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Why Loop Integrals ?

Precision computation of the cross-section in perturbation theory requires the computation  
of multi-leg / multi loop Feynman Integrals. 

Reduction of scalar integrals to Master integrals using IBP

Computation of the MIs

The main bottleneck
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Integration-By-Parts (IBP) identity

Loop and external  
momentaLoop momenta
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Gives relations between different scalar integrals with different exponents

Solve the system symbolically : Recursion relations
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Different New Ideas ?

Kira - A Feynman Integral Reduction Program 
Maierhoefer, Usovitsch, Uwer (2018)

FiniteFlow: multivariate functional reconstruction using finite fields and 
dataflow graphs 
Peraro (2019)

 Two-loop five-point massless QCD amplitudes within the integration-by-
parts approach 
Chawdhry,Lim,Mitov (2018)

 Integration-by-parts reductions of Feynman integrals using Singular and 
GPI-Space 
Bendle, Boehm, Decker,Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

FIRE6: Feynman Integral REduction with Modular Arithmetic 
Smirnov, A. V. and Chuharev (2019)
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Intersection Theory

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
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d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =
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C
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(du ^ ⇠ + u d⇠) =
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◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =
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u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
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Basics of Intersection Theory

2 Basics of Hypergeometric Integrals
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In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =
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C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
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2

cast in the form [22],

I =

Z

C
u(z)'(z) , (1)

where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,
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Intersection Number

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [77, 78]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!
(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)
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First Order Differential Equation

Matsumoto, Mizera

2

can be found using an ansatz for each component  (n)
i , see

[2, 3]. Such a solution exists, if the matrix Reszn=p ⌦(n)

does not have any non-negative integer eigenvalues, which
we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (9)

In this case, eqs. (5,6) reduce to a computation of univari-
ate intersection numbers [4, 5] previously studied in [2, 3].
Plugging everything together, eq. (5) can be expressed as
(where summing over repeated indices is understood)

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (10)

where im = 1, . . . , ⌫m, and each  
(m)
im�1im

for m =
1, . . . ,n�1 is the solution of the system of differential
equations,

@zm 
(m)
im�1im

�

X

jm�1

⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im

,(11)

with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the projec-
tion:

|h
(m)
im

i =
X

im�1

|h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (12)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (5,
10) is the key formula used in this section. Paired with
the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
multi-fold integrals of Aomoto-Gel’fand type, as discussed
in this paper, in terms of master integrals.

Counting Master Integrals: Euler Characteristics, Morse
Theory, and Lefschetz Thimbles - Let us consider a single-
valued k-form 'k and a multi-valued function u(z) in-
tegrated over a k-real-dimensional submanifold Ck ⇢ X

inside of some space X of complex dimension n,
Z

Ck

u(z)'k(z). (13)

If u(z) regulates all boundaries of Ck then by Stokes’
theorem:

0 =

Z

Ck

d (u(z)'k�1) =

Z

Ck

u(z)r!'k�1, (14)

where r! ⌘ d+ !^ is a covariant derivative with a one-
form ! ⌘ d log u(z). Thus adding terms of the form
r!'k�1 to 'k does not change the value of the integral
of eq. (13). Similarly, we can impose that integrals over
boundary terms of the form @Ck+1 vanish:

0 =

Z

@Ck+1

u(z)'k =

Z

Ck+1

u(z)r!'k, (15)

which corresponds to r!'k = 0. These two requirements
define a set of natural vector spaces for k = 0, 1, . . . , 2n:

H
k
! ⌘ {k-forms 'k |r!'k = 0}/{r!'k�1}, (16)

called twisted cohomology groups [6]. Under some as-
sumptions amounting to the fact that u(z) regulates all
boundaries of X, one can show that in fact Hn

! is the only
non-trivial space and all other Hk 6=n

! vanish [7]. From now
on we consider only such cases, even though Feynman in-
tegrals are known to sometimes violate these assumptions
[3, 8].

One can also construct a dual vector space (Hn
! )

⇤ =
H

n
�!, with the same properties, given by a replacement

! ! �! in the above definition eq. (16). In this work we
consider h'L| 2 H

n
! and |'Ri 2 H

n
�! and a scalar product

h'L|'Ri called the intersection number [4]. Similarly,
eq. (13) is a scalar product h'k|Ck] between H

k
! 3 h'k|

and the twisted homology group H
!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn

! ,

�(X) =
2nX

k=0

(�1)k dimH
k
!. (17)

Since all Hk 6=n
! vanish, we find that the dimension of Hn

! ,
and hence also the number ⌫ of MIs is given by

⌫ = (�1)n�(X). (18)

Thus ⌫ can be computed using one of the many ways of
evaluating the topological invariant �(X). We review a
few of them below. Since X = CPn

�P!, where P! ⌘

{set of poles of !}, we can simplify the above relation to

⌫ = (�1)n (n+1� �(P!)) , (19)

where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
�
(z2�s

2)(z2�⇢2)
��

, (20)
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!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn

! ,

�(X) =
2nX

k=0

(�1)k dimH
k
!. (17)

Since all Hk 6=n
! vanish, we find that the dimension of Hn

! ,
and hence also the number ⌫ of MIs is given by

⌫ = (�1)n�(X). (18)

Thus ⌫ can be computed using one of the many ways of
evaluating the topological invariant �(X). We review a
few of them below. Since X = CPn

�P!, where P! ⌘

{set of poles of !}, we can simplify the above relation to

⌫ = (�1)n (n+1� �(P!)) , (19)

where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
�
(z2�s

2)(z2�⇢2)
��

, (20)
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can be found using an ansatz for each component  (n)
i , see

[2, 3]. Such a solution exists, if the matrix Reszn=p ⌦(n)

does not have any non-negative integer eigenvalues, which
we assume from now on.
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1 i = '

(n)
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R,1 = '

(n)
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In this case, eqs. (5,6) reduce to a computation of univari-
ate intersection numbers [4, 5] previously studied in [2, 3].
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⌘
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where im = 1, . . . , ⌫m, and each  
(m)
im�1im

for m =
1, . . . ,n�1 is the solution of the system of differential
equations,

@zm 
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im�1im

�

X
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⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im
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with |h
(m)
im�1im

i = ĥ
(m)
im�1im
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|h
(m)
im

i =
X

im�1

|h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (12)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (5,
10) is the key formula used in this section. Paired with
the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
multi-fold integrals of Aomoto-Gel’fand type, as discussed
in this paper, in terms of master integrals.
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Theory, and Lefschetz Thimbles - Let us consider a single-
valued k-form 'k and a multi-valued function u(z) in-
tegrated over a k-real-dimensional submanifold Ck ⇢ X

inside of some space X of complex dimension n,
Z

Ck

u(z)'k(z). (13)

If u(z) regulates all boundaries of Ck then by Stokes’
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0 =

Z

Ck

d (u(z)'k�1) =

Z

Ck

u(z)r!'k�1, (14)
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0 =

Z

@Ck+1

u(z)'k =

Z

Ck+1

u(z)r!'k, (15)
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H
k
! ⌘ {k-forms 'k |r!'k = 0}/{r!'k�1}, (16)
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! is the only
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computation thus amounts to evaluating the Euler char-
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for related approaches.
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which arises physically from the maximal cut of a two-loop
non-planar triangle diagram [2] and gives rise to Appell
F1 functions with some constants s, ⇢, �. Computing
! = d log u(z) gives straightforwardly P! = {±⇢,±s,1},
and hence X = CP1

�P! is a one-dimensional space
parametrized by an inhomogeneous coordinate z. The
point at infinity is removed from X since Resz=1(!) 6= 0.
Since the Euler characteristic of 5 distinct points is simply
�(P!) = 5, using eq. (19) we find:

⌫ = (�1)1 (2� 5) = 3, (21)

which is the correct number of MIs in this case [2].
Let us now consider a real-valued function h(z) ⌘

Re(log u(z)), called a Morse function, which assigns a
“height” to every point z 2 X. Special role in this con-
struction is played by critical points z⇤ of h(z) defined
by dh(z⇤) = 0. Using Cauchy–Riemann equations it is
straightforward to show that this condition is the same as
! =

Pn
i=1 !̂idzi = 0 and thus the critical point equations

read

!̂i = @zi log u(z
⇤) = 0, i = 1, . . . , n. (22)

We assume that all critical points are isolated and non-
degenerate. To each of them the Morse function assigns
a pair of flows, labelled by a sign ± and parametrized by
an auxiliary “time” variable ⌧ ,

dzi

d⌧
= ⌥@zih(z),

dzi

d⌧
= ⌥@zih(z), i = 1, . . . , n.

(23)
In the � case we have dh(z)/d⌧ < 0 and hence it corre-
sponds to a downward flow from the ↵-th critical point
z⇤(↵), which defines a submanifold of X called a Lefschetz
thimble (or a path of steepest descent) J↵ with some real
dimension �↵. Similarly, the + case defines an upward
flow, which generates a path of steepest ascent K↵ through
the critical point z⇤(↵), with real dimension 2n��↵. Here
�↵ is the number of unique negative directions extending
from the ↵-th critical point, called its Morse index.

One of the key results in complex Morse theory (often
called Picard–Lefschetz theory) is that the Euler charac-
teristic can be expressed as [12]:

�(X) =
2nX

�=0

(�1)� M�, (24)

where M� is the number of critical points with the Morse
index equal to �. Since u(z) is a holomorphic function,
near each z⇤(↵) we can pick local coordinates w(↵) (with
the critical point at w(↵)=0) such that the Morse function
admits an expansion:

h(w(↵)) = h(0) + Re
nX

j=1

(w(↵),j)
2 + . . . . (25)

Treating X as a real manifold with coordinates w(↵) =
x(↵) + iy(↵) we find

h(w(↵)) = h(0) +
nX

j=1

(x(↵),j)
2
�

nX

j=1

(y(↵),j)
2 + . . . (26)

and hence every critical point has a shape of a saddle
with exactly n upward and n downward directions, or
the Morse index �↵ = n. This means that only Mn is
non-vanishing and hence using eqs. (18) and (24) we find
[7, 13]:

⌫ = {number of solutions of !=0}. (27)

In the context of Feynman integrals these arguments were
first given in [8]. The critical points can be also used
to compute asymptotic behavior of intersection numbers
[14].

Let us mention that Lefschetz thimbles are integra-
tion contours along which eq. (13) converges the most
rapidly for k=n, and thus the set {J↵}

n
↵=1 can be used

as a basis of integration cycles. Likewise, the paths of
steepest ascent of h(z), K↵ are integration cycles along
which the dual integral

R
K↵

u(z)�1
'n converges the most

rapidly and {K↵}
n
↵=1 can be used a basis of H�!

n . For
explicit examples of projecting cycles onto such bases
using homological intersection numbers see App. A of [1].

�⇢ ⇢ 1�s s

z⇤(1) z⇤(2) z⇤(3)

FIG. 1: Morse–Smale complex associated to the Morse
function h(z) = Re(log u(z)) with eq. (20) and ⇢>s>0,
�>0. The set of filled dots corresponds to P! =
{±⇢,±s,1} removed from X. Empty dots at z

⇤
(↵) repre-

sent critical points of the Morse function, with paths of
steepest descent J↵ (solid lines) and ascent K↵ (dashed
lines) extending from them. They give a triangulation of
X = CP1

�P!. The arrows indicate the direction of the
flow towards lower values of h(z).

In the example at hand, eq. (20) gives ⌫=3 solutions
of the critical point equations,

z
⇤ = 0, ±

r
s2 + ⇢2

2
, (28)

in agreement with eq. (21). The form of Lefschetz thimbles
depends on the values of s, ⇢, � and here we choose ⇢>s>0
and �>0 as a concrete example. With this choice each
J↵=1,2,3 has to have endpoints on z 2 {±⇢,±s} since
this is where h(z) decays to �1, while K↵=1,2,3 can only

Aomoto (1975)

Master Decomposition Formula 

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)

Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.
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commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.
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(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A
remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2 Basics of Hypergeometric Integrals

In this section we review a few concepts from the theory of hypergeometric functions and
Feynman integrals that serve as a basis for the remainder of the paper.

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [81, 82], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
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remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,
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A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,
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The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
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structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
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The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:
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1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
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2

cast in the form [22],

I =

Z

C
u(z)'(z) , (1)

where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)
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a1
1 · · · zan
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, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,
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products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

⌫ = Number of solutions of the system of equations
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space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to

h'
(n)
L | =

⌫n�1X

i=1

he
(n�1)
i | ^ h'

(n)
L,i | , (12)

|'
(n)
R i =

⌫n�1X

i=1

|h
(n�1)
i i ^ |'

(n)
R,ii , (13)

where ⌫n�1 is the number of master integrals on the
inner space with arbitrary bases he

(n�1)
i |, |h(n�1)

j i and
the metric matrix

�
C(n�1)

�
ij
⌘ n�1he

(n�1)
i |h

(n�1)
j i . (14)

In the above expressions h'
(n)
L,i | and |'

(n)
R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads

nh'
(n)
L |'

(n)
R i=�

X

p2Pn

Res
zn=p

⇣
n�1h'

(n)
L |h

(n�1)
i i 

(n)
i

⌘
, (16)

where functions  (n)
i are solutions of the system of differ-

ential equations

@zn 
(n)
i � ⌦̂(n)

ij  
(n)
j = '̂

(n)
R,i , (17)

where h'
(n)
R,i| = '̂

(n)
R,idzn from eq. (15). The ⌫n�1⇥⌫n�1

matrix ⌦̂(n) given by

⌦̂(n)
ij = �

�
C�1

(n�1)

�
ik n�1he

(n�1)
k |(@zn�!̂n)h

(n�1)
j i, (18)

and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential

~ 
(n)=

✓Z zn

p
~'
(n)
R (y)Pe

�
R y
p ⌦(n)(w)

◆⇣
Pe

R zn
p ⌦(n)(w)

⌘
(19)

for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)

In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (21)

where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)

im�1im
for m = 1, . . . ,n�1 is the solution of

@zm 
(m)
im�1im

� ⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im

, (22)

for all im with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the
projection:

|h
(m)
im

i = |h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (24)

Recursive Formula :
Mizera 
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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On the Cut{1,3}, we obtain:
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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Let us consider the massless box diagram at one loop,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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master integral.

We determine the set of spanning cuts as (Cut{1,3},
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(24)
2 = ĥ
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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Let us consider the massless box diagram at one loop,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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2 z
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4 u(0, z2, 0, z4) to obtain the corresponding
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

Integral Decomposition

Baikov Polynomial

The sectors containing the MIs are

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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�
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2
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2
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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4 u(0, z2, 0, z4) to obtain the corresponding
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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3 u(z1, 0, z3, 0) to obtain the corresponding
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(13)
2 = 1 , (39)

and for the inner space,

ê
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(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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3 MIs

Differential Equation

4

have endpoints on z = 1 as it is the only place where
h(z) ! +1. This alone fixes the shape of the paths
of steepest descent and ascent uniquely up to contour
deformations. We illustrate them in Fig. 1.

The critical points together with paths of steepest of
descent and ascent triangulate the manifold X into what is
known as a Morse–Smale complex. Denoting the number
of q-dimensional elements of this complex by bq (called
the Betti number) we have

�(X) =
2nX

q=0

(�1)q bq. (29)

For example, in Fig. 1 we can count 3 vertices (the filled
dots are not a part of X), 12 edges (ignoring orientations),
and 6 faces. Together with eq. (18) this gives us yet
another way of computing the number of MIs:

⌫ = (�1)1 (3� 12 + 6) = 3. (30)

For more background on Morse theory, see, e.g., [12, 15]
and in the context of twisted geometries [1, 6, 7, 14].

Hypergeometric Function 3F2 – We discuss the
application of our decomposition algorithm for deriving
contiguity relation for the hypergeometric function 3F2.
Consider the function H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (31)

where �(a, b) = �(a)�(b)/�(a+b) is the Euler beta-
function,

u = (1�z1z2x)
�a3

2Y

i=1

z
ai�1
i (1�zi)

bi�ai�1
, (32)

d
2z = dz1 ^ dz2, and where C is the square with zi 2

[0, 1]. The system !̂1 = !̂2 = 0 has three solutions,
corresponding to ⌫(12) = 3 MIs. We choose three master
forms, he(12)i | ⌘ ê

(12)
i d

2z, (i = 1, 2, 3),

ê
(12)
1 =

1

z1
, ê

(12)
2 =

1

z2
, ê

(12)
3 =

1

1� z2
, (33)

which correspond to the following set of MIs,

H
�a1�1,a2,a3

b1�1,b2
;x

�
, H

�a1,a2�1,a3

b1,b2�1 ;x
�
, H

�a1,a2,a3

b1,b2�1 ;x
�
. (34)

At the same time, we define the dual basis, |h
(12)
i i ⌘

ĥ
(12)
i d

2z, with ĥ
(12)
i = ê

(12)
i (i = 1, 2, 3). The decomposi-

tion of h1| = d
2z in terms of he(12)i |,

h1(12)| =
3X

i=1

ci he
(12)
i | , (35)

yields the decomposition of the function defined in eq. (31)
in terms of those in eq. (34), which amounts to a conti-
guity relation for 3F2 functions. The coefficients ci are
determined by means of eq. (3), requiring the computa-
tion of 12 intersection numbers for two-forms, that is 9
elements of the matrix (C(12))ij = (12)he

(12)
i |h

(12)
j i and 3

entries (12)h1|h
(12)
j i for i, j = 1, 2, 3.

To apply eq. (5), we consider the z1-subspace as the
inner space. In turn, the number of MIs for the inner
space is determined by counting the number of solutions
of !̂1 = 0 (w.r.t. z1), giving ⌫(1) = 2. The inner bases
are he

(1)
i | ⌘ ê

(1)
i dz1, |h

(1)
i i ⌘ ĥ

(1)
i dz1 (i = 1, 2), which we

choose to be,

ê
(1)
1 = ĥ

(1)
1 =

1

z1
, ê

(1)
2 = ĥ

(1)
2 =

1

1� z1
. (36)

The individual intersection numbers are too large to be
printed here. Yet, the final result is rather simple, and,
in terms of 3F2-functions, it reads,

c̃0 3F2

�a1,a2,a3

b1,b2 ;x
�
= c̃1 3F2

�a1�1,a2,a3

b1�1,b2
;x

�
+

c̃2 3F2

�a1,a2�1,a3

b1,b2�1 ;x
�
+ c̃3 3F2

�a1,a2,a3

b1,b2�1 ;x
�
, (37)

where

c̃0 = (a1�1)(b1�b2) + (a1�a2)(b2�a3�1)x ,

c̃1 = (b1�1)(a1�b2) , c̃2 = (a2�b1)(1�b2) , (38)
c̃3 = (a1�a2)(1�b2)(1�x) .

This relation has been (numerically) verified with
Mathematica.

