bar{\rm c}$	126	± 7.1	$\pm 0.1\%$	\pm 2.3 %
$\mathrm{H} ightarrow \mathrm{gg}$	126	± 4.1	$\pm 0.1\%$	± 0 %

♦ <u>FCC-ee</u>:

- Huge Z pole stats. ($\times 10^5$ LEP)
- Exquisite systematic/parametric precision (stat. uncert. much smaller):

$$\begin{split} \Delta \mathbf{R}_{Z} &= 10^{-3}, \quad \mathbf{R}_{Z} = 20.7500 \pm 0.0010 \\ \Delta \Gamma_{Z}^{\text{tot}} &= 0.1 \text{ MeV}, \quad \Gamma_{Z}^{\text{tot}} = 2495.2 \pm 0.1 \text{ MeV} \\ \Delta \sigma_{Z}^{\text{had}} &= 4.0 \text{ pb}, \quad \sigma_{Z}^{\text{had}} = 41\,494 \pm 4 \text{ pb} \\ \hline \Delta m_{Z} &= 0.1 \text{ MeV}, \quad m_{Z} = 91.18760 \pm 0.00001 \text{ GeV} \\ \Delta \alpha &= 3 \cdot 10^{-5}, \quad \Delta \alpha_{\text{had}}^{(5)}(m_{Z}) = 0.0275300 \pm 0.0000009 \end{split}$$

- TH uncertainty reduced by \times 4 computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
- ♦ 10 times better precision than today: $δα_s/α_s ~ ±0.2\%$ (tot), ±0.1% (exp)

 $\alpha_{s}(m_{z}) = 0.12030 \pm 0.00028 (\pm 0.2\%)$

What can be learned at CEPC350?

- Mass in well-defined scheme:
 - $\sigma(e^+e^- \rightarrow t\bar{t})$ at $\sqrt{s} \approx 350 \,\text{GeV}$: $\Delta m_t \approx 50 \,\text{MeV}$
 - $\sigma(e^+e^- \to t\bar{t}\gamma)$ at $\sqrt{s} \approx 380 \, {
 m GeV}$: $\Delta m_t \approx 150 \, {
 m MeV}$

[Boronat, Fullana, Fuster, Gomis, Vos, Hoang, Widl, Mateu 2020]

• Width:

• $\sigma(e^+e^- \rightarrow t\bar{t})$ at $\sqrt{s} \approx 350 \,\text{GeV}$: $\Delta\Gamma_t \approx 60 \,\text{MeV}$

- Yukawa coupling:
 - $\Gamma_{h
 ightarrow gg}$, $\Gamma_{h
 ightarrow \gamma\gamma}$: $\Delta \kappa_t < 0.01$

[Boselli, Hunter, Mitov 2018]

•
$$\sigma(e^+e^- \rightarrow t\bar{t}h)$$
 at $\sqrt{s} \geq 550$ GeV: $\Delta\kappa_t \approx 0.04$

• $\sigma(e^+e^- \rightarrow t\bar{t}h)$ at $\sqrt{s} \approx 500$ GeV: $\Delta \kappa_t \approx 0.06$

[arXiv:1409.7157, arXiv:1506.05992, arXiv:1807.02441]

[Farell, Hoang 2005; Dawson, Reina 2017]

• $\sigma(e^+e^- \rightarrow t\bar{t})$ at $\sqrt{s} \approx 350 \,\text{GeV}$: $\Delta \kappa_t \approx 0.25$

 \Rightarrow CEPC350 is crucial and interesting

Top parameter "extraction"

Peak position

There are still many interesting unresolved problems to work on to sharpen the theoretical tools for future lepton colliders.

Development of a new generation of more precise Monte-Carlo generators must receive high priority in the community as being theory work that is valuable by itself (such as loop calculations).

\Rightarrow Much more theory effort needed!

Top physics at CEPC240

Running in Higgs factory mode (240 GeV) is not sufficient for tt production. But, single top production possible in the presence of non-standard flavor violating interactions (tq)(ee) (negligible in the SM)

\Rightarrow possibly interesting top physics at CEPC240 already?!