Differential Equation for One-loop Box - Let us consider
the differential equation:

@s = a1 + a2 + a3 , (39)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (40)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (22), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (41)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)
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the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)
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j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],
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where the functions  (n)
i are the solutions of the system

of differential equations
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The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
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regulated u, the master decomposition formula (6) yields
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in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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z
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� d�5
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
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2 z
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!̂2 and !̂4. After choosing the z4-coordinate as the in-
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, ê
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• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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Box with four different masses
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
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• Cut{2,4} : On this specific cut, we use the regularized
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)
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Differential Equation

Box with four different masses

Integral family Denominators

s = (p1 + p2)2, t = (p2 + p3)2

z1 = k
2
�m

2
1

z2 = (k + p1)2 �m
2
2

z3 = (k + p1 + p2)2 �m
2
3

z4 = (k + p1 + p2 + p3)2 �m
2
4

⌧ ⌫ e

z4 = 0

⌫{3} = 2 e
(3) =

n
1, 1

z3

o

⌫{32} = 3 e
(32) =

n
1
z2
,

1
z3
,

1
z2z3

o

⌫{321} = 6 e
(321) =

n
1, 1

z2
,

1
z1z2

,
1

z1z3
,

1
z2z3

,
1

z1z2z3

o

z3 = 0

⌫{4} = 2 e
(4) =

n
1, 1

z4

o

⌫{41} = 3 e
(41) =

n
1
z1
,

1
z4
,

1
z1z4

o

⌫{412} = 6 e
(412) =

n
1, 1

z1
,

1
z1z2

,
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z1z4
,

1
z2z4

,
1

z1z2z4

o
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⌫{4} = 2 e
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n
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z4
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n
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1
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n
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1
z2z3

,
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z2z4
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1
z3z4

,
1

z2z3z4
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= c1 + c2 + c3 + c4 + c5

+ c6 + c7 + c8 + c9

+ c10 + c11 . (5.79)
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Work in progressSunrise with different masses

Integral family Denominators

s = p
2
1

z1 = k
2
1 �m

2
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– 37 –

Massless planar box-triangle

Integral family Denominator

s = (p1 + p2)2

z1 = k
2
1 z2 = (k1 + p1)2

z3 = (k1 + p1 + p2)2

z4 = (k2 + p1 + p2)2

z4 = k
2
2 z6 = (k1 � k2)2

z7 = (k2 + p1)2

⌧ ⌫ e

z2 = 0
z4 = 0
z5 = 0
z6 = 0

⌫{7} = 1
⌫{73} = 2
⌫{731} = 1

e
(7) = {1}

e
(73) =

n
1, 1

z3

o

e
(731) = {1}

z1 = 0
z3 = 0
z4 = 0
z5 = 0

⌫{7} = 1
⌫{76} = 1
⌫{762} = 1

e
(7) = {1}

e
(76) =

n
1
z6

o

e
(762) = {1}

z3 = 0
z5 = 0
z6 = 0

⌫(7) = 1 e
(7) = {1}

⌫{74} = 1 e
(74) =

n
1
z4

o

⌫{742} = 1 e
(742) =

n
1

z2z4

o

⌫{7421} = 1 e
(7421) = {1}

z1 = 0
z4 = 0
z6 = 0

⌫{7} = 1 e
(7) = {1}

⌫{75} = 1 e
(75) =

n
1
z5

o

⌫{752} = 1 e
(752) =

n
1

z2z5

o

⌫{7523} = 1 e
(7523) = {1}

= c1 + c2 + c3

+ c4 . (5.81)
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Massless non-planar triangle-box

Integral family Denominators

s = (p1 + p2)2

z1 = k
2
1 z2 = (k1 + p1)2

z3 = (k1 + p1 + p2)2

z4 = k
2
2 z5 = (k1 � k2)2

z6 = (k1 � k2 � p2)2

z7 = (k2 + p1)2

⌧ ⌫ e

z2 = 0
z3 = 0
z4 = 0
z5 = 0

⌫{1} = 2 e
(1) =

n
1, 1

z1

o

⌫{16} = 2 e
(16) =

n
1
z6
,

1
z1z6

o

⌫{167} = 2 e
(167) =

n
1, 1

z1z6

o

z1 = 0
z3 = 0
z4 = 0
z6 = 0

⌫{2} = 2 e
(2) =

n
1, 1

z2

o

⌫{25} = 2 e
(25) =

n
1
z5
,

1
z2z5

o

⌫{257} = 2 e
(257) =

n
1, 1

z2z5

o

z1 = 0
z3 = 0
z5 = 0

⌫{2} = 2 e
(2) =

n
1, 1

z2

o

⌫{24} = 2 e
(24) =

n
1
z4
,

1
z2z4

o

⌫{246} = 3 e
(246) =

n
1
z6
,

1
z4z6

,
1

z2z4z6

o

⌫{2467} = 2 e
(2467) =

n
1, 1

z2z4z6

o

z2 = 0
z4 = 0
z6 = 0

⌫{1} = 2 e
(1) =

n
1, 1

z1

o

⌫{15} = 2 e
(15) =

n
1
z5
,

1
z1z5

o

⌫{153} = 3 e
(153) =

n
1
z3
,

1
z3z5

,
1

z1z3z5

o

⌫{1537} = 2 e
(1537) =

n
1, 1

z1z3z5

o

= c1 + c2 + c3 +

c4 + c5 (5.82)
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Massless double-box on a triple cut

Integral family Denominators

s = (p1 + p2)2 t = (p2 + p3)2

z1 = k
2
1 z2 = (k1 � p1)2

z3 = (k1 � p1 � p2)2

z4 = (k1 � k2)2

z5 = (k2 � p1 � p2)2

z6 = (k2 � p1 � p2 � p3)2

z7 = k
2
2 z8 = (k2 � p1)2

z9 = (k1 � p1 � p2 � p3)2

⌧ ⌫ e

z1 = 0
z4 = 0
z5 = 0

⌫{8} = 1 e
(8) = {1}

⌫{87} = 2 e
(87) =

n
1, 1

z7

o

⌫{876} = 2 e
(876) =

n
1
z6
,

1
z7

o

⌫{8762} = 4 e
(8762) =

n
1
z2
,

1
z6
,

1
z7
,

1
z2z6

o

⌫{87629} = 5 e
(87629) =

n
1, 1

z2
,

1
z6
,

1
z7
,

1
z2z6

o

⌫{876293} = 4 e
(876293) =

n
1, 1

z2z6
,

1
z2z3z6z7

,
z8

z2z3z6z7

o

= c1 + c2 + c3 + c4

(5.83)
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6

On the Cut{2,4}, we obtain

=

Z

C
u2,4 '2,4 , '2,4 = '̂2,4 dz1 ^ dz3, (45)

where '̂2,4 = !̂2

z2
1z3

. On this cut we have:

= c1 + c3 , (46)

where we find c1 in agreement with eq. (44) and

c3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
4(d� 5)(d� 3)

st3
. (47)

Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (49)

On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (51)

with

a1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (52)

a2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz1 ^ dz3 (53)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and

a3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
2(d� 3)

st(s+ t)
. (55)

Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the

+
<latexit sha1_base64="utCNWoBEB3FqMUT0ZKrrMk5ABTI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeCF71VsR/QhrLZbtqlm03YnQgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Ngtbxe2d3b390sFh08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVI44T7kd0oEQoGEUrPZwXe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn80unZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G3SF5ozlGNLKNPC3krYkGrK0IYzDcFbfHmZNKsV76JSvb8s1+7yOApwDCdwBh5cQQ1uoQ4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nD6kljM4=</latexit>

…
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Evaluation of MIs
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Evaluation of MIs
Analytical approach

Numerical approach

🙂 Stable and fast numerical evaluation 

☹ Not Flexible

🙂 Flexible

☹ Numerical instabilities, not fast

Smirnov (1999); Tausk (1999); Czakon (2005);

Czakon, Gluza, Reimann (2005); Brown (2009); Panzer (2015);

Kotikov (1991); Remiddi (1997);

Gehrmann, Remiddi (2000); Argeri, Mastrolia (2007)

Henn(2013)

Differential Equation

Direct Integration (Feynman Parameter, Mellin Barnes Method)

 Sector Decomposition

 Loop-Tree Duality

 Differential Equation

Hepp (1966); Roth, Denner (1996); Binoth, Heinrich (2000); Carter, Heinrich (2010); Borowka, Carter, Heinrich (2012); 

Smirnov, Smirnov, Tentyukov (2011), Bogner, Weinzierl (2008); Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke (2017)

Catani, Gleisberg, Krauss, Rodrigo, Winter (2008); Bierenbaum, Catani, Draggiotis, Rodrigo (2010); Runkel, Szr, Vesga, Weinzierl (2019); 

Capatti, Hirschi, Kermanschah, Ruijl (2019); Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Bobadilla (2020); 

Ramrez-Uribe, Hernndez-Pinto, Rodrigo, Sborlini, Bobadilla (2020)

Boughezal, Czakon, Schutzmeier (2007); Czakon (2008); Liu, Ma, Wang (2017); MKM, Zhao (2018)
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MIs Evaluation : DE Method

DE Method :

I Consider a vector of M master integrals I = (I1, I2, · · · , IM )T,
depending on K independent kinematic variables
x = (x1, x2, · · · , xK) and ✏.

@I(x; ✏)

@xi

= Ji(x; ✏)I(x; ✏), i = 1, · · · , K

I Ji is an M ⇥ M matrix, whose elements are rational functions of
the kinematics x and the dimension d.

I Each element of Ji contains singularities originating from both
kinematics and the dimension d.

I The singularities from the kinematics are governed by the Landau
equation, while the poles on d must be rational numbers.
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Matrix, with rational functions  
entries of x and d 

The singularities form the kinematics are governed by the Landau equation

<latexit sha1_base64="sxPvrgh3sFxqV+bxzGrc4xOlEts="></latexit>

@F (x; ✏)

@xi
= ✏Ai(x)F (x; ✏) Cannonical form

Henn(2013)

There has been a recent proposal to construct d log-form integrals of the hypergeometric type, treat them as a 
representation of Feynman integrals, and project them into master integrals using intersection theory. Chen, Xu, Yang (2020)

Novel algorithm to construct the cannonical system, starting from one Uniformly Transcendental integral. 

Dlapa, Henn, Yan (2020)
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Differential Equation : Cannonical basis

3-Loop mixed QCD EW correction (light quarks) to Higgs production in gluon fusion Bonetti, Melnikov, Tancredi

2-Loop QCD correction to Higgs + jet production with internal top quark Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov (2019);

Frellesvig,Hidding,Maestri,FM, Salvatori (2019)

2-Loop mixed QCD EW correction to DY production Bonciani, Di Vita, Mastrolia, Schubert (2016); Heller, Manteuffel, Schabinger (2019); 

Bonciani, Buccioni, Rana, Triscari, Vicini (2019) 

2-Loop QCD correction to top pair production Adams, Choubey, Weinzierl (2018); Di Vita, Gehrmann, Laporta, Mastrolia, Primo, Schubert (2019)

2-Loop mixed QCD EW correction to Higgs+jet production Bonetti, Panzer, Smirnov, Tancredi (2020); Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer (2020) 

2-Loop QED correction to muon-electron scattering Mastrolia, Passera, Primo, Schubert (2017); Di Vita, Laporta, Mastrolia, Primo, Schubert  (2018)

3-Loop Higgs gluon form factors Harlander, Prausa, Usovitsch (2019)
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Differential Equation : Series Expansion
Moriello (2019) Hidding (2020)

key idea: reduce to one scale and expand

Differential equations along the contour given by:

�(t)

Fix two points and define a contour connecting them

One-dimensional problem: transport the solution by series expanding 
along the contour (done on-the-fly for every new point) 

[FM 2019]

known point, fixes boundary constants

new point, to be computed

Set of DEs (one for each Mandelstam):

d

dt
F(✏, t) = A(✏, t)F(✏, t) with

~sa

~sb

@F(✏,~s)

@sn
= A(✏,~s)F(✏,~s), n 2 {1, . . . , N}

A(✏, t) =
NX

n=1

An(✏,~s(t))
dsn(t)

dt

~s(t) = ~sa + (~sb � ~sa)t, t 2 [0, 1]

Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020)

key idea: reduce to one scale and expand

Differential equations along the contour given by:

�(t)

Fix two points and define a contour connecting them

One-dimensional problem: transport the solution by series expanding 
along the contour (done on-the-fly for every new point) 

[FM 2019]

known point, fixes boundary constants

new point, to be computed

Set of DEs (one for each Mandelstam):

d

dt
F(✏, t) = A(✏, t)F(✏, t) with

~sa

~sb

@F(✏,~s)

@sn
= A(✏,~s)F(✏,~s), n 2 {1, . . . , N}

A(✏, t) =
NX

n=1

An(✏,~s(t))
dsn(t)

dt

~s(t) = ~sa + (~sb � ~sa)t, t 2 [0, 1] Fix two points and define a contour between them

key idea: reduce to one scale and expand

Differential equations along the contour given by:

�(t)

Fix two points and define a contour connecting them

One-dimensional problem: transport the solution by series expanding 
along the contour (done on-the-fly for every new point) 

[FM 2019]

known point, fixes boundary constants

new point, to be computed

Set of DEs (one for each Mandelstam):

d

dt
F(✏, t) = A(✏, t)F(✏, t) with

~sa

~sb

@F(✏,~s)

@sn
= A(✏,~s)F(✏,~s), n 2 {1, . . . , N}

A(✏, t) =
NX

n=1

An(✏,~s(t))
dsn(t)

dt

~s(t) = ~sa + (~sb � ~sa)t, t 2 [0, 1]

key idea: reduce to one scale and expand

Differential equations along the contour given by:

�(t)

Fix two points and define a contour connecting them

One-dimensional problem: transport the solution by series expanding 
along the contour (done on-the-fly for every new point) 

[FM 2019]

known point, fixes boundary constants

new point, to be computed

Set of DEs (one for each Mandelstam):

d

dt
F(✏, t) = A(✏, t)F(✏, t) with

~sa

~sb

@F(✏,~s)

@sn
= A(✏,~s)F(✏,~s), n 2 {1, . . . , N}

A(✏, t) =
NX

n=1

An(✏,~s(t))
dsn(t)

dt

~s(t) = ~sa + (~sb � ~sa)t, t 2 [0, 1]

 DE along the contour becomes : 

 Becomes one dimensional problem: Transport the solution by series expansion along the contour 

 Has been very successful recently in obtaining the two loop amplitude for Higgs + jet production keeping the top mass, 
two loop planar five point one mass integrals.

 Very efficient and allow for high precision in all kinematic regions, which is very suitable for MC integration.

 The series solution is found by the Frobenius method.
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Numerical Approach

Numerical computations of scattering amplitudes are becoming more and more 
advanced; eventually, they may provide a real alternative to analytic methods. 

Chen, Czakon, Poncelet

ms
@

@ms

~I = Âm (ms, x, ✏) ~I
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x
@

@x
~I = Âx (ms, x, ✏) ~I
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FIG. 1. Representative Feynman for gg ! �� at NLO: the Born (a), real corrections (b,c), and virtual corrections (d,e). In
our computation photons couple only to the quarks running in the closed loop, i.e., 5 massless quarks u, d, c, s, b and the top
quark t.

particularly motivated above the top pair threshold, in-
cluding the top-quark contribution is essential.

The computation of NLO corrections of the top-quark
induced contributions, requires the knowledge of highly
non-trivial two-loop amplitudes. While in the mass-
less quark limit the corresponding amplitudes have been
known for a long time [21], the computation of massive
ones, is still a challenge. Analytical results have be-
come available in closed form for some of the relevant
Feynman integrals (planar) yet the full set is unknown.
On the other hand, numerical methods have been intro-
duced [22] that allow to perform this calculation. In this
letter, we compute the complete NLO corrections to the
gluon fusion channel gg ! ��, including the top-quark
contribution for the first time.

Calculation – The cross section at NLO accuracy can
be written as

d�NLO = d�Born + d�V + d�R + d�C
,

where d�Born is the leading order one-loop contribution,
d�V denotes the virtual (two-loop) contributions, d�R

is the real (one-loop, 2!3 contribution), and d�C repre-
sents the collinear singularity to absorbed into the parton
distribution functions. The representative Feynman di-
agrams for the Born, virtual and real contributions are
shown in Fig. 1. Each of the three terms at NLO are in-
frared/collinear divergent. Their sum, however, is free of
infrared/collinear divergences. To handle this cancella-
tion, we employ an in-house implementation of the dipole
subtraction method [23], which introduces counterterms
for each term d�i

fin
= d�i

�d�i

dipole
with i = V,R,C . The

subtraction terms d�i

dipole
are carefully chosen such that

they cancel locally the infrared/collinear divergences of
each term, and sum up to zero [23].

Once the subtraction method is in place, one is left
with the calculation of the matrix elements for the virtual
and real contributions. The latter corrections require the
computation of one-loop five point amplitudes, which can
be done automatically. In particular, the matrix element
for gg ! ��g subprocess, as well as gq(q̄) ! ��q(q̄)
and qq̄ ! ��g subprocesses are needed. To this aim, we
adopt Recola2 [24] and Madgraph5 aMC@NLO[25],

as well as analytical expression for the light-quark con-
tributions [26–28].

We have implemented the light quark contribution
from ref. [21] in our code. We have then considered the
calculation of the top-quark contribution. Two-loop di-
agrams have been generated by QGRAF [29], and pro-
cessed by Form [30, 31], to generate corresponding am-
plitudes. They are fed into Reduze [32] to perform the
corresponding loop momentum redefinition and to clas-
sify them into 33 integral families according to the prop-
agator structure. We then adopt a projection method
to decompose the amplitudes into 10 independent ten-
sor structures, reducing the computation into that of
scalar integrals with irreducible numerators. Employ-
ing the C++ version of FIRE5 [33] with LiteRed [34]
to perform the integration-by-part reduction, we finally
obtain the corresponding form factors as a linear com-
bination of 1180 master integrals, distributed into the
33 integral families. We evaluate the master integrals
family by family, not considering the relations among
the master integrals of di↵erent families. The calcula-
tion of the master integrals is based on numerical in-
tegration of di↵erential equations, with initial condition
provided by an in-house implementation of sector decom-
position method [35].The numerical integration of di↵er-
ential equation is done with Odeint [36]. Starting from
the original initial conditions, several points in the physi-
cal region are pre-computed and results are stored. Dur-
ing the phase space integration, the closest point in the
pre-computed set is adopted as the new initial condition.
The average time to evaluate the amplitude is around
1 second, with at least O(10�9) precision at the master
integral level. The one-loop amplitude up to O(✏2) or-
der is computed within the same method. We refer the
reader to ref. [22] for the details of our method and
its extensive validation. Here we stress that, whenever
available, we have compared the numerical value of the
master integrals with those in the literature [37–39], and
found excellent agreement.