EFT evolution for the CEPC

- EFT fit v1.0 (CEPC CDR) based on [arXiv:1704.02333] Durieux, Grojean, JG, and Wang,
 - [arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, and Vantalon
 - Higgs + aTGCs (anomalous triple gauge couplings)
 - Z-pole, W mass, width and BRs all assumed to be perfectly SM-like.
 - Simple binned analysis to extract aTGCs from $e^+e^- \rightarrow WW$.
 - Indirect probes on the triple Higgs coupling.
- EFT fit v1.5 (progress made after CDR)

based on [arXiv:1907.04311] De Blas, Durieux, Grojean, JG, Paul

- Higgs + EW (+ aTGCs)
- Realistic Z-pole, W mass, width and BRs measurements.
- Optimal observable analysis for $e^+e^- \rightarrow WW$, full EFT parameterization.
- EFT fit v1.6?
 - Towards a realistic $e^+e^- \rightarrow WW$ analysis.
 - A hypothetical 350/360/365 GeV run? (Top operators, triple Higgs coupling, ...)
- EFT fit v2.0? (CEPC TDR)
 - Higgs + EW + Top? (see also Junping's talk)
 - 1-loop contributions: triple Higgs coupling, top couplings, others?
 - Dimension 8 operators?

\Rightarrow substantial evolution! But which EFT is needed?

[Gu]

Various EFTs:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C_H}{\Lambda^2} |H|^6 + \frac{C_{H\square}}{\Lambda^2} |H|^2 \partial^2 |H|^2 + \frac{C_R}{\Lambda^2} |H|^2 |DH|^2 + \cdots$$

UV theories that will generate HEFT?

 \Rightarrow Not apriori clear which EFT is adequate

 \Rightarrow Which (part of an) EFT is phenomenologically relevant?

Dimension 8 operators? (current wor

dim-8 operators for triple boson couplings can be resolved with polarization

Luminosity? CEPC answer?

Positivity bounds resolve the flat direction between a_L and a_R for unpolarized beams. Importance of λ_{hhh} :

Future measurement of the hhh coupling

HE-LHC, FCC_{hh}, …

 $pp \rightarrow hhX$

ILC500, ILC1000, CLIC, ...

 $e^+e^- \to Zhh$ $e^+e^- \to \nu\overline{\nu}hh$

The triple Higgs coupling is expected to be measured with 10% at ILC1000, CLIC3000, FCC_{hh}, …

Higgs@FC WG November 2019 di-Higas sinale-Hiaas HL-LHC HL-LHC HL-LHC 50% (47% HE-LHC HE-LHC [10-20]9 50% (40% HE-LHC FCC-ee/eh/hh FCC-ee/eh/hh 25% (18%) LE-FCC LE-FCC FCC-eh_ FCC-el FCC-ee/eh/hh -17+24% FCC-ee 24% (14%) under HH threshold FCC-ee. FCC-ee 33% (19%) FCC-ee 49% (19% ILC 10% 36% (25%) 1LC₅₀₀ under HH threshold CEPC 49% (29% CEPC 49% (17%) CLIC CLIC -7%+11% 49% (35%) CLIC CLIC CLIC 36% 49% (41% CLIC 20 0 10 30 40 50 68% CL bounds on κ_2 [%] All future colliders combined with HL-LHC

arXiv: 1905.03764

We do not miss to test the 1st order phase transition for EW baryogenesis

⇒ deviations in BSM models, relevant for FOEWPT! ⇒ Can the measurement of λ_{hhh} be improved for the CEPC? [Kanemura]

The Electroweak Phase Transition

Difficult to make model-independent statements, however scenarios with modified EWPT produce correlated deviations in precision Higgs. Example:

Very simple: Add a singlet scalar.

⇒ How well does the single Higgs EFT work for $\lambda_{hhh} \neq \lambda_{hhh}^{SM}$? Note: also $\lambda_{hhh}^{H\times SM} < \lambda_{hhh}^{SM}$ is possible [*Ramsey-Musolf*]

34

CEPC and SFOEWPT / Graviational Waves

Lepton collider Search xSM

 $\sigma_{LR}(\sigma_{RL})$

denotes the cross section at beam polarization configurations of $(P_{e^+}, P_{e^-}) = (+1, -1)((-1, +1))$.