We renormalize ↵s in the MS scheme with five flavors.
The top-quark mass is renormalized on shell. We have
checked that UV divergences are cancelled by the corre-
sponding counter terms, and IR and collinear divergences

gg ! ��
<latexit sha1_base64="zADF/f5Qbkwjht4RAliWCMHPs6s=">AAAB/nicbVDLSgMxFL3js9bXaHHlJlgKrsqMG7ssuHFZwT6gU0omzUxDk8yQZIQyFFz4I25cKOLW73Dnzk8xfQjaeiDkcM693HtPmHKmjed9OmvrG5tb24Wd4u7e/sGhe3Tc0kmmCG2ShCeqE2JNOZO0aZjhtJMqikXIaTscXU399h1VmiXy1oxT2hM4lixiBBsr9d2TOEaBSVAQYyHwz9d3y17VmwGtEn9ByvVS5eELABp99yMYJCQTVBrCsdZd30tNL8fKMMLppBhkmqaYjHBMu5ZKLKju5bP1J6hilQGKEmWfNGim/u7IsdB6LEJbKbAZ6mVvKv7ndTMT1Xo5k2lmqCTzQVHGkb13mgUaMEWJ4WNLMFHM7orIECtMjE2saEPwl09eJa2Lqu9V/RubRg3mKMApnME5+HAJdbiGBjSBQA6P8Awvzr3z5Lw6b/PSNWfRU4I/cN6/AWGNlpY=</latexit><latexit sha1_base64="TMcFd9XbyQezxminDIlbMFE53kU=">AAAB/nicbVDLSgMxFL1TX7W+RosrN8FScFVm3NhlwY3LCvYBnVIyaWYamswMSUYoQ8GFP+LGhSJu/QI/wJ1+gF/gB5g+BG09EHI4517uvcdPOFPacd6t3Mrq2vpGfrOwtb2zu2fvHzRVnEpCGyTmsWz7WFHOItrQTHPaTiTFwue05Q/PJ37rmkrF4uhKjxLaFTiMWMAI1kbq2YdhiDwdIy/EQuCfr2eXnIozBVom7pyUasXy7dfr50e9Z795/ZikgkaacKxUx3US3c2w1IxwOi54qaIJJkMc0o6hERZUdbPp+mNUNkofBbE0L9Joqv7uyLBQaiR8UymwHqhFbyL+53VSHVS7GYuSVNOIzAYFKUfm3kkWqM8kJZqPDMFEMrMrIgMsMdEmsYIJwV08eZk0TyuuU3EvTRpVmCEPR3AMJ+DCGdTgAurQAAIZ3MEDPFo31r31ZD3PSnPWvKcIf2C9fAPbipkw</latexit><latexit sha1_base64="TMcFd9XbyQezxminDIlbMFE53kU=">AAAB/nicbVDLSgMxFL1TX7W+RosrN8FScFVm3NhlwY3LCvYBnVIyaWYamswMSUYoQ8GFP+LGhSJu/QI/wJ1+gF/gB5g+BG09EHI4517uvcdPOFPacd6t3Mrq2vpGfrOwtb2zu2fvHzRVnEpCGyTmsWz7WFHOItrQTHPaTiTFwue05Q/PJ37rmkrF4uhKjxLaFTiMWMAI1kbq2YdhiDwdIy/EQuCfr2eXnIozBVom7pyUasXy7dfr50e9Z795/ZikgkaacKxUx3US3c2w1IxwOi54qaIJJkMc0o6hERZUdbPp+mNUNkofBbE0L9Joqv7uyLBQaiR8UymwHqhFbyL+53VSHVS7GYuSVNOIzAYFKUfm3kkWqM8kJZqPDMFEMrMrIgMsMdEmsYIJwV08eZk0TyuuU3EvTRpVmCEPR3AMJ+DCGdTgAurQAAIZ3MEDPFo31r31ZD3PSnPWvKcIf2C9fAPbipkw</latexit><latexit sha1_base64="WoZqt5uJtwzjUUsHBNjleWonajQ=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgqsy4scuCG5cV7AM6Q7mTZqahSWZIMkIZCv6KGxeKuPU73Pk3pu0I2nog5HDOvdx7T5Rxpo3nfTlr6xubW9uVneru3v7BoXt03NFprghtk5SnqheBppxJ2jbMcNrLFAURcdqNxjczv/tAlWapvDeTjIYCEsliRsBYaeCeJgkOTIqDBISAn2/g1ry6NwdeJX5JaqhEa+B+BsOU5IJKQzho3fe9zIQFKMMIp9NqkGuaARlDQvuWShBUh8V8/Sm+sMoQx6myTxo8V393FCC0nojIVgowI73szcT/vH5u4kZYMJnlhkqyGBTnHNt7Z1ngIVOUGD6xBIhidldMRqCAGJtY1YbgL5+8SjpXdd+r+3derdko46igM3SOLpGPrlET3aIWaiOCCvSEXtCr8+g8O2/O+6J0zSl7TtAfOB/f37mUug==</latexit>

t
<latexit sha1_base64="KSaHXoEaRFoxN63C8xiW5mWpO/o=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKujekM2FgmYi6QLGF2cjYZMzu7zMwKYckT2FgoYutTWPkQdr6Nk0uhiT8MfPz/Ocw5J0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD3NWw+oNI/lnRkn6Ed0IHnIGTXWqpteseSW3ZnIKngLKF19ftyCVa1X/Or2Y5ZGKA0TVOuO5ybGz6gynAmcFLqpxoSyER1gx6KkEWo/mw06IWfW6ZMwVvZJQ2bu746MRlqPo8BWRtQM9XI2Nf/LOqkJK37GZZIalGz+UZgKYmIy3Zr0uUJmxNgCZYrbWQkbUkWZsbcp2CN4yyuvQvOi7Lllr+6WqhWYKw8ncArn4MElVOEGatAABgiP8Awvzr3z5Lw6b/PSnLPoOYY/ct5/AJp0jvE=</latexit><latexit sha1_base64="pWCtaj8WIgVNvCqMwKWf81mhtV4=">AAAB6HicbZC7SgNBFIbPeo3xFrUUZDAIVmHXxnQGbCwTMBdIQpidzCZjZmeXmbNCWFJa2VgoYutTpPIh7HwGX8LJpdDEHwY+/v8c5pzjx1IYdN0vZ2V1bX1jM7OV3d7Z3dvPHRzWTJRoxqsskpFu+NRwKRSvokDJG7HmNPQlr/uD60lev+faiEjd4jDm7ZD2lAgEo2itCnZyebfgTkWWwZtD/upjXPl+OBmXO7nPVjdiScgVMkmNaXpujO2UahRM8lG2lRgeUzagPd60qGjITTudDjoiZ9bpkiDS9ikkU/d3R0pDY4ahbytDin2zmE3M/7JmgkGxnQoVJ8gVm30UJJJgRCZbk67QnKEcWqBMCzsrYX2qKUN7m6w9gre48jLULgqeW/Aqbr5UhJkycAyncA4eXEIJbqAMVWDA4RGe4cW5c56cV+dtVrrizHuO4I+c9x+kb5E2</latexit><latexit sha1_base64="pWCtaj8WIgVNvCqMwKWf81mhtV4=">AAAB6HicbZC7SgNBFIbPeo3xFrUUZDAIVmHXxnQGbCwTMBdIQpidzCZjZmeXmbNCWFJa2VgoYutTpPIh7HwGX8LJpdDEHwY+/v8c5pzjx1IYdN0vZ2V1bX1jM7OV3d7Z3dvPHRzWTJRoxqsskpFu+NRwKRSvokDJG7HmNPQlr/uD60lev+faiEjd4jDm7ZD2lAgEo2itCnZyebfgTkWWwZtD/upjXPl+OBmXO7nPVjdiScgVMkmNaXpujO2UahRM8lG2lRgeUzagPd60qGjITTudDjoiZ9bpkiDS9ikkU/d3R0pDY4ahbytDin2zmE3M/7JmgkGxnQoVJ8gVm30UJJJgRCZbk67QnKEcWqBMCzsrYX2qKUN7m6w9gre48jLULgqeW/Aqbr5UhJkycAyncA4eXEIJbqAMVWDA4RGe4cW5c56cV+dtVrrizHuO4I+c9x+kb5E2</latexit><latexit sha1_base64="sL3kwOsLPEQ2YnLeCLXd7VqtFwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eFoPgKex6MceAF48JmAckS5id9CZjZmeXmV4hLPkCLx4U8eonefNvnDwOmljQUFR1090VplIY8rxvp7C1vbO7V9wvHRweHZ+UT8/aJsk0xxZPZKK7ITMohcIWCZLYTTWyOJTYCSd3c7/zhNqIRD3QNMUgZiMlIsEZWalJg3LFq3oLuJvEX5EKrNAYlL/6w4RnMSrikhnT872UgpxpElzirNTPDKaMT9gIe5YqFqMJ8sWhM/fKKkM3SrQtRe5C/T2Rs9iYaRzazpjR2Kx7c/E/r5dRVAtyodKMUPHloiiTLiXu/Gt3KDRyklNLGNfC3uryMdOMk82mZEPw11/eJO2bqu9V/aZXqddWcRThAi7hGny4hTrcQwNawAHhGV7hzXl0Xpx352PZWnBWM+fwB87nD9vnjOo=</latexit>

4

TABLE I. The di↵erential cross section for various contribution at LO and NLO are shown for di↵erent values of diphoton
invariant mass m(��). “5F only” means only including the five massless quarks, “top only” means only including the top
quark, “interference” means only the interference term between the light quarks and the top quark, and “full” means all the
above contributions.

fb/GeV LO NLO
m(��)[GeV] full 5F only top only interference full 5F only top only interference

125 24.26(1) 100.1% < 0.01% -0.1% 37.3(1) 100.1% < 0.01% -0.1%
400 0.11342(5) 104.6% 1.9% -6.5% 0.1628(5) 99.3% 2.7% -2.0%
500 0.03951(7) 88.7% 2.8% 8.6% 0.0582(2) 82.7% 3.5% 13.9%
1000 8.721(8)⇥ 10�4 63.2% 5.3% 31.5% 1.266(2)⇥ 10�3 60.5% 5.8% 33.6%

FIG. 4. The di↵erential cross section in m(��). The
cases of light quarks only and the full result (including top
quark) are shown. The band indicates scale uncertainties for
“NLO (full)”. The corresponding K-factor as well as the ratio
between full and 5F are shown.

those for the light quarks. Moreover, we plot the ratio be-
tween the “full” and “5F only” contributions at LO and
NLO, in the lower inset. It clearly shows that the e↵ect
of the top quark mass is negligible in the low energy re-
gion both at LO and NLO as the top-quark contribution
is parametrically suppressed as O(s2/m4

t
). As the en-

ergy increases towards the top-quark pair threshold, the
inclusion of the top-quark contribution leads to destruc-
tive interference, thus decreases the cross section. This
behaviour is not a↵ected by NLO corrections. However,
as evident from the ratio as well as the K-factor plots,
above threshold NLO corrections become large. Start-
ing at about 400 GeV, the interference between light and
top-quark contributions becomes constructive and since
the NLO corrections for the top only case is larger than
the light quark case, the full result displays a larger K-

factor. As a consequence, at NLO the ratio between the
full and 5F only results is larger, slowly approaching the
predictions from the 6F (massless) calculation (⇡ 1.86).

In Table I, we provide benchmark values for the dif-
ferential cross section. As discussed before, in the low
invariant mass region the top-quark contribution is tiny.
For example, at the Higgs mass region m(��) = mH =
125GeV, it is around �0.1%. Going above top-quark
pair threshold the top-quark contribution decreases the
cross section at LO, but the NLO cross section is almost
unchanged. Far above threshold, the interference turns
to be constructive, and very slowly approaching the 6F
(massless) limit.

Conclusions – In this letter, we have presented the
first complete computation of the NLO corrections to
gg ! �� in the standard model, including both light-
quarks and top-quark contributions. We have studied
the top-quark e↵ects in the total cross section and dif-
ferentially, focusing on the invariant mass spectrum of
the photons. We find that the NLO corrections are im-
portant everywhere, but especially in the vicinity of the
top-quark pair threshold, where indeed an enhancement
is expected on general grounds. A remarkable feature of
the NLO spectrum is that the change of slope at the tt̄

threshold becomes much more evident. Our calculation
paves the way to improving the treatment of the thresh-
old region at NLO including (pseudo-) bound state ef-
fects, with the goal to extract a short-distance top-quark
mass, and to include background-signal interference ef-
fects at NLO accuracy in the production of new physics
heavy scalar resonances decaying to diphoton final states.
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where the sum runs over all final state partons i. This
scale is known to give a good convergence of the pertur-
bative expansion and stable di↵erential K-factors (ratio
of NLO to LO predictions) in the e↵ective theory [68].
To estimate the theoretical uncertainty we vary indepen-
dently µF and µR by factors of 0.5 and 2, and exclude
the opposite variations. The total uncertainty is taken
to be the envelope of this 7-point variation.

To better highlight the di↵erences arising from the two-
loop massive contributions, we compare the new results
with full top-quark mass dependence, which we label as
“full theory result” or simply “full” in the following, to
two di↵erent approximations. In addition to predictions
in the e↵ective theory, which are referred to as HEFT in
the following, we show results in which everything but
the virtual amplitudes is computed with full top-quark
mass dependence. In this latter case only the virtual
contribution is computed in the e↵ective field theory and
reweighted by the full theory Born amplitude for each
phase space point. Following Ref. [69] we call this predic-
tion “approximated full theory” and label it as FTapprox

from now on.
We start by presenting the total cross sections, which

are reported in Table I. For comparison we present results
also for the HEFT and FTapprox approximations.

Theory LO [pb] NLO [pb]

HEFT: �LO = 8.22+3.17
�2.15 �NLO = 14.63+3.30

�2.54

FTapprox: �LO = 8.57+3.31
�2.24 �NLO = 15.07+2.89

�2.54

Full: �LO = 8.57+3.31
�2.24 �NLO = 16.01+1.59

�3.73

Table I. Total cross sections at LO and NLO in the HEFT and
FTapprox approximations and with full top-quark mass depen-
dence. The upper and lower values due to scale variation are
also shown. More details can be found in the text.

Together with the prediction obtained with the central
scale defined according to Eq. (1) we show the upper and
lower values obtained by varying the scales. While at LO
the top-quark mass e↵ects lead to an increase of 4.3%, at
NLO this increase is of the order of 9% compared to the
HEFT approximation, and there is an increase of about
6% in the total NLO cross section when comparing the
FTapprox result with the full theory one. It is important
to keep in mind that when taking into account massive
bottom-quark loop contributions, the interference e↵ects
are sizable and cancel to a large extent the increase in the
total cross section observed here between the HEFT and
the full theory results (see e.g. the results in Ref. [13]).
Note, however, that the bottom-quark mass e↵ects at
LO are of the order of 2% or smaller above the top quark
threshold.

Considering more di↵erential observables, it is well
known that very significant e↵ects due to resolving the
top-quark loop are displayed by the Higgs boson trans-

Figure 1. Higgs boson transverse momentum spectrum at LO
and NLO in QCD in HEFT and with full top-quark mass de-
pendence. The upper panel shows the di↵erential cross sec-
tions, in the middle panel we normalize all distributions to
the LO HEFT prediction and in the lower panel we show the
di↵erential K-factors for both the HEFT and the full theory
distributions. More details can be found in the text.

verse momentum distribution, which is softened for larger
values of pt,H by the full top-quark mass dependence. By
considering the high energy limit of a point-like gluon-
gluon Higgs interaction and one mediated via a quark
loop it is possible to derive the scaling of the squared
transverse momentum distribution d�/dp

2

t,H [70, 71],
which drops as (p2t,H)

�1 in the e↵ective theory, and goes
instead as (p2t,H)

�2 in the full theory. This fact was shown
to hold numerically at LO for up to three jets in Ref. [13].
It is interesting to verify this also after NLO QCD cor-
rections are applied. To do so, in Figure 1 we show the
transverse momentum spectrum of the Higgs boson at
LO and NLO in the HEFT approximation and with the
full top-quark mass dependence.

In the upper panel we display each di↵erential distri-
bution with the theory uncertainty band originating from
scale variation. To highlight the di↵erent scaling in pt,H,
in the middle panel we normalize all the distributions to
the LO curve in the e↵ective theory. It is thus possible
to see that for low transverse momenta the full theory
predictions overshoot slightly the e↵ective theory ones.
For pt,H > 200 GeV the two predictions start deviating
more substantially. At LO the two uncertainty bands do
not overlap any more above 400 GeV, whereas at NLO
this happens already around 340 GeV due to reduction of
the uncertainty at this order. The logarithmic scale also
allows to see that the relative scaling behavior within

pp ! H + j
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Heavy	quark	mass	effects	
•  H+jet	amplitudes	with	masses	

§  Small-mass	limit	(K.	Melnikov,	L.	Tancredi,	C.	Wever)	

§  Two-loop	integrals	with	full	mass	dependence	in	
progress	(R.	Bonciani,	V.	Del	Duca,	H.	Frellesvig,	J.	Henn,	F.	Moriello,	V.	
Smirnov;	D.	Kara,	TG)	
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Figure 1: Examples of two-loop Feynman diagrams that contribute to the process
gg → Hg.

where, for consistency with Eq.(2.6), sums over polarizations of external gluons are

taken to be

∑

pol

(εµ1 (p1))
∗ εν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (3.2)

∑

pol

(εµ2 (p2))
∗ εν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (3.3)

∑

pol

(εµ3 (p3))
∗ εν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (3.4)

We stress at this point that all Lorenz indices in Eq.(3.1) have to be understood as

d-dimensional. The explicit form of the projection operators can be found by making
an Ansatz in terms of the same linearly independent tensors as in Eq.(2.7)

P µνρ
j =

1

d− 3

[

c(j)1 gµν pρ2 + c(j)2 gµρ pν1 + c(j)3 gνρ pµ3 + c(j)4 pµ3p
ν
1p

ρ
2

]

, (3.5)

where j ∈ {1, 2, 3, 4}. The scalar functions c(j)i are unknown a priori; they are found

by requiring that Eq.(3.1) is satisfied. We obtain

c(1)1 =
t

s u
, c(1)2 = 0 , c(1)3 = 0 , c(1)4 = −

1

s u
,

c(2)1 = 0 , c(2)2 =
u

s t
, c(2)3 = 0 , c(2)4 = −

1

s t
,

c(3)1 = 0 , c(3)2 = 0 , c(3)3 =
s

t u
, c(3)4 = −

1

t u
,

c(4)1 = −
1

s u
, c(4)2 = −

1

s t
, c(4)3 = −

1

t u
, c(4)4 =

1

s t u
.

(3.6)

With these results at hand, we can compute each of the form factors separately.
Since the form factors are independent of the external polarization vectors, all the
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FIG. 1. Representative Feynman for gg ! �� at NLO: the Born (a), real corrections (b,c), and virtual corrections (d,e). In
our computation photons couple only to the quarks running in the closed loop, i.e., 5 massless quarks u, d, c, s, b and the top
quark t.

particularly motivated above the top pair threshold, in-
cluding the top-quark contribution is essential.

The computation of NLO corrections of the top-quark
induced contributions, requires the knowledge of highly
non-trivial two-loop amplitudes. While in the mass-
less quark limit the corresponding amplitudes have been
known for a long time [21], the computation of massive
ones, is still a challenge. Analytical results have be-
come available in closed form for some of the relevant
Feynman integrals (planar) yet the full set is unknown.
On the other hand, numerical methods have been intro-
duced [22] that allow to perform this calculation. In this
letter, we compute the complete NLO corrections to the
gluon fusion channel gg ! ��, including the top-quark
contribution for the first time.

Calculation – The cross section at NLO accuracy can
be written as

d�NLO = d�Born + d�V + d�R + d�C
,

where d�Born is the leading order one-loop contribution,
d�V denotes the virtual (two-loop) contributions, d�R

is the real (one-loop, 2!3 contribution), and d�C repre-
sents the collinear singularity to absorbed into the parton
distribution functions. The representative Feynman di-
agrams for the Born, virtual and real contributions are
shown in Fig. 1. Each of the three terms at NLO are in-
frared/collinear divergent. Their sum, however, is free of
infrared/collinear divergences. To handle this cancella-
tion, we employ an in-house implementation of the dipole
subtraction method [23], which introduces counterterms
for each term d�i

fin
= d�i

�d�i

dipole
with i = V,R,C . The

subtraction terms d�i

dipole
are carefully chosen such that

they cancel locally the infrared/collinear divergences of
each term, and sum up to zero [23].

Once the subtraction method is in place, one is left
with the calculation of the matrix elements for the virtual
and real contributions. The latter corrections require the
computation of one-loop five point amplitudes, which can
be done automatically. In particular, the matrix element
for gg ! ��g subprocess, as well as gq(q̄) ! ��q(q̄)
and qq̄ ! ��g subprocesses are needed. To this aim, we
adopt Recola2 [24] and Madgraph5 aMC@NLO[25],

as well as analytical expression for the light-quark con-
tributions [26–28].

We have implemented the light quark contribution
from ref. [21] in our code. We have then considered the
calculation of the top-quark contribution. Two-loop di-
agrams have been generated by QGRAF [29], and pro-
cessed by Form [30, 31], to generate corresponding am-
plitudes. They are fed into Reduze [32] to perform the
corresponding loop momentum redefinition and to clas-
sify them into 33 integral families according to the prop-
agator structure. We then adopt a projection method
to decompose the amplitudes into 10 independent ten-
sor structures, reducing the computation into that of
scalar integrals with irreducible numerators. Employ-
ing the C++ version of FIRE5 [33] with LiteRed [34]
to perform the integration-by-part reduction, we finally
obtain the corresponding form factors as a linear com-
bination of 1180 master integrals, distributed into the
33 integral families. We evaluate the master integrals
family by family, not considering the relations among
the master integrals of di↵erent families. The calcula-
tion of the master integrals is based on numerical in-
tegration of di↵erential equations, with initial condition
provided by an in-house implementation of sector decom-
position method [35].The numerical integration of di↵er-
ential equation is done with Odeint [36]. Starting from
the original initial conditions, several points in the physi-
cal region are pre-computed and results are stored. Dur-
ing the phase space integration, the closest point in the
pre-computed set is adopted as the new initial condition.
The average time to evaluate the amplitude is around
1 second, with at least O(10�9) precision at the master
integral level. The one-loop amplitude up to O(✏2) or-
der is computed within the same method. We refer the
reader to ref. [22] for the details of our method and
its extensive validation. Here we stress that, whenever
available, we have compared the numerical value of the
master integrals with those in the literature [37–39], and
found excellent agreement.

We renormalize ↵s in the MS scheme with five flavors.
The top-quark mass is renormalized on shell. We have
checked that UV divergences are cancelled by the corre-
sponding counter terms, and IR and collinear divergences

gg ! ��
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<latexit sha1_base64="KSaHXoEaRFoxN63C8xiW5mWpO/o=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKujekM2FgmYi6QLGF2cjYZMzu7zMwKYckT2FgoYutTWPkQdr6Nk0uhiT8MfPz/Ocw5J0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD3NWw+oNI/lnRkn6Ed0IHnIGTXWqpteseSW3ZnIKngLKF19ftyCVa1X/Or2Y5ZGKA0TVOuO5ybGz6gynAmcFLqpxoSyER1gx6KkEWo/mw06IWfW6ZMwVvZJQ2bu746MRlqPo8BWRtQM9XI2Nf/LOqkJK37GZZIalGz+UZgKYmIy3Zr0uUJmxNgCZYrbWQkbUkWZsbcp2CN4yyuvQvOi7Lllr+6WqhWYKw8ncArn4MElVOEGatAABgiP8Awvzr3z5Lw6b/PSnLPoOYY/ct5/AJp0jvE=</latexit><latexit sha1_base64="pWCtaj8WIgVNvCqMwKWf81mhtV4=">AAAB6HicbZC7SgNBFIbPeo3xFrUUZDAIVmHXxnQGbCwTMBdIQpidzCZjZmeXmbNCWFJa2VgoYutTpPIh7HwGX8LJpdDEHwY+/v8c5pzjx1IYdN0vZ2V1bX1jM7OV3d7Z3dvPHRzWTJRoxqsskpFu+NRwKRSvokDJG7HmNPQlr/uD60lev+faiEjd4jDm7ZD2lAgEo2itCnZyebfgTkWWwZtD/upjXPl+OBmXO7nPVjdiScgVMkmNaXpujO2UahRM8lG2lRgeUzagPd60qGjITTudDjoiZ9bpkiDS9ikkU/d3R0pDY4ahbytDin2zmE3M/7JmgkGxnQoVJ8gVm30UJJJgRCZbk67QnKEcWqBMCzsrYX2qKUN7m6w9gre48jLULgqeW/Aqbr5UhJkycAyncA4eXEIJbqAMVWDA4RGe4cW5c56cV+dtVrrizHuO4I+c9x+kb5E2</latexit><latexit sha1_base64="pWCtaj8WIgVNvCqMwKWf81mhtV4=">AAAB6HicbZC7SgNBFIbPeo3xFrUUZDAIVmHXxnQGbCwTMBdIQpidzCZjZmeXmbNCWFJa2VgoYutTpPIh7HwGX8LJpdDEHwY+/v8c5pzjx1IYdN0vZ2V1bX1jM7OV3d7Z3dvPHRzWTJRoxqsskpFu+NRwKRSvokDJG7HmNPQlr/uD60lev+faiEjd4jDm7ZD2lAgEo2itCnZyebfgTkWWwZtD/upjXPl+OBmXO7nPVjdiScgVMkmNaXpujO2UahRM8lG2lRgeUzagPd60qGjITTudDjoiZ9bpkiDS9ikkU/d3R0pDY4ahbytDin2zmE3M/7JmgkGxnQoVJ8gVm30UJJJgRCZbk67QnKEcWqBMCzsrYX2qKUN7m6w9gre48jLULgqeW/Aqbr5UhJkycAyncA4eXEIJbqAMVWDA4RGe4cW5c56cV+dtVrrizHuO4I+c9x+kb5E2</latexit><latexit sha1_base64="sL3kwOsLPEQ2YnLeCLXd7VqtFwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eFoPgKex6MceAF48JmAckS5id9CZjZmeXmV4hLPkCLx4U8eonefNvnDwOmljQUFR1090VplIY8rxvp7C1vbO7V9wvHRweHZ+UT8/aJsk0xxZPZKK7ITMohcIWCZLYTTWyOJTYCSd3c7/zhNqIRD3QNMUgZiMlIsEZWalJg3LFq3oLuJvEX5EKrNAYlL/6w4RnMSrikhnT872UgpxpElzirNTPDKaMT9gIe5YqFqMJ8sWhM/fKKkM3SrQtRe5C/T2Rs9iYaRzazpjR2Kx7c/E/r5dRVAtyodKMUPHloiiTLiXu/Gt3KDRyklNLGNfC3uryMdOMk82mZEPw11/eJO2bqu9V/aZXqddWcRThAi7hGny4hTrcQwNawAHhGV7hzXl0Xpx352PZWnBWM+fwB87nD9vnjOo=</latexit>
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TABLE I. The di↵erential cross section for various contribution at LO and NLO are shown for di↵erent values of diphoton
invariant mass m(��). “5F only” means only including the five massless quarks, “top only” means only including the top
quark, “interference” means only the interference term between the light quarks and the top quark, and “full” means all the
above contributions.

fb/GeV LO NLO
m(��)[GeV] full 5F only top only interference full 5F only top only interference

125 24.26(1) 100.1% < 0.01% -0.1% 37.3(1) 100.1% < 0.01% -0.1%
400 0.11342(5) 104.6% 1.9% -6.5% 0.1628(5) 99.3% 2.7% -2.0%
500 0.03951(7) 88.7% 2.8% 8.6% 0.0582(2) 82.7% 3.5% 13.9%
1000 8.721(8)⇥ 10�4 63.2% 5.3% 31.5% 1.266(2)⇥ 10�3 60.5% 5.8% 33.6%

FIG. 4. The di↵erential cross section in m(��). The
cases of light quarks only and the full result (including top
quark) are shown. The band indicates scale uncertainties for
“NLO (full)”. The corresponding K-factor as well as the ratio
between full and 5F are shown.

those for the light quarks. Moreover, we plot the ratio be-
tween the “full” and “5F only” contributions at LO and
NLO, in the lower inset. It clearly shows that the e↵ect
of the top quark mass is negligible in the low energy re-
gion both at LO and NLO as the top-quark contribution
is parametrically suppressed as O(s2/m4

t
). As the en-

ergy increases towards the top-quark pair threshold, the
inclusion of the top-quark contribution leads to destruc-
tive interference, thus decreases the cross section. This
behaviour is not a↵ected by NLO corrections. However,
as evident from the ratio as well as the K-factor plots,
above threshold NLO corrections become large. Start-
ing at about 400 GeV, the interference between light and
top-quark contributions becomes constructive and since
the NLO corrections for the top only case is larger than
the light quark case, the full result displays a larger K-

factor. As a consequence, at NLO the ratio between the
full and 5F only results is larger, slowly approaching the
predictions from the 6F (massless) calculation (⇡ 1.86).

In Table I, we provide benchmark values for the dif-
ferential cross section. As discussed before, in the low
invariant mass region the top-quark contribution is tiny.
For example, at the Higgs mass region m(��) = mH =
125GeV, it is around �0.1%. Going above top-quark
pair threshold the top-quark contribution decreases the
cross section at LO, but the NLO cross section is almost
unchanged. Far above threshold, the interference turns
to be constructive, and very slowly approaching the 6F
(massless) limit.

Conclusions – In this letter, we have presented the
first complete computation of the NLO corrections to
gg ! �� in the standard model, including both light-
quarks and top-quark contributions. We have studied
the top-quark e↵ects in the total cross section and dif-
ferentially, focusing on the invariant mass spectrum of
the photons. We find that the NLO corrections are im-
portant everywhere, but especially in the vicinity of the
top-quark pair threshold, where indeed an enhancement
is expected on general grounds. A remarkable feature of
the NLO spectrum is that the change of slope at the tt̄

threshold becomes much more evident. Our calculation
paves the way to improving the treatment of the thresh-
old region at NLO including (pseudo-) bound state ef-
fects, with the goal to extract a short-distance top-quark
mass, and to include background-signal interference ef-
fects at NLO accuracy in the production of new physics
heavy scalar resonances decaying to diphoton final states.
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where the sum runs over all final state partons i. This
scale is known to give a good convergence of the pertur-
bative expansion and stable di↵erential K-factors (ratio
of NLO to LO predictions) in the e↵ective theory [68].
To estimate the theoretical uncertainty we vary indepen-
dently µF and µR by factors of 0.5 and 2, and exclude
the opposite variations. The total uncertainty is taken
to be the envelope of this 7-point variation.

To better highlight the di↵erences arising from the two-
loop massive contributions, we compare the new results
with full top-quark mass dependence, which we label as
“full theory result” or simply “full” in the following, to
two di↵erent approximations. In addition to predictions
in the e↵ective theory, which are referred to as HEFT in
the following, we show results in which everything but
the virtual amplitudes is computed with full top-quark
mass dependence. In this latter case only the virtual
contribution is computed in the e↵ective field theory and
reweighted by the full theory Born amplitude for each
phase space point. Following Ref. [69] we call this predic-
tion “approximated full theory” and label it as FTapprox

from now on.
We start by presenting the total cross sections, which

are reported in Table I. For comparison we present results
also for the HEFT and FTapprox approximations.

Theory LO [pb] NLO [pb]

HEFT: �LO = 8.22+3.17
�2.15 �NLO = 14.63+3.30

�2.54

FTapprox: �LO = 8.57+3.31
�2.24 �NLO = 15.07+2.89

�2.54

Full: �LO = 8.57+3.31
�2.24 �NLO = 16.01+1.59

�3.73

Table I. Total cross sections at LO and NLO in the HEFT and
FTapprox approximations and with full top-quark mass depen-
dence. The upper and lower values due to scale variation are
also shown. More details can be found in the text.

Together with the prediction obtained with the central
scale defined according to Eq. (1) we show the upper and
lower values obtained by varying the scales. While at LO
the top-quark mass e↵ects lead to an increase of 4.3%, at
NLO this increase is of the order of 9% compared to the
HEFT approximation, and there is an increase of about
6% in the total NLO cross section when comparing the
FTapprox result with the full theory one. It is important
to keep in mind that when taking into account massive
bottom-quark loop contributions, the interference e↵ects
are sizable and cancel to a large extent the increase in the
total cross section observed here between the HEFT and
the full theory results (see e.g. the results in Ref. [13]).
Note, however, that the bottom-quark mass e↵ects at
LO are of the order of 2% or smaller above the top quark
threshold.

Considering more di↵erential observables, it is well
known that very significant e↵ects due to resolving the
top-quark loop are displayed by the Higgs boson trans-

Figure 1. Higgs boson transverse momentum spectrum at LO
and NLO in QCD in HEFT and with full top-quark mass de-
pendence. The upper panel shows the di↵erential cross sec-
tions, in the middle panel we normalize all distributions to
the LO HEFT prediction and in the lower panel we show the
di↵erential K-factors for both the HEFT and the full theory
distributions. More details can be found in the text.

verse momentum distribution, which is softened for larger
values of pt,H by the full top-quark mass dependence. By
considering the high energy limit of a point-like gluon-
gluon Higgs interaction and one mediated via a quark
loop it is possible to derive the scaling of the squared
transverse momentum distribution d�/dp

2

t,H [70, 71],
which drops as (p2t,H)

�1 in the e↵ective theory, and goes
instead as (p2t,H)

�2 in the full theory. This fact was shown
to hold numerically at LO for up to three jets in Ref. [13].
It is interesting to verify this also after NLO QCD cor-
rections are applied. To do so, in Figure 1 we show the
transverse momentum spectrum of the Higgs boson at
LO and NLO in the HEFT approximation and with the
full top-quark mass dependence.

In the upper panel we display each di↵erential distri-
bution with the theory uncertainty band originating from
scale variation. To highlight the di↵erent scaling in pt,H,
in the middle panel we normalize all the distributions to
the LO curve in the e↵ective theory. It is thus possible
to see that for low transverse momenta the full theory
predictions overshoot slightly the e↵ective theory ones.
For pt,H > 200 GeV the two predictions start deviating
more substantially. At LO the two uncertainty bands do
not overlap any more above 400 GeV, whereas at NLO
this happens already around 340 GeV due to reduction of
the uncertainty at this order. The logarithmic scale also
allows to see that the relative scaling behavior within

pp ! H + j
<latexit sha1_base64="KW3MqaP9k3Qx29H5e1FAWDBtMGM=">AAAB8XicbVDLSgMxFL1TX7W+Rrt0EywFQSgzbuyy4KbLCvaB7VAyaaaNzWRCkhHK0J2f4MaFIm79G3fu/BTTx0JbDwQO59xL7jmh5Ewbz/tychubW9s7+d3C3v7B4ZF7fNLSSaoIbZKEJ6oTYk05E7RpmOG0IxXFcchpOxxfz/z2A1WaJeLWTCQNYjwULGIEGyvdSYl6JkH1i/u+W/Iq3hxonfhLUqoVy4/fANDou5+9QULSmApDONa663vSBBlWhhFOp4VeqqnEZIyHtGupwDHVQTa/eIrKVhmgKFH2CYPm6u+NDMdaT+LQTsbYjPSqNxP/87qpiapBxoRMDRVk8VGUcmRDzuKjAVOUGD6xBBPF7K2IjLDCxNiSCrYEfzXyOmldVnyv4t/YNqqwQB5O4QzOwYcrqEEdGtAEAgKe4AVeHe08O2/O+2I05yx3ivAHzscP8QWR6A==</latexit><latexit sha1_base64="5fJjG1uUk6+3J5nogvVPY/Psldk=">AAAB8XicbVDLSgMxFL1TX7W+ql26CZaCIJQZN3ZZcNNlBfvAdiiZNNPGZjIhyQhl6M5PcONCEbf+hx/gTj/AL/ADTB8LrR4IHM65l9xzAsmZNq777mRWVtfWN7Kbua3tnd29/P5BU8eJIrRBYh6rdoA15UzQhmGG07ZUFEcBp61gdD71WzdUaRaLSzOW1I/wQLCQEWysdCUl6poY1U6ue/miW3ZnQH+JtyDFaqF0+/X6+VHv5d+6/ZgkERWGcKx1x3Ol8VOsDCOcTnLdRFOJyQgPaMdSgSOq/XR28QSVrNJHYazsEwbN1J8bKY60HkeBnYywGeplbyr+53USE1b8lAmZGCrI/KMw4ciGnMZHfaYoMXxsCSaK2VsRGWKFibEl5WwJ3nLkv6R5Wvbcsndh26jAHFk4hCM4Bg/OoAo1qEMDCAi4gwd4dLRz7zw5z/PRjLPYKcAvOC/faxGUgg==</latexit><latexit sha1_base64="5fJjG1uUk6+3J5nogvVPY/Psldk=">AAAB8XicbVDLSgMxFL1TX7W+ql26CZaCIJQZN3ZZcNNlBfvAdiiZNNPGZjIhyQhl6M5PcONCEbf+hx/gTj/AL/ADTB8LrR4IHM65l9xzAsmZNq777mRWVtfWN7Kbua3tnd29/P5BU8eJIrRBYh6rdoA15UzQhmGG07ZUFEcBp61gdD71WzdUaRaLSzOW1I/wQLCQEWysdCUl6poY1U6ue/miW3ZnQH+JtyDFaqF0+/X6+VHv5d+6/ZgkERWGcKx1x3Ol8VOsDCOcTnLdRFOJyQgPaMdSgSOq/XR28QSVrNJHYazsEwbN1J8bKY60HkeBnYywGeplbyr+53USE1b8lAmZGCrI/KMw4ciGnMZHfaYoMXxsCSaK2VsRGWKFibEl5WwJ3nLkv6R5Wvbcsndh26jAHFk4hCM4Bg/OoAo1qEMDCAi4gwd4dLRz7zw5z/PRjLPYKcAvOC/faxGUgg==</latexit><latexit sha1_base64="oVyt/cBsg7dZUc7XN7Y89YVHu+s=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIsgCGXGjV0W3HRZwT6wHUomzbSxSSYkGaEM/Qs3LhRx69+4829M21lo64HA4Zx7yT0nUpwZ6/vfXmFjc2t7p7hb2ts/ODwqH5+0TZJqQlsk4YnuRthQziRtWWY57SpNsYg47UST27nfeaLasETe26miocAjyWJGsHXSg1KobxPUuHoclCt+1V8ArZMgJxXI0RyUv/rDhKSCSks4NqYX+MqGGdaWEU5npX5qqMJkgke056jEgpowW1w8QxdOGaI40e5Jixbq740MC2OmInKTAtuxWfXm4n9eL7VxLcyYVKmlkiw/ilOOXMh5fDRkmhLLp45gopm7FZEx1phYV1LJlRCsRl4n7etq4FeDO79Sr+V1FOEMzuESAriBOjSgCS0gIOEZXuHNM96L9+59LEcLXr5zCn/gff4Ab0CQDA==</latexit>

Heavy	quark	mass	effects	
•  H+jet	amplitudes	with	masses	

§  Small-mass	limit	(K.	Melnikov,	L.	Tancredi,	C.	Wever)	

§  Two-loop	integrals	with	full	mass	dependence	in	
progress	(R.	Bonciani,	V.	Del	Duca,	H.	Frellesvig,	J.	Henn,	F.	Moriello,	V.	
Smirnov;	D.	Kara,	TG)	
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Figure 1: Examples of two-loop Feynman diagrams that contribute to the process
gg → Hg.

where, for consistency with Eq.(2.6), sums over polarizations of external gluons are

taken to be

∑

pol

(εµ1 (p1))
∗ εν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (3.2)

∑

pol

(εµ2 (p2))
∗ εν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (3.3)

∑

pol

(εµ3 (p3))
∗ εν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (3.4)

We stress at this point that all Lorenz indices in Eq.(3.1) have to be understood as

d-dimensional. The explicit form of the projection operators can be found by making
an Ansatz in terms of the same linearly independent tensors as in Eq.(2.7)

P µνρ
j =

1

d− 3

[

c(j)1 gµν pρ2 + c(j)2 gµρ pν1 + c(j)3 gνρ pµ3 + c(j)4 pµ3p
ν
1p

ρ
2

]

, (3.5)

where j ∈ {1, 2, 3, 4}. The scalar functions c(j)i are unknown a priori; they are found

by requiring that Eq.(3.1) is satisfied. We obtain

c(1)1 =
t

s u
, c(1)2 = 0 , c(1)3 = 0 , c(1)4 = −

1

s u
,

c(2)1 = 0 , c(2)2 =
u

s t
, c(2)3 = 0 , c(2)4 = −

1

s t
,

c(3)1 = 0 , c(3)2 = 0 , c(3)3 =
s

t u
, c(3)4 = −

1

t u
,

c(4)1 = −
1

s u
, c(4)2 = −

1

s t
, c(4)3 = −

1

t u
, c(4)4 =

1

s t u
.