ILC/CEPC will exclude most one-step as well as two-step points in the xSM.

 \Rightarrow interesting complementarity, but difficult at CEPC . . .

[Bian]

Example for BSM physics at CEPC:

[Englert]

 \Rightarrow many ways to test a singlet, partially(!) at CEPC

Example for BSM physics at CEPC:

[Englert]

 \Rightarrow many ways to test a singlet, partially(!) at CEPC

Example for BSM physics at CEPC:

Exotic Decays (example 3): Higgs & EWPT

⇒ thrilling physics can be tested at CEPC?
⇒ Extend reach?!!

- A firm prediction of a light scalar in this model;
- Higgs exotic decay into a pair of light scalars is a crucial probe;
- Higgs exotic decays complements the Higgs precision program;
- Higgs exotic decays requires further studies of **merged jets** for lighter singlet masses;
- Also possible to have long-lived Higgs exotic decays in certain parameter space

[Liu]

2HDM: Tree Level Model Distinction

 \Rightarrow Higgs precision measurements can be decisive \Rightarrow beyond tree-level?

2HDM at 1-loop at CEPC:

[*W. Su*]

 \Rightarrow phenomenology depends strongly on loop corrections!

 \Rightarrow for which model are we ready??

Leptoquark model distinction at CEPC

[Crivellin]

\Rightarrow Higgs precision measurements can be crucial

Example for BSM physics at CEPC: ALPs

• ALP associated production with a photon or Z

• ALP decay into photons

⇒ Interesting reach? Extensions?

[Thamm]

Heavy Neutral Leptons

 $Z \rightarrow N\nu @ \sqrt{s} = 91.2 \text{ GeV}$

750 ab⁻¹, 10 years, 4 IPs; or to increase the instantaneous luminosity; or to relax the theoretical assumptions

Can test the Type-I seesaw directly!

 \Rightarrow New(?) idea of "far detectors": new BSM physics opportunities!

Sven Heinemeyer – CEPC workshpo, Shanghai/virtual, 28.10.2020

[Wang]

Flavor physics at CEPC

Circular *e*⁺*e*⁻ Colliders are Flavor Factories

Running on the *Z* pole allows one to probe the flavor structure of *Z* couplings with extreme precision.

In addition one gets very large samples of all *b* hadrons, *c* hadrons, τ 's with large boost in a clean environment.

Running in Higgs factory mode can probe FCNC single top production

 \Rightarrow unique sensitivity to a large number of flavor processes that are not accessible at LHC(b) or Belle II

CEPC vs. Belle II, LHCb, ...

► CEPC vs. Belle II:

- similar numbers of B^+ and B^0 , but not much B_s and no Λ_b at Belle II.
- $b\bar{b}$ from Z decays are boosted; efficient b tag from vertexing.
- ► CEPC vs. LHCb:
 - lower yields at CEPC, but cleaner environment (e^+e^- vs. pp).
 - much better access to final states with neutrals (π^0 , γ , ...).

Giga-Z, Tera-Z and $10 \times \text{Tera-}Z$: a phase of future linear/circular lepton colliders. [Fujii et al.(2019), Dong et al.(2018), Abada et al.(2019)]

Z	fact	tories	are	also	$b(c/\tau)$) fact	tories:
1	11.4 A.	22	11-11-11 D		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		

Channel	Belle II	LHCb	Giga-Z	Tera- Z	$10 imes {\sf Tera-} Z$
B^0 , $ar{B}^0$	5.3×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B^{\pm}	5.6×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B_s , $ar{B}_s$	5.7×10^8	$\sim 2 \times 10^{13}$	3.2×10^7	3.2×10^{10}	3.2×10^{11}
B_c^{\pm}	-	$\sim 4 \times 10^{11}$	2.2×10^5	2.2×10^8	2.2×10^9
$\Lambda_b, \bar{\Lambda}_b$	-	$\sim 2\times 10^{13}$	1.0×10^7	1.0×10^{10}	1.0×10^{11}

 \Rightarrow TeraZ is a flavor factory!