(3.6)

With these results at hand, we can compute each of the form factors separately.
Since the form factors are independent of the external polarization vectors, all the
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Figure 1: Complete set of Feynman diagrams with two fermion loops contributing to the

Higgs-gluon form factor at three-loop order. The fermion loop connected to the Higgs-

boson line corresponds to a massive quark. The quark of the second fermion loop may be

either massive or massless.

2 Finite remainders

Consider the amplitude for the fusion of two gluons of momenta p1,2, helicities �1,2 and

adjoint-representation colors a1,2, followed by the production of one, possibly o↵-shell,

Higgs boson:

� iM
⇥
g(p1,�1, a1) + g(p2,�2, a2) ! H

⇤
⌘

i�
a1a2

⇥
(✏1 · p2) (✏2 · p1)� (✏1 · ✏2) (p2 · p1)

⇤ 1
v

↵s

⇡
C . (2.1)

Here, v is the Higgs-doublet Vacuum Expectation Value. The coupling of a single quark

field, Q, of mass M 6= 0 to the Higgs-boson field, H, is given by the tree-level Lagrangian
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1 Introduction

Recent interest in the Higgs-gluon form factor is stimulated primarily by studies on the

precision of cross section predictions for various hadron-collider processes involving an

intermediate Higgs boson [1]. Indeed, the amplitude gg ! H contributes to both single-

and double-Higgs production with subsequent Higgs decay to a pair of fermions or o↵-

shell gauge bosons. In consequence, applications require the knowledge of the form factor

for arbitrary virtualities, and the uncertainty induced by the standard use of the infinite

top-quark mass limit plays a non-negligible role.

In pure QCD, the evaluation of the form factor is complicated by the fact that the

process is loop induced. Nevertheless, exact two-loop results for arbitrary quark masses

have been available since Refs. [2–5]. Improvement over the current accuracy of cross

section predictions requires the knowledge of the form factor at three-loop order. This is

quite a challenging problem that has been first attacked with the help of the large-mass

expansion in the top-quark mass [6, 7]. A large-mass expansion has even been derived

at four-loop order [8]. Further progress at three-loops has been recently achieved using

Padé approximants [9] exploiting partial knowledge of the form factor’s behaviour around

threshold [10]. While a complete result for the form factor at this order remains elusive,

an exact result in terms of harmonic polylogarithms has been obtained for contributions

involving a massless-quark loop [11]. The diagrams contributing to the latter calculation

are depicted in Fig. 1. The same diagrams also contribute with two massive quark loops. In

the present publication, we present an exact result for the form factor in QCD with a single

massive quark. In particular, we compute the diagrams of Fig. 1 with both quark loops

with the same flavour, as well as the complete set of diagrams with only one massive-quark

loop. A result in QCD with several massive quarks would still require a calculation of the

diagrams Fig. 1 with massive quarks of di↵erent flavour.

Our results are certainly necessary to answer the question whether Padé approximants

are indeed su�cient phenomenologically as claimed in Ref. [9]. Independently, the knowl-

edge of exact quark mass dependence of the form factor opens the possibility of including

b-quark mass e↵ects exactly.

The paper is organised as follows. In the next section, we introduce our conventions

and define finite remainders of the form factor after infrared renormalisation. We use this

opportunity to provide explicit formulae for the scale dependence of the form factor as

well. We subsequently describe the methodology that has allowed us to obtain not only a

high precision numerical result but also high-order expansions around the three physical

singularities: infinite quark mass (large-mass expansion), intermediate-quark production

threshold (threshold expansion) and vanishing quark mass (high-energy expansion). Fi-

nally, we present our results and compare them to previous work, in particular, the Padé

approximants of Ref. [9]. This main text is closed with conclusions and outlook. The three

expansions are reproduced in separate appendices. The last appendix presents the contents

of an ancillary file that contains our results in electronic form.
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Figure 3: Comparison of the three-loop coe�cient of the finite remainder, Eq. (2.9), at

nl = 5, Lµ = 0 (five massless quarks, renormalisation scale µ
2 = �s), with the default

Padé approximation, [6, 1], constructed in Ref. [9] (left panel) and improved to [7, 1] in

Ref. [26] (right panel), as function of z = s/4M2 with
p
s the center-of-mass energy of the

Higgs boson and M the mass of the single massive quark. The bands correspond to the

uncertainty of the Padé approximations as estimated in Refs. [9] and [26]. The lower plot

shows the absolute di↵erence between the approximation and the exact result. Also shown

is the large-mass expansion (LME) of the three-loop coe�cient of the finite remainder

truncated at O
�
z
2
�
,O

�
z
4
�
and O

�
z
100

�
.

4 Results

Since the scale logarithms of the three-loop coe�cient of the finite remainder are entirely

determined from the analytically known lower order results, see Eqs. (2.15), we only present

our findings at Lµ = 0.

We first note that our result for C
(2,1)
I agrees perfectly with Ref. [11]. Remains to

compare with the Padé approximants of Ref. [9] for C
(2). A comparison for the case of

five massless quarks is presented in Fig. 3. We observe that the uncertainty estimates of

the approximants are reliable over most of the range of z. Slightly larger deviations are

observed for the nl = 0 case as demonstrated in Fig. 4. An improvement of the Padé

approximants has recently appeared in the proceedings [26]. The respective plots are also

shown in Figs. 3 and 4. Clearly, the agreement with the exact result is worse for nl = 5

and better for nl = 0.

In order to understand the phenomenological relevance of the di↵erence between the

exact result and its Padé approximation for nl = 0, we consider the quantity:
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Figure 1: Representative two-loop Feynman diagrams for gg ! WW .

Class Colour factor

L NC

S 1
NC

LS
⇣
NC �

1
NC

⌘

Table 1: The classification of diagrams in colour structures follows that of the two-loop

gluon self-energy diagrams involving a closed fermion loop. This motivates splitting the

amplitude into leading and sub-leading colour.

nonplanar contributions. We find 33 non-vanishing diagrams in class L (of which 17 are

nonplanar), 20 in class S and 40 in LS.

This classification motivates splitting the amplitude into leading (NC) and sub-leading

(1/NC) colour contributions,

A(2) = NcA
(2),[1] +

1

Nc
A(2),[�1]. (3.1)

Note that both A(2),[1] and A(2),[�1] are gauge invariant. We also observe that A(2),[�1] is

finite after mass renormalisation and has no infrared poles.

In order to perform an IBP reduction we express the amplitude in terms of integral fam-

ilies. An integral family is a set of propagators and irreducible scalar products (ISPs) that

forms a basis of the linear space spanned by all scalar products containing loop momenta.

For four-point kinematics in four dimensions there are 9 independent scalar products at

two loops. Before the integral reduction the form factors can be written as

A(2)
I =

NTX

T=1

X

~aT

c(2)IT~aT
IT (~aT ). (3.2)
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Two loops LLLL

1/NC ✏0

P1 A(2),[�1]/A(1)
�0.604318842260586 + 0.554150870358548i

P2 A(2),[�1]/A(1)
�6.09083779674665� 6.83926633649785i

LRLL

1/NC ✏0

P1 A(2),[�1]/A(1)
�1.004215354701388 + 0.569698273209762i

P2 A(2),[�1]/A(1) 1.48368538287541 + 1.38326340829964i

Table 5: Evaluation of the two-loop helicity amplitudes for the phase space points defined

in eqs. (5.2) and (5.3) for the sub-leading colour contribution, which is finite after mass

renormalisation. We normalise by the one-loop amplitude A(1)
|✏=0 and set the renormali-

sation scale µ = 2mW .

(a) Helicity LLLL (b) Helicity LRLL

Figure 8: Absolute value of the vector-vector plus axial-axial part of the one-loop helicity

amplitudes.

For the one-loop amplitudes we construct a uniform, dense 99 by 99 grid in terms

of the variables � and cos ✓ defined in (5.1) with step sizes of 0.01 and 0.02 in the ranges

[0.01, 0.99] and [�0.98, 0.98] respectively. The absolute value of the two independent helicity

amplitudes are plotted in figure 8. We stress that the helicity amplitudes presented here

depend on the polarisation vectors of the on-shell W bosons, see eqs. (5.7) and (5.8). To

avoid this one can project onto helicity dependent form factors defined in refs. [1, 7, 8].

For the two loop amplitude we use a sparse grid for the bulk of phase space, 0.1 

� < 0.8. The step size in � is 0.1 and cos ✓ ranges from �0.8 to 0.8 in steps of 0.2 with an

additional border at cos ✓ = ±0.96. For the production threshold, 0.01  � < 0.1 we use

a step size of 0.01 and same resolution for cos ✓ as in the bulk region. In the high-energy

region 0.8  �  0.99 we also use the step size of 0.01 for �, but increase resolution in cos ✓

with a step size of 0.04 in the range from �0.96 to 0.96.

In total 1156 points have been computed to produce plots for the two-loop helicity

amplitudes. In figure 9 and 10 we plot the interference of the finite remainder with the

– 16 –

Bronnum-Hanson, Wang
Liu, Ma, Wang
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~I = Âm (ms, x, ✏) ~I
<latexit sha1_base64="0OjQ6PWe8X8kU9/9EijhOYYZbzU="></latexit><latexit sha1_base64="cq+2u6FDNYHP5jdGdlWNC9l6VUg=">AAACR3icbVDLahRBFK0eX3F8jcnSzcUgRAhDdxB0oyQGJLqK4CSBqbGprrk9U6Squqm6HTI08x1+ij+QTbbu8gvZZKGELK2eGVATDxQczrmHe+tkpVae4vgsat26fefuvaX77QcPHz1+0nm6vOeLyknsyUIX7iATHrWy2CNFGg9Kh8JkGvezw+3G3z9C51Vhv9CkxIERI6tyJQUFKe18NakHnjsha14KR0pomP6hwZ0CP0IJH+Et8LEg2EoNcI05wVpjr8MxrAPH0itdWOBOjcYELxehtLMad+MZ4CZJFmR1892HV9++b33aTTs/+LCQlUFLUgvv+0lc0qBuzpEap21eeSyFPBQj7AdqhUE/qGc9TOFFUIaQFy48SzBT/07Uwng/MVmYNILG/rrXiP/z+hXlbwa1smVFaOV8UV5poAKaUmGoHErSk0CEdCrcCnIsQqkUqm+HEpLrX75J9ja6SdxNPoc23rM5ltgz9pytsYS9Zptsh+2yHpPshJ2zn+xXdBpdRJfR1Xy0FS0yK+wftKLfwKayPQ==</latexit><latexit sha1_base64="cq+2u6FDNYHP5jdGdlWNC9l6VUg=">AAACR3icbVDLahRBFK0eX3F8jcnSzcUgRAhDdxB0oyQGJLqK4CSBqbGprrk9U6Squqm6HTI08x1+ij+QTbbu8gvZZKGELK2eGVATDxQczrmHe+tkpVae4vgsat26fefuvaX77QcPHz1+0nm6vOeLyknsyUIX7iATHrWy2CNFGg9Kh8JkGvezw+3G3z9C51Vhv9CkxIERI6tyJQUFKe18NakHnjsha14KR0pomP6hwZ0CP0IJH+Et8LEg2EoNcI05wVpjr8MxrAPH0itdWOBOjcYELxehtLMad+MZ4CZJFmR1892HV9++b33aTTs/+LCQlUFLUgvv+0lc0qBuzpEap21eeSyFPBQj7AdqhUE/qGc9TOFFUIaQFy48SzBT/07Uwng/MVmYNILG/rrXiP/z+hXlbwa1smVFaOV8UV5poAKaUmGoHErSk0CEdCrcCnIsQqkUqm+HEpLrX75J9ja6SdxNPoc23rM5ltgz9pytsYS9Zptsh+2yHpPshJ2zn+xXdBpdRJfR1Xy0FS0yK+wftKLfwKayPQ==</latexit><latexit sha1_base64="6n2VXwWmjTjOJEEIBkv0QDQuVj8=">AAACR3icbVDBahRBFOxZTYwbk6zxmMsjSyBCWGa8mIsQzUVvCbhJYHsz9PS+2W3S3TN0vwkuw/6dF6/e/AUvHhTxaM9mwJikoKGoesV7XVmplac4/hZ1Hj1eWX2y9rS7/mxjc6v3fPvMF5WTOJSFLtxFJjxqZXFIijRelA6FyTSeZ1fHjX9+jc6rwn6keYljI6ZW5UoKClLauzSpB547IWteCkdKaFj8o8FdAL9GCR/gDfCZIHibGuAac4L9xj6AT3AAHEuvdGGBOzWdEbxsQ2mvHw/iJeA+SVrSZy1O0t5XPilkZdCS1ML7URKXNK6bc6TGRZdXHkshr8QUR4FaYdCP62UPC9gLygTywoVnCZbq7UQtjPdzk4VJI2jm73qN+JA3qig/HNfKlhWhlTeL8koDFdCUChPlUJKeByKkU+FWkDMRSqVQfTeUkNz98n1y9mqQxIPkNO4fvWvrWGM7bJfts4S9ZkfsPTthQybZZ/ad/WS/oi/Rj+h39OdmtBO1mRfsP3Siv/cvr2w=</latexit>

x
@

@x
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FIG. 1. Representative Feynman for gg ! �� at NLO: the Born (a), real corrections (b,c), and virtual corrections (d,e). In
our computation photons couple only to the quarks running in the closed loop, i.e., 5 massless quarks u, d, c, s, b and the top
quark t.

particularly motivated above the top pair threshold, in-
cluding the top-quark contribution is essential.

The computation of NLO corrections of the top-quark
induced contributions, requires the knowledge of highly
non-trivial two-loop amplitudes. While in the mass-
less quark limit the corresponding amplitudes have been
known for a long time [21], the computation of massive
ones, is still a challenge. Analytical results have be-
come available in closed form for some of the relevant
Feynman integrals (planar) yet the full set is unknown.
On the other hand, numerical methods have been intro-
duced [22] that allow to perform this calculation. In this
letter, we compute the complete NLO corrections to the
gluon fusion channel gg ! ��, including the top-quark
contribution for the first time.

Calculation – The cross section at NLO accuracy can
be written as

d�NLO = d�Born + d�V + d�R + d�C
,

where d�Born is the leading order one-loop contribution,
d�V denotes the virtual (two-loop) contributions, d�R

is the real (one-loop, 2!3 contribution), and d�C repre-
sents the collinear singularity to absorbed into the parton
distribution functions. The representative Feynman di-
agrams for the Born, virtual and real contributions are
shown in Fig. 1. Each of the three terms at NLO are in-
frared/collinear divergent. Their sum, however, is free of
infrared/collinear divergences. To handle this cancella-
tion, we employ an in-house implementation of the dipole
subtraction method [23], which introduces counterterms
for each term d�i

fin
= d�i

�d�i

dipole
with i = V,R,C . The

subtraction terms d�i

dipole
are carefully chosen such that

they cancel locally the infrared/collinear divergences of
each term, and sum up to zero [23].

Once the subtraction method is in place, one is left
with the calculation of the matrix elements for the virtual
and real contributions. The latter corrections require the
computation of one-loop five point amplitudes, which can
be done automatically. In particular, the matrix element
for gg ! ��g subprocess, as well as gq(q̄) ! ��q(q̄)
and qq̄ ! ��g subprocesses are needed. To this aim, we
adopt Recola2 [24] and Madgraph5 aMC@NLO[25],

as well as analytical expression for the light-quark con-
tributions [26–28].

We have implemented the light quark contribution
from ref. [21] in our code. We have then considered the
calculation of the top-quark contribution. Two-loop di-
agrams have been generated by QGRAF [29], and pro-
cessed by Form [30, 31], to generate corresponding am-
plitudes. They are fed into Reduze [32] to perform the
corresponding loop momentum redefinition and to clas-
sify them into 33 integral families according to the prop-
agator structure. We then adopt a projection method
to decompose the amplitudes into 10 independent ten-
sor structures, reducing the computation into that of
scalar integrals with irreducible numerators. Employ-
ing the C++ version of FIRE5 [33] with LiteRed [34]
to perform the integration-by-part reduction, we finally
obtain the corresponding form factors as a linear com-
bination of 1180 master integrals, distributed into the
33 integral families. We evaluate the master integrals
family by family, not considering the relations among
the master integrals of di↵erent families. The calcula-
tion of the master integrals is based on numerical in-
tegration of di↵erential equations, with initial condition
provided by an in-house implementation of sector decom-
position method [35].The numerical integration of di↵er-
ential equation is done with Odeint [36]. Starting from
the original initial conditions, several points in the physi-
cal region are pre-computed and results are stored. Dur-
ing the phase space integration, the closest point in the
pre-computed set is adopted as the new initial condition.
The average time to evaluate the amplitude is around
1 second, with at least O(10�9) precision at the master
integral level. The one-loop amplitude up to O(✏2) or-
der is computed within the same method. We refer the
reader to ref. [22] for the details of our method and
its extensive validation. Here we stress that, whenever
available, we have compared the numerical value of the
master integrals with those in the literature [37–39], and
found excellent agreement.

We renormalize ↵s in the MS scheme with five flavors.
The top-quark mass is renormalized on shell. We have
checked that UV divergences are cancelled by the corre-
sponding counter terms, and IR and collinear divergences
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TABLE I. The di↵erential cross section for various contribution at LO and NLO are shown for di↵erent values of diphoton
invariant mass m(��). “5F only” means only including the five massless quarks, “top only” means only including the top
quark, “interference” means only the interference term between the light quarks and the top quark, and “full” means all the
above contributions.

fb/GeV LO NLO
m(��)[GeV] full 5F only top only interference full 5F only top only interference

125 24.26(1) 100.1% < 0.01% -0.1% 37.3(1) 100.1% < 0.01% -0.1%
400 0.11342(5) 104.6% 1.9% -6.5% 0.1628(5) 99.3% 2.7% -2.0%
500 0.03951(7) 88.7% 2.8% 8.6% 0.0582(2) 82.7% 3.5% 13.9%
1000 8.721(8)⇥ 10�4 63.2% 5.3% 31.5% 1.266(2)⇥ 10�3 60.5% 5.8% 33.6%
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FIG. 4. The di↵erential cross section in m(��). The
cases of light quarks only and the full result (including top
quark) are shown. The band indicates scale uncertainties for
“NLO (full)”. The corresponding K-factor as well as the ratio
between full and 5F are shown.

those for the light quarks. Moreover, we plot the ratio be-
tween the “full” and “5F only” contributions at LO and
NLO, in the lower inset. It clearly shows that the e↵ect
of the top quark mass is negligible in the low energy re-
gion both at LO and NLO as the top-quark contribution
is parametrically suppressed as O(s2/m4

t
). As the en-

ergy increases towards the top-quark pair threshold, the
inclusion of the top-quark contribution leads to destruc-
tive interference, thus decreases the cross section. This
behaviour is not a↵ected by NLO corrections. However,
as evident from the ratio as well as the K-factor plots,
above threshold NLO corrections become large. Start-
ing at about 400 GeV, the interference between light and
top-quark contributions becomes constructive and since
the NLO corrections for the top only case is larger than
the light quark case, the full result displays a larger K-

factor. As a consequence, at NLO the ratio between the
full and 5F only results is larger, slowly approaching the
predictions from the 6F (massless) calculation (⇡ 1.86).