Studying $B_c \rightarrow \tau \nu$ at CEPC

Lepton colliders such as CEPC, FCC-ee etc. will provide a good opportunity for the study of $B_c \rightarrow \tau \nu$. The CEPC will produce up to 1 trillion Z bosons (Tera-Z).

 $B_{(c)} \rightarrow \tau \nu, \tau \rightarrow l \nu \bar{\nu}$ in $Z \rightarrow b \bar{b}$. The most critical background for $B_c \rightarrow \tau \nu$ is $B \rightarrow \tau \nu$, which share similar event topology.

7

Example: senstivity on rare decays

\Rightarrow TeraZ can test (some) rare B decays better than Belle II, LHCb

Sven Heinemeyer – CEPC workshpo, Shanghai/virtual, 28.10.2020

[Li]

Some important questions:

- \Rightarrow that partially have been addressed at this workshop \ldots
- **Q:** Is SM Higgs physics a done deal?
- **Q:** Are we prepared for rare/BSM Higgs decays?
- **Q:** Does **SMEFT** cover all relevant BSM Higgs physics?
- **Q:** Are we prepared for light BSM Higgs bosons?
- **Q:** Are we happy with the λ_{hhh} situation?
- **Q:** Are EWPO a done deal?
- **Q:** Is CEPC350 just a nice extension of the main programe?
- Q: How relevant is polarization? Can we always compensate with high lumi?
- **Q:** Are we ready for LLPs?
- **Q:** Often we see FCC-ee results. Can they always be taken over?

Some important questions:

- \Rightarrow that partially have been addressed at this workshop . . .
- **Q:** Is SM Higgs physics a done deal? \Rightarrow huge calc. effort
- **Q:** Are we prepared for rare/BSM Higgs decays?
- **Q:** Does SMEFT cover all relevant BSM Higgs physics? \Rightarrow too simple
- **Q:** Are we prepared for light BSM Higgs bosons? \Rightarrow not addressed
- **Q:** Are we happy with the λ_{hhh} situation? \Rightarrow certainly not
- **Q:** Are EWPO a done deal? \Rightarrow huge calc. effort
- **Q:** Is CEPC350 just a nice extension of the main programe? \Rightarrow crucial
- Q: How relevant is polarization? Can we always compensate with high lumi?
- **Q:** Are we ready for LLPs?
- **Q:** Often we see FCC-ee results. Can they always be taken over? \Rightarrow must be studied in detail!

Outlook - what is needed for the future?

⇒ We need a motivation boost (for TH) this is particularly important for precise (Higgs/EW) calculations take a long time. How to motivate (young) physicists?

 \Rightarrow a clear positive signal from China would certainly help!

- \Rightarrow We need more TH \leftrightarrow EXP interaction
- "guidance" for EXP
- "understanding" for TH
- \Rightarrow could be better . . .

We need precision top measurements for all other "subfields" \Rightarrow CEPC350 important!

"How many person-years are needed?"

- FCC-ee estimate for Higgs/EW: 500
- Similar for CEPC (or other e^+e^- colliders)
- Still to cover: QCD, Flavor, BSM, ...

⇒ for Higgs and SM/EW ⇒ equally for top/QCD, BSM, Flavor!!

⇒ for Higgs and SM/EW ⇒ equally for top/QCD, BSM, Flavor!!

 \Rightarrow We need a motivation boost (for TH) for higher precision

⇒ for Higgs and SM/EW ⇒ equally for top/QCD, BSM, Flavor!!

 \Rightarrow We need a motivation boost (for TH) for higher precision

But I am convinced:

⇒ for Higgs and SM/EW ⇒ equally for top/QCD, BSM, Flavor!!

 \Rightarrow We need a motivation boost (for TH) for higher precision

But I am convinced:

If we continue with the hard work, we will be ready for the CEPC start

Further Questions?