In Table I, we provide benchmark values for the dif-
ferential cross section. As discussed before, in the low
invariant mass region the top-quark contribution is tiny.
For example, at the Higgs mass region m(��) = mH =
125GeV, it is around �0.1%. Going above top-quark
pair threshold the top-quark contribution decreases the
cross section at LO, but the NLO cross section is almost
unchanged. Far above threshold, the interference turns
to be constructive, and very slowly approaching the 6F
(massless) limit.

Conclusions – In this letter, we have presented the
first complete computation of the NLO corrections to
gg ! �� in the standard model, including both light-
quarks and top-quark contributions. We have studied
the top-quark e↵ects in the total cross section and dif-
ferentially, focusing on the invariant mass spectrum of
the photons. We find that the NLO corrections are im-
portant everywhere, but especially in the vicinity of the
top-quark pair threshold, where indeed an enhancement
is expected on general grounds. A remarkable feature of
the NLO spectrum is that the change of slope at the tt̄

threshold becomes much more evident. Our calculation
paves the way to improving the treatment of the thresh-
old region at NLO including (pseudo-) bound state ef-
fects, with the goal to extract a short-distance top-quark
mass, and to include background-signal interference ef-
fects at NLO accuracy in the production of new physics
heavy scalar resonances decaying to diphoton final states.
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where the sum runs over all final state partons i. This
scale is known to give a good convergence of the pertur-
bative expansion and stable di↵erential K-factors (ratio
of NLO to LO predictions) in the e↵ective theory [68].
To estimate the theoretical uncertainty we vary indepen-
dently µF and µR by factors of 0.5 and 2, and exclude
the opposite variations. The total uncertainty is taken
to be the envelope of this 7-point variation.

To better highlight the di↵erences arising from the two-
loop massive contributions, we compare the new results
with full top-quark mass dependence, which we label as
“full theory result” or simply “full” in the following, to
two di↵erent approximations. In addition to predictions
in the e↵ective theory, which are referred to as HEFT in
the following, we show results in which everything but
the virtual amplitudes is computed with full top-quark
mass dependence. In this latter case only the virtual
contribution is computed in the e↵ective field theory and
reweighted by the full theory Born amplitude for each
phase space point. Following Ref. [69] we call this predic-
tion “approximated full theory” and label it as FTapprox

from now on.
We start by presenting the total cross sections, which

are reported in Table I. For comparison we present results
also for the HEFT and FTapprox approximations.

Theory LO [pb] NLO [pb]

HEFT: �LO = 8.22+3.17
�2.15 �NLO = 14.63+3.30

�2.54

FTapprox: �LO = 8.57+3.31
�2.24 �NLO = 15.07+2.89

�2.54

Full: �LO = 8.57+3.31
�2.24 �NLO = 16.01+1.59

�3.73

Table I. Total cross sections at LO and NLO in the HEFT and
FTapprox approximations and with full top-quark mass depen-
dence. The upper and lower values due to scale variation are
also shown. More details can be found in the text.

Together with the prediction obtained with the central
scale defined according to Eq. (1) we show the upper and
lower values obtained by varying the scales. While at LO
the top-quark mass e↵ects lead to an increase of 4.3%, at
NLO this increase is of the order of 9% compared to the
HEFT approximation, and there is an increase of about
6% in the total NLO cross section when comparing the
FTapprox result with the full theory one. It is important
to keep in mind that when taking into account massive
bottom-quark loop contributions, the interference e↵ects
are sizable and cancel to a large extent the increase in the
total cross section observed here between the HEFT and
the full theory results (see e.g. the results in Ref. [13]).
Note, however, that the bottom-quark mass e↵ects at
LO are of the order of 2% or smaller above the top quark
threshold.

Considering more di↵erential observables, it is well
known that very significant e↵ects due to resolving the
top-quark loop are displayed by the Higgs boson trans-

Figure 1. Higgs boson transverse momentum spectrum at LO
and NLO in QCD in HEFT and with full top-quark mass de-
pendence. The upper panel shows the di↵erential cross sec-
tions, in the middle panel we normalize all distributions to
the LO HEFT prediction and in the lower panel we show the
di↵erential K-factors for both the HEFT and the full theory
distributions. More details can be found in the text.

verse momentum distribution, which is softened for larger
values of pt,H by the full top-quark mass dependence. By
considering the high energy limit of a point-like gluon-
gluon Higgs interaction and one mediated via a quark
loop it is possible to derive the scaling of the squared
transverse momentum distribution d�/dp

2

t,H [70, 71],
which drops as (p2t,H)

�1 in the e↵ective theory, and goes
instead as (p2t,H)

�2 in the full theory. This fact was shown
to hold numerically at LO for up to three jets in Ref. [13].
It is interesting to verify this also after NLO QCD cor-
rections are applied. To do so, in Figure 1 we show the
transverse momentum spectrum of the Higgs boson at
LO and NLO in the HEFT approximation and with the
full top-quark mass dependence.

In the upper panel we display each di↵erential distri-
bution with the theory uncertainty band originating from
scale variation. To highlight the di↵erent scaling in pt,H,
in the middle panel we normalize all the distributions to
the LO curve in the e↵ective theory. It is thus possible
to see that for low transverse momenta the full theory
predictions overshoot slightly the e↵ective theory ones.
For pt,H > 200 GeV the two predictions start deviating
more substantially. At LO the two uncertainty bands do
not overlap any more above 400 GeV, whereas at NLO
this happens already around 340 GeV due to reduction of
the uncertainty at this order. The logarithmic scale also
allows to see that the relative scaling behavior within

pp ! H + j
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Heavy	quark	mass	effects	
•  H+jet	amplitudes	with	masses	

§  Small-mass	limit	(K.	Melnikov,	L.	Tancredi,	C.	Wever)	

§  Two-loop	integrals	with	full	mass	dependence	in	
progress	(R.	Bonciani,	V.	Del	Duca,	H.	Frellesvig,	J.	Henn,	F.	Moriello,	V.	
Smirnov;	D.	Kara,	TG)	
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Figure 1: Examples of two-loop Feynman diagrams that contribute to the process
gg → Hg.

where, for consistency with Eq.(2.6), sums over polarizations of external gluons are

taken to be

∑

pol

(εµ1 (p1))
∗ εν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (3.2)

∑

pol

(εµ2 (p2))
∗ εν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (3.3)

∑

pol

(εµ3 (p3))
∗ εν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (3.4)

We stress at this point that all Lorenz indices in Eq.(3.1) have to be understood as

d-dimensional. The explicit form of the projection operators can be found by making
an Ansatz in terms of the same linearly independent tensors as in Eq.(2.7)

P µνρ
j =

1

d− 3

[

c(j)1 gµν pρ2 + c(j)2 gµρ pν1 + c(j)3 gνρ pµ3 + c(j)4 pµ3p
ν
1p

ρ
2

]

, (3.5)

where j ∈ {1, 2, 3, 4}. The scalar functions c(j)i are unknown a priori; they are found

by requiring that Eq.(3.1) is satisfied. We obtain

c(1)1 =
t

s u
, c(1)2 = 0 , c(1)3 = 0 , c(1)4 = −

1

s u
,

c(2)1 = 0 , c(2)2 =
u

s t
, c(2)3 = 0 , c(2)4 = −

1

s t
,

c(3)1 = 0 , c(3)2 = 0 , c(3)3 =
s

t u
, c(3)4 = −

1

t u
,

c(4)1 = −
1

s u
, c(4)2 = −

1

s t
, c(4)3 = −

1

t u
, c(4)4 =

1

s t u
.

(3.6)

With these results at hand, we can compute each of the form factors separately.
Since the form factors are independent of the external polarization vectors, all the
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Kerner, Jones, Luisoni

Uses  publicly-available 
software to solve systems 
of diff. equations !

Maltoni, MKM, Zhao 
MKM, Zhao

Numerical computations of scattering amplitudes are becoming more and more 
advanced; eventually, they may provide a real alternative to analytic methods. 

Chen, Czakon, Poncelet
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~I = Âm (ms, x, ✏) ~I
<latexit sha1_base64="0OjQ6PWe8X8kU9/9EijhOYYZbzU="></latexit><latexit sha1_base64="cq+2u6FDNYHP5jdGdlWNC9l6VUg=">AAACR3icbVDLahRBFK0eX3F8jcnSzcUgRAhDdxB0oyQGJLqK4CSBqbGprrk9U6Squqm6HTI08x1+ij+QTbbu8gvZZKGELK2eGVATDxQczrmHe+tkpVae4vgsat26fefuvaX77QcPHz1+0nm6vOeLyknsyUIX7iATHrWy2CNFGg9Kh8JkGvezw+3G3z9C51Vhv9CkxIERI6tyJQUFKe18NakHnjsha14KR0pomP6hwZ0CP0IJH+Et8LEg2EoNcI05wVpjr8MxrAPH0itdWOBOjcYELxehtLMad+MZ4CZJFmR1892HV9++b33aTTs/+LCQlUFLUgvv+0lc0qBuzpEap21eeSyFPBQj7AdqhUE/qGc9TOFFUIaQFy48SzBT/07Uwng/MVmYNILG/rrXiP/z+hXlbwa1smVFaOV8UV5poAKaUmGoHErSk0CEdCrcCnIsQqkUqm+HEpLrX75J9ja6SdxNPoc23rM5ltgz9pytsYS9Zptsh+2yHpPshJ2zn+xXdBpdRJfR1Xy0FS0yK+wftKLfwKayPQ==</latexit><latexit sha1_base64="cq+2u6FDNYHP5jdGdlWNC9l6VUg=">AAACR3icbVDLahRBFK0eX3F8jcnSzcUgRAhDdxB0oyQGJLqK4CSBqbGprrk9U6Squqm6HTI08x1+ij+QTbbu8gvZZKGELK2eGVATDxQczrmHe+tkpVae4vgsat26fefuvaX77QcPHz1+0nm6vOeLyknsyUIX7iATHrWy2CNFGg9Kh8JkGvezw+3G3z9C51Vhv9CkxIERI6tyJQUFKe18NakHnjsha14KR0pomP6hwZ0CP0IJH+Et8LEg2EoNcI05wVpjr8MxrAPH0itdWOBOjcYELxehtLMad+MZ4CZJFmR1892HV9++b33aTTs/+LCQlUFLUgvv+0lc0qBuzpEap21eeSyFPBQj7AdqhUE/qGc9TOFFUIaQFy48SzBT/07Uwng/MVmYNILG/rrXiP/z+hXlbwa1smVFaOV8UV5poAKaUmGoHErSk0CEdCrcCnIsQqkUqm+HEpLrX75J9ja6SdxNPoc23rM5ltgz9pytsYS9Zptsh+2yHpPshJ2zn+xXdBpdRJfR1Xy0FS0yK+wftKLfwKayPQ==</latexit><latexit sha1_base64="6n2VXwWmjTjOJEEIBkv0QDQuVj8=">AAACR3icbVDBahRBFOxZTYwbk6zxmMsjSyBCWGa8mIsQzUVvCbhJYHsz9PS+2W3S3TN0vwkuw/6dF6/e/AUvHhTxaM9mwJikoKGoesV7XVmplac4/hZ1Hj1eWX2y9rS7/mxjc6v3fPvMF5WTOJSFLtxFJjxqZXFIijRelA6FyTSeZ1fHjX9+jc6rwn6keYljI6ZW5UoKClLauzSpB547IWteCkdKaFj8o8FdAL9GCR/gDfCZIHibGuAac4L9xj6AT3AAHEuvdGGBOzWdEbxsQ2mvHw/iJeA+SVrSZy1O0t5XPilkZdCS1ML7URKXNK6bc6TGRZdXHkshr8QUR4FaYdCP62UPC9gLygTywoVnCZbq7UQtjPdzk4VJI2jm73qN+JA3qig/HNfKlhWhlTeL8koDFdCUChPlUJKeByKkU+FWkDMRSqVQfTeUkNz98n1y9mqQxIPkNO4fvWvrWGM7bJfts4S9ZkfsPTthQybZZ/ad/WS/oi/Rj+h39OdmtBO1mRfsP3Siv/cvr2w=</latexit>

x
@

@x
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FIG. 1. Representative Feynman for gg ! �� at NLO: the Born (a), real corrections (b,c), and virtual corrections (d,e). In
our computation photons couple only to the quarks running in the closed loop, i.e., 5 massless quarks u, d, c, s, b and the top
quark t.

particularly motivated above the top pair threshold, in-
cluding the top-quark contribution is essential.

The computation of NLO corrections of the top-quark
induced contributions, requires the knowledge of highly
non-trivial two-loop amplitudes. While in the mass-
less quark limit the corresponding amplitudes have been
known for a long time [21], the computation of massive
ones, is still a challenge. Analytical results have be-
come available in closed form for some of the relevant
Feynman integrals (planar) yet the full set is unknown.
On the other hand, numerical methods have been intro-
duced [22] that allow to perform this calculation. In this
letter, we compute the complete NLO corrections to the
gluon fusion channel gg ! ��, including the top-quark
contribution for the first time.

Calculation – The cross section at NLO accuracy can
be written as

d�NLO = d�Born + d�V + d�R + d�C
,

where d�Born is the leading order one-loop contribution,
d�V denotes the virtual (two-loop) contributions, d�R

is the real (one-loop, 2!3 contribution), and d�C repre-
sents the collinear singularity to absorbed into the parton
distribution functions. The representative Feynman di-
agrams for the Born, virtual and real contributions are
shown in Fig. 1. Each of the three terms at NLO are in-
frared/collinear divergent. Their sum, however, is free of
infrared/collinear divergences. To handle this cancella-
tion, we employ an in-house implementation of the dipole
subtraction method [23], which introduces counterterms
for each term d�i

fin
= d�i

�d�i

dipole
with i = V,R,C . The

subtraction terms d�i

dipole
are carefully chosen such that

they cancel locally the infrared/collinear divergences of
each term, and sum up to zero [23].

Once the subtraction method is in place, one is left
with the calculation of the matrix elements for the virtual
and real contributions. The latter corrections require the
computation of one-loop five point amplitudes, which can
be done automatically. In particular, the matrix element
for gg ! ��g subprocess, as well as gq(q̄) ! ��q(q̄)
and qq̄ ! ��g subprocesses are needed. To this aim, we
adopt Recola2 [24] and Madgraph5 aMC@NLO[25],

as well as analytical expression for the light-quark con-
tributions [26–28].

We have implemented the light quark contribution
from ref. [21] in our code. We have then considered the
calculation of the top-quark contribution. Two-loop di-
agrams have been generated by QGRAF [29], and pro-
cessed by Form [30, 31], to generate corresponding am-
plitudes. They are fed into Reduze [32] to perform the
corresponding loop momentum redefinition and to clas-
sify them into 33 integral families according to the prop-
agator structure. We then adopt a projection method
to decompose the amplitudes into 10 independent ten-
sor structures, reducing the computation into that of
scalar integrals with irreducible numerators. Employ-
ing the C++ version of FIRE5 [33] with LiteRed [34]
to perform the integration-by-part reduction, we finally
obtain the corresponding form factors as a linear com-
bination of 1180 master integrals, distributed into the
33 integral families. We evaluate the master integrals
family by family, not considering the relations among
the master integrals of di↵erent families. The calcula-
tion of the master integrals is based on numerical in-
tegration of di↵erential equations, with initial condition
provided by an in-house implementation of sector decom-
position method [35].The numerical integration of di↵er-
ential equation is done with Odeint [36]. Starting from
the original initial conditions, several points in the physi-
cal region are pre-computed and results are stored. Dur-
ing the phase space integration, the closest point in the
pre-computed set is adopted as the new initial condition.
The average time to evaluate the amplitude is around
1 second, with at least O(10�9) precision at the master
integral level. The one-loop amplitude up to O(✏2) or-
der is computed within the same method. We refer the
reader to ref. [22] for the details of our method and
its extensive validation. Here we stress that, whenever
available, we have compared the numerical value of the
master integrals with those in the literature [37–39], and
found excellent agreement.

We renormalize ↵s in the MS scheme with five flavors.
The top-quark mass is renormalized on shell. We have
checked that UV divergences are cancelled by the corre-
sponding counter terms, and IR and collinear divergences
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TABLE I. The di↵erential cross section for various contribution at LO and NLO are shown for di↵erent values of diphoton
invariant mass m(��). “5F only” means only including the five massless quarks, “top only” means only including the top
quark, “interference” means only the interference term between the light quarks and the top quark, and “full” means all the
above contributions.

fb/GeV LO NLO
m(��)[GeV] full 5F only top only interference full 5F only top only interference

125 24.26(1) 100.1% < 0.01% -0.1% 37.3(1) 100.1% < 0.01% -0.1%
400 0.11342(5) 104.6% 1.9% -6.5% 0.1628(5) 99.3% 2.7% -2.0%
500 0.03951(7) 88.7% 2.8% 8.6% 0.0582(2) 82.7% 3.5% 13.9%
1000 8.721(8)⇥ 10�4 63.2% 5.3% 31.5% 1.266(2)⇥ 10�3 60.5% 5.8% 33.6%

FIG. 4. The di↵erential cross section in m(��). The
cases of light quarks only and the full result (including top
quark) are shown. The band indicates scale uncertainties for
“NLO (full)”. The corresponding K-factor as well as the ratio
between full and 5F are shown.

those for the light quarks. Moreover, we plot the ratio be-
tween the “full” and “5F only” contributions at LO and
NLO, in the lower inset. It clearly shows that the e↵ect
of the top quark mass is negligible in the low energy re-
gion both at LO and NLO as the top-quark contribution
is parametrically suppressed as O(s2/m4

t
). As the en-

ergy increases towards the top-quark pair threshold, the
inclusion of the top-quark contribution leads to destruc-
tive interference, thus decreases the cross section. This
behaviour is not a↵ected by NLO corrections. However,
as evident from the ratio as well as the K-factor plots,
above threshold NLO corrections become large. Start-
ing at about 400 GeV, the interference between light and
top-quark contributions becomes constructive and since
the NLO corrections for the top only case is larger than
the light quark case, the full result displays a larger K-

factor. As a consequence, at NLO the ratio between the
full and 5F only results is larger, slowly approaching the
predictions from the 6F (massless) calculation (⇡ 1.86).

In Table I, we provide benchmark values for the dif-
ferential cross section. As discussed before, in the low
invariant mass region the top-quark contribution is tiny.
For example, at the Higgs mass region m(��) = mH =
125GeV, it is around �0.1%. Going above top-quark
pair threshold the top-quark contribution decreases the
cross section at LO, but the NLO cross section is almost
unchanged. Far above threshold, the interference turns
to be constructive, and very slowly approaching the 6F
(massless) limit.

Conclusions – In this letter, we have presented the
first complete computation of the NLO corrections to
gg ! �� in the standard model, including both light-
quarks and top-quark contributions. We have studied
the top-quark e↵ects in the total cross section and dif-
ferentially, focusing on the invariant mass spectrum of
the photons. We find that the NLO corrections are im-
portant everywhere, but especially in the vicinity of the
top-quark pair threshold, where indeed an enhancement
is expected on general grounds. A remarkable feature of
the NLO spectrum is that the change of slope at the tt̄

threshold becomes much more evident. Our calculation
paves the way to improving the treatment of the thresh-
old region at NLO including (pseudo-) bound state ef-
fects, with the goal to extract a short-distance top-quark
mass, and to include background-signal interference ef-
fects at NLO accuracy in the production of new physics
heavy scalar resonances decaying to diphoton final states.
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where the sum runs over all final state partons i. This
scale is known to give a good convergence of the pertur-
bative expansion and stable di↵erential K-factors (ratio
of NLO to LO predictions) in the e↵ective theory [68].
To estimate the theoretical uncertainty we vary indepen-
dently µF and µR by factors of 0.5 and 2, and exclude
the opposite variations. The total uncertainty is taken
to be the envelope of this 7-point variation.

To better highlight the di↵erences arising from the two-
loop massive contributions, we compare the new results
with full top-quark mass dependence, which we label as
“full theory result” or simply “full” in the following, to
two di↵erent approximations. In addition to predictions
in the e↵ective theory, which are referred to as HEFT in
the following, we show results in which everything but
the virtual amplitudes is computed with full top-quark
mass dependence. In this latter case only the virtual
contribution is computed in the e↵ective field theory and
reweighted by the full theory Born amplitude for each
phase space point. Following Ref. [69] we call this predic-
tion “approximated full theory” and label it as FTapprox

from now on.
We start by presenting the total cross sections, which

are reported in Table I. For comparison we present results
also for the HEFT and FTapprox approximations.

Theory LO [pb] NLO [pb]

HEFT: �LO = 8.22+3.17
�2.15 �NLO = 14.63+3.30

�2.54

FTapprox: �LO = 8.57+3.31
�2.24 �NLO = 15.07+2.89

�2.54

Full: �LO = 8.57+3.31
�2.24 �NLO = 16.01+1.59

�3.73

Table I. Total cross sections at LO and NLO in the HEFT and
FTapprox approximations and with full top-quark mass depen-
dence. The upper and lower values due to scale variation are
also shown. More details can be found in the text.

Together with the prediction obtained with the central
scale defined according to Eq. (1) we show the upper and
lower values obtained by varying the scales. While at LO
the top-quark mass e↵ects lead to an increase of 4.3%, at
NLO this increase is of the order of 9% compared to the
HEFT approximation, and there is an increase of about
6% in the total NLO cross section when comparing the
FTapprox result with the full theory one. It is important
to keep in mind that when taking into account massive
bottom-quark loop contributions, the interference e↵ects
are sizable and cancel to a large extent the increase in the
total cross section observed here between the HEFT and
the full theory results (see e.g. the results in Ref. [13]).
Note, however, that the bottom-quark mass e↵ects at
LO are of the order of 2% or smaller above the top quark
threshold.

Considering more di↵erential observables, it is well
known that very significant e↵ects due to resolving the
top-quark loop are displayed by the Higgs boson trans-
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Figure 1. Higgs boson transverse momentum spectrum at LO
and NLO in QCD in HEFT and with full top-quark mass de-
pendence. The upper panel shows the di↵erential cross sec-
tions, in the middle panel we normalize all distributions to
the LO HEFT prediction and in the lower panel we show the
di↵erential K-factors for both the HEFT and the full theory
distributions. More details can be found in the text.

verse momentum distribution, which is softened for larger
values of pt,H by the full top-quark mass dependence. By
considering the high energy limit of a point-like gluon-
gluon Higgs interaction and one mediated via a quark
loop it is possible to derive the scaling of the squared
transverse momentum distribution d�/dp

2

t,H [70, 71],
which drops as (p2t,H)

�1 in the e↵ective theory, and goes
instead as (p2t,H)

�2 in the full theory. This fact was shown
to hold numerically at LO for up to three jets in Ref. [13].
It is interesting to verify this also after NLO QCD cor-
rections are applied. To do so, in Figure 1 we show the
transverse momentum spectrum of the Higgs boson at
LO and NLO in the HEFT approximation and with the
full top-quark mass dependence.

In the upper panel we display each di↵erential distri-
bution with the theory uncertainty band originating from
scale variation. To highlight the di↵erent scaling in pt,H,
in the middle panel we normalize all the distributions to
the LO curve in the e↵ective theory. It is thus possible
to see that for low transverse momenta the full theory
predictions overshoot slightly the e↵ective theory ones.
For pt,H > 200 GeV the two predictions start deviating
more substantially. At LO the two uncertainty bands do
not overlap any more above 400 GeV, whereas at NLO
this happens already around 340 GeV due to reduction of
the uncertainty at this order. The logarithmic scale also
allows to see that the relative scaling behavior within

pp ! H + j
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Heavy	quark	mass	effects	
•  H+jet	amplitudes	with	masses	

§  Small-mass	limit	(K.	Melnikov,	L.	Tancredi,	C.	Wever)	

§  Two-loop	integrals	with	full	mass	dependence	in	
progress	(R.	Bonciani,	V.	Del	Duca,	H.	Frellesvig,	J.	Henn,	F.	Moriello,	V.	
Smirnov;	D.	Kara,	TG)	
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Figure 1: Examples of two-loop Feynman diagrams that contribute to the process
gg → Hg.

where, for consistency with Eq.(2.6), sums over polarizations of external gluons are

taken to be

∑

pol

(εµ1 (p1))
∗ εν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (3.2)

∑

pol

(εµ2 (p2))
∗ εν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (3.3)

∑

pol

(εµ3 (p3))
∗ εν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (3.4)

We stress at this point that all Lorenz indices in Eq.(3.1) have to be understood as

d-dimensional. The explicit form of the projection operators can be found by making
an Ansatz in terms of the same linearly independent tensors as in Eq.(2.7)

P µνρ
j =

1

d− 3

[

c(j)1 gµν pρ2 + c(j)2 gµρ pν1 + c(j)3 gνρ pµ3 + c(j)4 pµ3p
ν
1p

ρ
2

]

, (3.5)

where j ∈ {1, 2, 3, 4}. The scalar functions c(j)i are unknown a priori; they are found

by requiring that Eq.(3.1) is satisfied. We obtain

c(1)1 =
t

s u
, c(1)2 = 0 , c(1)3 = 0 , c(1)4 = −

1

s u
,

c(2)1 = 0 , c(2)2 =
u

s t
, c(2)3 = 0 , c(2)4 = −

1

s t
,

c(3)1 = 0 , c(3)2 = 0 , c(3)3 =
s

t u
, c(3)4 = −

1

t u
,

c(4)1 = −
1

s u
, c(4)2 = −

1

s t
, c(4)3 = −

1

t u
, c(4)4 =

1

s t u
.

(3.6)

With these results at hand, we can compute each of the form factors separately.
Since the form factors are independent of the external polarization vectors, all the
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Differential Equation: Numerical Integration

Numerically Solve the DE of the MIs

Un-physical point Target Physical point

Use SD

Use DE

Choose a Contour

F1 F2 F3

s = 0 N Y N

s = 4 Y Y Y

s = �16 - N -

t = 0 N N N

t = 4 Y Y Y

u = 0 N N N

u = 4 - Y Y

t = u - N N

st+ 4u = 0 Y/N Y/N Y/N

tu+ 4s = 0 - Y/N Y/N

su+ 4t = 0 - Y/N Y/N

4t2 � s(t� 1)2 = 0 N N N

4u2 � s(u� 1)2 = 0 - - N

Table 1: The full list of singularities other than infinity is shown, as well as whether it is

a branching point(marked as ”Y”) or not(marked as ”N”). If such point is not a singular

point of corresponding family, ”-” is shown. Note that we adopt u = �s � t to show the

crossing symmetry. For st+ 4u = 0 it becomes a branching point only when s > 0, t > 0,

thus we mark it as ”Y/N”, similarly for the other two tu+ 4s = 0 and su+ 4t = 0.

by six line segments:

(sa, ta)

!(i
p
�4sa, ta)

!(2 + i
p
�sa + i

p
sb � 4, ta)

!(2 + i
p
�sa + i

p
sb � 4, (ta + tb)/2 + 0.1i)

!(2 + i
p
�sa + i

p
sb � 4, tb)

!(4 + i

p
4(sb � 4), tb)

!(sb, tb).

(3.1)

In particular, we consider the target point with (s, t) = (5,�2), and we choose two di↵erent

points in the Euclidean region as the initial points: one is marked as IC1, with (s, t) =

(�1.33,�0.891); another is marked as IC2, with (s, t) = (�1.63,�0.632). The di↵erence

between the results obtained from those two di↵erent initial conditions provides an estimate

of the uncertainties. We list all branch points on the physical Riemann sheet in table 1,

and we verified that the above contour never crosses branch cut, as can be seen in fig.

2. Alternatively, instead of determining the branch points and the branch cuts, along

the contour the sector decomposition method can be adopted to calculate the numerical

values of the Feynman integrals directly, since we require that along the contour the i0+

prescription is not needed. Such numerical values provide another cross check on the results

obtained from the numerical integration of di↵erential equations.

– 6 –

p1

p2

p3

p4

(a) F1

p1

p2

p3

p4

(b) F2

p1

p2

p3

p4

(c) F3

p1

p2

p3

p4

(d) Isub2

Figure 1: The three four-point two-loop integral families and I
sub
2 are shown here. p1, p2

are incoming and p3, p4 are outgoing. Thin lines represent massless particle, while thick

lines are massive particles.

And the maximum value of relative errors ✏rel[�I, I] in the whole family is compared to

the desired local accuracy, to control the step-size.

3 Results

In the following, we demonstrate our method with three di↵erent planar and non-planar

two-loop integral families, which appear in di-photon, di-jet production mediated by the

heavy quarks. The diagrams are given in Fig. 1, where p1, p2 are incoming and p3, p4 are

outgoing. The thin lines represent the massless particles, while the thick lines represent

massive particles. All external lines are on-shell p21 = p
2
2 = p

2
3 = p

2
4 = 0, and the kinematic

variables are defined as s = (p1 + p2)2, t = (p1 � p3)2, u = (p1 � p4)2, which satisfy

s + t + u = 0. We normalise the invariants by the squared internal mass m
2, e↵ectively

setting m
2 = 1, and the m

2 dependence can be recovered later, by power counting.

As explained before, for each master integral, we adopt Nift [48] to obtain the numer-

ical results in the Euclidean region by the sector decomposition method, where the final

numerical integration is performed with the quasi-Monte Carlo algorithm. We perform

the IBP reduction with the C++ version of FIRE5 [49] together with LiteRed [50, 51],

to obtain the corresponding di↵erential equations in s and t, treating them as indepen-

dent variables. We perform the numerical integration of the di↵erential equations with

odeint [52], and the Runge-Kutta-Fehlberg 7(8)-th order method [41, 53] is chosen, based

on our experimentation on one-loop integrals.

We consider the target physical region defined by s > 4, t < 0, u < 0, and choose the

initial conditions lying in the region with s < 0, t < 0, u < 4. We perform the evolution

from the initial point (sa, ta) to the target point (sb, tb) along the following contour formed
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s > 0, t > 0
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Differential Equation: Numerical Integration
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Figure 2: The integration contour (red) and relevant branch cuts (black) are shown for

F3, starting from IC1. Note that the branch cut corresponding to u = 4 to u = 1 is not

present for F1, and for F2 one has an additional branch cut from s = 0 to s = 4.

All the timings reported here are based on a laptop with Intel Core i5-6200U CPU

and the time cost consists of the evaluation of all the master integrals in the whole family.

We require the relative error on the initial conditions less than 10�7, and the relative error

tolerance in each step of the di↵erential equations is set to 10�10.

We begin with the family F1, where the analytical results in d = 4 dimension have

been reported in Ref. [26]. We choose the denominators as5:

D1 = k
2
1 �m

2
, D2 = (k1 � p1)

2
�m

2
, D3 = (k1 � p1 � p2)

2
,

D4 = k
2
2 �m

2
, D5 = (k2 � p3)

2
�m

2
, D6 = (k2 � p1 � p2)

2
�m

2
,

D7 = (k1 � k2)
2
.

(3.2)

We denote the integrals in this family as I(F1, a1a2a3a4a5a6a7), where ai is the correspond-

ing propagator power, as described in Eq. (2.1). Working in d = 4 � 2✏ dimension, after

the IBP reduction, we obtain 29 master integrals. In Table 2, we show the initial condi-

tions of one of the top level master integrals I1 = I(F1, 1111111). As mentioned before,

the relative uncertainty on the initial conditions are required to be less than 10�7, and our

results are consistent with analytical ones [26] within such uncertainty. Using those two

initial conditions, we evaluate these integrals for the benchmark value(s = 5, t = �2) in the

physical region, and the results of I1 are shown in Table 3. We also report the numerical

value obtained from the analytical expression in Ref. [26]. We find that the uncertainty

of our numerical results compared to the analytical one is less than 10�6. Moreover, the

di↵erence between the results obtained using the initial conditions from IC1 and IC2 is also

of the same order, providing a good estimate on the uncertainty. We note that to reach

such high precision takes only 0.1s.

5
Technically, to perform the IBP reduction, two extra denominators should be chosen. However, we

choose all master integrals to be scalar master integrals without any numerator, hence the results are

independent of the exact form of the auxiliary denominators in the IBP reduction. We neglect the two

extra denominators here for simplicity. The above comment also applies to the other two families.
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!(4 + i

p
4(sb � 4), tb)

!(sb, tb).

(3.1)

In particular, we consider the target point with (s, t) = (5,�2), and we choose two di↵erent

points in the Euclidean region as the initial points: one is marked as IC1, with (s, t) =

(�1.33,�0.891); another is marked as IC2, with (s, t) = (�1.63,�0.632). The di↵erence

between the results obtained from those two di↵erent initial conditions provides an estimate

of the uncertainties. We list all branch points on the physical Riemann sheet in table 1,

and we verified that the above contour never crosses branch cut, as can be seen in fig.

2. Alternatively, instead of determining the branch points and the branch cuts, along

the contour the sector decomposition method can be adopted to calculate the numerical

values of the Feynman integrals directly, since we require that along the contour the i0+

prescription is not needed. Such numerical values provide another cross check on the results

obtained from the numerical integration of di↵erential equations.
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c0 time(s)

I1

IC1
Nift �0.059087788(6) 1.93

Ref. [26] �0.059087788 –

IC2
Nift �0.056016652(5) 1.74

Ref. [26] �0.056016650 –

I
sub
2

IC1
Nift 0.28729542(1) 3.55

Ref. [54] 0.28729543 –

IC2
Nift 0.26181028(1) 3.57

Ref. [54] 0.26181029 –

Table 2: The comparison of our numerical initial conditions obtained from Nift [48]

with the analytical ones for the Feynman integral I1 and I
sub
2 . The two initial points are:

IC1(s = �1.33, t = �0.891) and IC2(s = �1.63, t = �0.632). c0 is the leading term of the

✏ expansion of these finite integrals.

(s = 5, t = �2) c0 time(s)

I1

IC1 0.573661717� i0.45602298 0.11

IC2 0.573662051� i0.45602316 0.10

Ref. [26] 0.573661756� i0.45602309 –

I
sub
2

IC1 �0.077764616 + i0.34306744 0.26

IC2 �0.077764595 + i0.34306737 0.23

Ref. [54] �0.077764620 + i0.34306741 –

Table 3: The comparison of our numerical results with the analytical ones for the Feynman

integral I1 and I
sub
2 at the point (s = 5, t = �2). The IC1 and IC2 denotes the two di↵erent

choices of the initial conditions. c0 is the leading term of the ✏ expansion of these finite

integrals.

The next example is the family F2, shown in Fig. 1b, with the following denominators:

D1 = k
2
1, D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
,

D4 = k
2
2 �m

2
, D5 = (k2 � p1 � p2 + p3)

2
�m

2
,

D6 = (k1 � k2)
2
�m

2
, D7 = (k1 � k2 � p3)

2
�m

2
.

(3.3)

There are 36 master integrals in this family, and some of them involve infrared divergences.

The most complicated integrals in this family, i.e. the seven-propagator master integrals,

are still unknown in literature 6. Instead, for comparison, we show numerical results for

one non-planar integral in the lower sector, defined by I
sub
2 = I(F2, 1011111)7 (shown in

fig. 1d), which has been studied in Ref. [54] and in fact is independent of t. In Table 2, we

show our numerical initial conditions obtained from Nift as well as the analytical one on

I
sub
2 . The uncertainties on the initial conditions are less than 10�7 and the computing time

is well under control. In Table 3, we show our numerical results as well as the analytical

6
Partial results has been reported in Ref. [55] recently.

7
An alternative numerical evaluation for this topology has been reported in Ref. [56]
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Figure 1: The three four-point two-loop integral families and I
sub
2 are shown here. p1, p2

are incoming and p3, p4 are outgoing. Thin lines represent massless particle, while thick

lines are massive particles.

And the maximum value of relative errors ✏rel[�I, I] in the whole family is compared to

the desired local accuracy, to control the step-size.

3 Results

In the following, we demonstrate our method with three di↵erent planar and non-planar

two-loop integral families, which appear in di-photon, di-jet production mediated by the

heavy quarks. The diagrams are given in Fig. 1, where p1, p2 are incoming and p3, p4 are

outgoing. The thin lines represent the massless particles, while the thick lines represent

massive particles. All external lines are on-shell p21 = p
2
2 = p

2
3 = p

2
4 = 0, and the kinematic

variables are defined as s = (p1 + p2)2, t = (p1 � p3)2, u = (p1 � p4)2, which satisfy

s + t + u = 0. We normalise the invariants by the squared internal mass m
2, e↵ectively

setting m
2 = 1, and the m

2 dependence can be recovered later, by power counting.

As explained before, for each master integral, we adopt Nift [48] to obtain the numer-

ical results in the Euclidean region by the sector decomposition method, where the final

numerical integration is performed with the quasi-Monte Carlo algorithm. We perform

the IBP reduction with the C++ version of FIRE5 [49] together with LiteRed [50, 51],

to obtain the corresponding di↵erential equations in s and t, treating them as indepen-

dent variables. We perform the numerical integration of the di↵erential equations with

odeint [52], and the Runge-Kutta-Fehlberg 7(8)-th order method [41, 53] is chosen, based

on our experimentation on one-loop integrals.

We consider the target physical region defined by s > 4, t < 0, u < 0, and choose the

initial conditions lying in the region with s < 0, t < 0, u < 4. We perform the evolution

from the initial point (sa, ta) to the target point (sb, tb) along the following contour formed
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3 Results

In the following, we demonstrate our method with three di↵erent planar and non-planar

two-loop integral families, which appear in di-photon, di-jet production mediated by the

heavy quarks. The diagrams are given in Fig. 1, where p1, p2 are incoming and p3, p4 are

outgoing. The thin lines represent the massless particles, while the thick lines represent
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variables are defined as s = (p1 + p2)2, t = (p1 � p3)2, u = (p1 � p4)2, which satisfy

s + t + u = 0. We normalise the invariants by the squared internal mass m
2, e↵ectively

setting m
2 = 1, and the m

2 dependence can be recovered later, by power counting.

As explained before, for each master integral, we adopt Nift [48] to obtain the numer-

ical results in the Euclidean region by the sector decomposition method, where the final

numerical integration is performed with the quasi-Monte Carlo algorithm. We perform

the IBP reduction with the C++ version of FIRE5 [49] together with LiteRed [50, 51],

to obtain the corresponding di↵erential equations in s and t, treating them as indepen-

dent variables. We perform the numerical integration of the di↵erential equations with

odeint [52], and the Runge-Kutta-Fehlberg 7(8)-th order method [41, 53] is chosen, based

on our experimentation on one-loop integrals.

We consider the target physical region defined by s > 4, t < 0, u < 0, and choose the

initial conditions lying in the region with s < 0, t < 0, u < 4. We perform the evolution

from the initial point (sa, ta) to the target point (sb, tb) along the following contour formed
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(s = 5, t = �2) c0 c1 c2 time(s)

I2

IC1 0.02188084� i0.00000002 �0.0870259 + i0.05170117 �0.246416� i0.17602070 0.26

IC2 0.02188080 + i0.00000001 �0.0870262 + i0.05170118 �0.246417� i0.17602072 0.23

pySecDec 0.02187(3) + i0.00003(3) �0.0869(3) + i0.0518(4) �0.248(2) � i0.175(2) O(10
4
)

I3

IC1 �0.0599222 + i0.4204527 �1.2093294 + i1.1271787 �3.737851 + i0.435880 0.74

IC2 �0.0599219 + i0.4204528 �1.2093298 + i1.1271798 �3.737851 + i0.435879 0.78

pySecDec �0.05998(7) + i0.42048(8) �1.2100(7) + i1.1262(7) �3.737(3) + i0.430(3) O(10
4
)

Table 4: Comparison between numerical results obtained with our algorithm from two

di↵erential choices of initial conditions for the Feynman integral I2 and I3 at the point

(s = 5, t = �2). c0, c1 and c2 denotes the first three coe�cients in the Laurent series of

✏. The results obtained from pySecDec [57] is also shown for consistency check and the

corresponding setup is not optimal.

one on I
sub
2 in the physical region with s = 5. Similarly to I1, the uncertainty from our

approach is less than 10�6. The time cost is several times larger than F1, but still less than

1 second. At the same time, we also obtain the results for the seven-propagator integral

I2 = I(F2, 1111111). As no analytical results are known for this, we use pySecDec [57] to

obtain the results for cross check. In table 4 we show the results for all the coe�cients

starting from ✏
�2 to ✏

0 in ✏ expansion. By estimating the uncertainties of our method

through the di↵erence between the two results, the relative error is at O(10�6). This is

much more accurate than directly evaluating it via the sector decomposition method in the

physical region.

Finally, we consider family F3, shown in Fig. 1c. This family 8 contains 51 master

integrals, and in particular five of them belong to the seven-propagator sector, indicating

more complicated di↵erential equations than the family F1 and F2. The propagators are

given by:

D1 = k
2
1, D2 = (k1 � p1)

2
,

D3 = k
2
2 �m

2
, D4 = (k2 � p4)

2
�m

2
, D5 = (k2 � p3 � p4)

2
�m

2
,

D6 = (k1 � k2)
2
�m

2
, D7 = (k1 � k2 + p2)

2
�m

2
.

(3.4)

We use the same points IC1 and IC2 to obtain the initial conditions. We show the numerical

results for I3 = I(F3, 1111111) in the Table 4 and further checked with pySecDec. The

computing cost of our method is still less than one second, and the precision of our results

is still at O(10�6).

The computing cost on multi-dimensional integration for obtaining the initial condi-

tions varies from 17 seconds to 2 minutes depending on the complexity, which is much

less than the time spent for IBP reduction, hence negligible in practical application. The

number of steps for the numerical integration of the di↵erential equations ranges from

61 to 133, thereby indicating that the discretisation error associated with the di↵erential

equations is at most around 10�8. As explained before, the dominant uncertainties come

from the uncertainties on the initial conditions, and we verified it by adjusting the relative

8
Results in the Euclidean region has been reported recently in Ref. [55].
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c0 time(s)

I1

IC1
Nift �0.059087788(6) 1.93

Ref. [26] �0.059087788 –

IC2
Nift �0.056016652(5) 1.74

Ref. [26] �0.056016650 –

I
sub
2

IC1
Nift 0.28729542(1) 3.55

Ref. [54] 0.28729543 –

IC2
Nift 0.26181028(1) 3.57

Ref. [54] 0.26181029 –

Table 2: The comparison of our numerical initial conditions obtained from Nift [48]

with the analytical ones for the Feynman integral I1 and I
sub
2 . The two initial points are:

IC1(s = �1.33, t = �0.891) and IC2(s = �1.63, t = �0.632). c0 is the leading term of the

✏ expansion of these finite integrals.

(s = 5, t = �2) c0 time(s)

I1

IC1 0.573661717� i0.45602298 0.11

IC2 0.573662051� i0.45602316 0.10

Ref. [26] 0.573661756� i0.45602309 –

I
sub
2

IC1 �0.077764616 + i0.34306744 0.26

IC2 �0.077764595 + i0.34306737 0.23

Ref. [54] �0.077764620 + i0.34306741 –

Table 3: The comparison of our numerical results with the analytical ones for the Feynman

integral I1 and I
sub
2 at the point (s = 5, t = �2). The IC1 and IC2 denotes the two di↵erent

choices of the initial conditions. c0 is the leading term of the ✏ expansion of these finite

integrals.

The next example is the family F2, shown in Fig. 1b, with the following denominators:

D1 = k
2
1, D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
,

D4 = k
2
2 �m

2
, D5 = (k2 � p1 � p2 + p3)

2
�m

2
,

D6 = (k1 � k2)
2
�m

2
, D7 = (k1 � k2 � p3)

2
�m

2
.

(3.3)

There are 36 master integrals in this family, and some of them involve infrared divergences.

The most complicated integrals in this family, i.e. the seven-propagator master integrals,

are still unknown in literature 6. Instead, for comparison, we show numerical results for

one non-planar integral in the lower sector, defined by I
sub
2 = I(F2, 1011111)7 (shown in

fig. 1d), which has been studied in Ref. [54] and in fact is independent of t. In Table 2, we

show our numerical initial conditions obtained from Nift as well as the analytical one on

I
sub
2 . The uncertainties on the initial conditions are less than 10�7 and the computing time

is well under control. In Table 3, we show our numerical results as well as the analytical

6
Partial results has been reported in Ref. [55] recently.

7
An alternative numerical evaluation for this topology has been reported in Ref. [56]
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sub
2 at the point (s = 5, t = �2). The IC1 and IC2 denotes the two di↵erent

choices of the initial conditions. c0 is the leading term of the ✏ expansion of these finite

integrals.

The next example is the family F2, shown in Fig. 1b, with the following denominators:

D1 = k
2
1, D2 = (k1 � p1)

2
, D3 = (k1 � p1 � p2)

2
,

D4 = k
2
2 �m

2
, D5 = (k2 � p1 � p2 + p3)

2
�m

2
,

D6 = (k1 � k2)
2
�m

2
, D7 = (k1 � k2 � p3)

2
�m

2
.

(3.3)

There are 36 master integrals in this family, and some of them involve infrared divergences.

The most complicated integrals in this family, i.e. the seven-propagator master integrals,

are still unknown in literature 6. Instead, for comparison, we show numerical results for

one non-planar integral in the lower sector, defined by I
sub
2 = I(F2, 1011111)7 (shown in

fig. 1d), which has been studied in Ref. [54] and in fact is independent of t. In Table 2, we

show our numerical initial conditions obtained from Nift as well as the analytical one on

I
sub
2 . The uncertainties on the initial conditions are less than 10�7 and the computing time

is well under control. In Table 3, we show our numerical results as well as the analytical

6
Partial results has been reported in Ref. [55] recently.

7
An alternative numerical evaluation for this topology has been reported in Ref. [56]
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Conclusion

Novel Algebraic Property Unveiled

The algebra of Feynman Integrals is controlled by intersection numbers

Intersection Numbers : Scalar Product/Projection between Feynman Integrals

Novel decomposition method

Direct decomposition in a Integral Basis

No Intermediate relation required

Useful for both Physics and Mathematics

Evaluation of MIs

DE has been the most successful in case of analytical or numerical

Series expansion of the DE looks very promising

Numerical techniques are becoming stable and efficient, thanks to the ideas of integrating the DE.
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Thank you
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Back-up
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Basics of Intersection Theory

2 Basics of Hypergeometric Integrals

In this section we review a few concepts from the theory of hypergeometric functions and
Feynman integrals that serve as a basis for the remainder of the paper.

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [81, 82], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
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Equivalence Class 

H
n
! ⌘ {n-forms 'n |r!'n = 0}/{r!'n�1},
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Vector Space of n-forms Twisted Cohomology 
Group

Dual space

2

cast in the form [22],

I =

Z

C
u(z)'(z) , (1)

where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

r�! = d� !^
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h'L|CL] =
Z

CL

u(z)'L(z)
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Integral

h'L|'Ri
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Intersection Number

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [77, 78]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
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2

can be found using an ansatz for each component  (n)
i , see

[2, 3]. Such a solution exists, if the matrix Reszn=p ⌦(n)

does not have any non-negative integer eigenvalues, which
we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he
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(0)
1 i = 1, and we

impose the initial conditions
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L , '

(1)
R,1 = '

(n)
R . (9)

In this case, eqs. (5,6) reduce to a computation of univari-
ate intersection numbers [4, 5] previously studied in [2, 3].
Plugging everything together, eq. (5) can be expressed as
(where summing over repeated indices is understood)
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where im = 1, . . . , ⌫m, and each  
(m)
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for m =
1, . . . ,n�1 is the solution of the system of differential
equations,
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with |h
(m)
im�1im
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dzm coming from the projec-
tion:
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(m)
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i , (12)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (5,
10) is the key formula used in this section. Paired with
the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
multi-fold integrals of Aomoto-Gel’fand type, as discussed
in this paper, in terms of master integrals.

Counting Master Integrals: Euler Characteristics, Morse
Theory, and Lefschetz Thimbles - Let us consider a single-
valued k-form 'k and a multi-valued function u(z) in-
tegrated over a k-real-dimensional submanifold Ck ⇢ X

inside of some space X of complex dimension n,
Z

Ck

u(z)'k(z). (13)

If u(z) regulates all boundaries of Ck then by Stokes’
theorem:

0 =

Z

Ck

d (u(z)'k�1) =

Z

Ck

u(z)r!'k�1, (14)

where r! ⌘ d+ !^ is a covariant derivative with a one-
form ! ⌘ d log u(z). Thus adding terms of the form
r!'k�1 to 'k does not change the value of the integral
of eq. (13). Similarly, we can impose that integrals over
boundary terms of the form @Ck+1 vanish:

0 =

Z

@Ck+1

u(z)'k =

Z

Ck+1

u(z)r!'k, (15)

which corresponds to r!'k = 0. These two requirements
define a set of natural vector spaces for k = 0, 1, . . . , 2n:

H
k
! ⌘ {k-forms 'k |r!'k = 0}/{r!'k�1}, (16)

called twisted cohomology groups [6]. Under some as-
sumptions amounting to the fact that u(z) regulates all
boundaries of X, one can show that in fact Hn

! is the only
non-trivial space and all other Hk 6=n

! vanish [7]. From now
on we consider only such cases, even though Feynman in-
tegrals are known to sometimes violate these assumptions
[3, 8].

One can also construct a dual vector space (Hn
! )

⇤ =
H

n
�!, with the same properties, given by a replacement

! ! �! in the above definition eq. (16). In this work we
consider h'L| 2 H

n
! and |'Ri 2 H

n
�! and a scalar product

h'L|'Ri called the intersection number [4]. Similarly,
eq. (13) is a scalar product h'k|Ck] between H

k
! 3 h'k|

and the twisted homology group H
!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn

! ,

�(X) =
2nX

k=0

(�1)k dimH
k
!. (17)

Since all Hk 6=n
! vanish, we find that the dimension of Hn

! ,
and hence also the number ⌫ of MIs is given by

⌫ = (�1)n�(X). (18)

Thus ⌫ can be computed using one of the many ways of
evaluating the topological invariant �(X). We review a
few of them below. Since X = CPn

�P!, where P! ⌘

{set of poles of !}, we can simplify the above relation to

⌫ = (�1)n (n+1� �(P!)) , (19)

where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
�
(z2�s

2)(z2�⇢2)
��

, (20)
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One can also construct a dual vector space (Hn
! )

⇤ =
H

n
�!, with the same properties, given by a replacement

! ! �! in the above definition eq. (16). In this work we
consider h'L| 2 H

n
! and |'Ri 2 H

n
�! and a scalar product

h'L|'Ri called the intersection number [4]. Similarly,
eq. (13) is a scalar product h'k|Ck] between H

k
! 3 h'k|

and the twisted homology group H
!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn

! ,

�(X) =
2nX

k=0

(�1)k dimH
k
!. (17)

Since all Hk 6=n
! vanish, we find that the dimension of Hn

! ,
and hence also the number ⌫ of MIs is given by

⌫ = (�1)n�(X). (18)

Thus ⌫ can be computed using one of the many ways of
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�P!, where P! ⌘

{set of poles of !}, we can simplify the above relation to

⌫ = (�1)n (n+1� �(P!)) , (19)

where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
�
(z2�s

2)(z2�⇢2)
��

, (20)

3

which arises physically from the maximal cut of a two-loop
non-planar triangle diagram [2] and gives rise to Appell
F1 functions with some constants s, ⇢, �. Computing
! = d log u(z) gives straightforwardly P! = {±⇢,±s,1},
and hence X = CP1

�P! is a one-dimensional space
parametrized by an inhomogeneous coordinate z. The
point at infinity is removed from X since Resz=1(!) 6= 0.
Since the Euler characteristic of 5 distinct points is simply
�(P!) = 5, using eq. (19) we find:

⌫ = (�1)1 (2� 5) = 3, (21)

which is the correct number of MIs in this case [2].
Let us now consider a real-valued function h(z) ⌘

Re(log u(z)), called a Morse function, which assigns a
“height” to every point z 2 X. Special role in this con-
struction is played by critical points z⇤ of h(z) defined
by dh(z⇤) = 0. Using Cauchy–Riemann equations it is
straightforward to show that this condition is the same as
! =

Pn
i=1 !̂idzi = 0 and thus the critical point equations

read

!̂i = @zi log u(z
⇤) = 0, i = 1, . . . , n. (22)

We assume that all critical points are isolated and non-
degenerate. To each of them the Morse function assigns
a pair of flows, labelled by a sign ± and parametrized by
an auxiliary “time” variable ⌧ ,

dzi

d⌧
= ⌥@zih(z),

dzi

d⌧
= ⌥@zih(z), i = 1, . . . , n.

(23)
In the � case we have dh(z)/d⌧ < 0 and hence it corre-
sponds to a downward flow from the ↵-th critical point
z⇤(↵), which defines a submanifold of X called a Lefschetz
thimble (or a path of steepest descent) J↵ with some real
dimension �↵. Similarly, the + case defines an upward
flow, which generates a path of steepest ascent K↵ through
the critical point z⇤(↵), with real dimension 2n��↵. Here
�↵ is the number of unique negative directions extending
from the ↵-th critical point, called its Morse index.

One of the key results in complex Morse theory (often
called Picard–Lefschetz theory) is that the Euler charac-
teristic can be expressed as [12]:

�(X) =
2nX

�=0

(�1)� M�, (24)

where M� is the number of critical points with the Morse
index equal to �. Since u(z) is a holomorphic function,
near each z⇤(↵) we can pick local coordinates w(↵) (with
the critical point at w(↵)=0) such that the Morse function
admits an expansion:

h(w(↵)) = h(0) + Re
nX

j=1

(w(↵),j)
2 + . . . . (25)

Treating X as a real manifold with coordinates w(↵) =
x(↵) + iy(↵) we find

h(w(↵)) = h(0) +
nX

j=1

(x(↵),j)
2
�

nX

j=1

(y(↵),j)
2 + . . . (26)

and hence every critical point has a shape of a saddle
with exactly n upward and n downward directions, or
the Morse index �↵ = n. This means that only Mn is
non-vanishing and hence using eqs. (18) and (24) we find
[7, 13]:

⌫ = {number of solutions of !=0}. (27)

In the context of Feynman integrals these arguments were
first given in [8]. The critical points can be also used
to compute asymptotic behavior of intersection numbers
[14].

Let us mention that Lefschetz thimbles are integra-
tion contours along which eq. (13) converges the most
rapidly for k=n, and thus the set {J↵}

n
↵=1 can be used

as a basis of integration cycles. Likewise, the paths of
steepest ascent of h(z), K↵ are integration cycles along
which the dual integral

R
K↵

u(z)�1
'n converges the most

rapidly and {K↵}
n
↵=1 can be used a basis of H�!

n . For
explicit examples of projecting cycles onto such bases
using homological intersection numbers see App. A of [1].

�⇢ ⇢ 1�s s

z⇤(1) z⇤(2) z⇤(3)

FIG. 1: Morse–Smale complex associated to the Morse
function h(z) = Re(log u(z)) with eq. (20) and ⇢>s>0,
�>0. The set of filled dots corresponds to P! =
{±⇢,±s,1} removed from X. Empty dots at z

⇤
(↵) repre-

sent critical points of the Morse function, with paths of
steepest descent J↵ (solid lines) and ascent K↵ (dashed
lines) extending from them. They give a triangulation of
X = CP1

�P!. The arrows indicate the direction of the
flow towards lower values of h(z).

In the example at hand, eq. (20) gives ⌫=3 solutions
of the critical point equations,

z
⇤ = 0, ±

r
s2 + ⇢2

2
, (28)

in agreement with eq. (21). The form of Lefschetz thimbles
depends on the values of s, ⇢, � and here we choose ⇢>s>0
and �>0 as a concrete example. With this choice each
J↵=1,2,3 has to have endpoints on z 2 {±⇢,±s} since
this is where h(z) decays to �1, while K↵=1,2,3 can only

Aomoto (1975)

Master Decomposition Formula 

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)

Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.
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5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be
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Let us consider the massless box diagram at one loop,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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master integral.

We determine the set of spanning cuts as (Cut{1,3},
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(24)
2 = ĥ
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ê
(4)
1 = ĥ
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
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(4)
1 =

1

z4
, ê
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(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

5
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can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
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• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,
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and for the inner space,
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z
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u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
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j i

�
C�1

(24)

�
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=
(d� 6)(d� 5)

st
, (44)
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h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ
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(24)
2 = 1 , (37)

and for the inner space,

ê
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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Integral Decomposition

Baikov Polynomial

The sectors containing the MIs are

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)
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If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding
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Accordingly, we choose the basis forms,
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(24)
1 =

1

z2z4
, ê
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• Cut{2,4} : On this specific cut, we use the regularized
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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On the Cut{1,3}, we obtain:

=
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3 MIs
Differential Equation

4

have endpoints on z = 1 as it is the only place where
h(z) ! +1. This alone fixes the shape of the paths
of steepest descent and ascent uniquely up to contour
deformations. We illustrate them in Fig. 1.

The critical points together with paths of steepest of
descent and ascent triangulate the manifold X into what is
known as a Morse–Smale complex. Denoting the number
of q-dimensional elements of this complex by bq (called
the Betti number) we have

�(X) =
2nX

q=0

(�1)q bq. (29)

For example, in Fig. 1 we can count 3 vertices (the filled
dots are not a part of X), 12 edges (ignoring orientations),
and 6 faces. Together with eq. (18) this gives us yet
another way of computing the number of MIs:

⌫ = (�1)1 (3� 12 + 6) = 3. (30)

For more background on Morse theory, see, e.g., [12, 15]
and in the context of twisted geometries [1, 6, 7, 14].

Hypergeometric Function 3F2 – We discuss the
application of our decomposition algorithm for deriving
contiguity relation for the hypergeometric function 3F2.
Consider the function H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (31)

where �(a, b) = �(a)�(b)/�(a+b) is the Euler beta-
function,

u = (1�z1z2x)
�a3

2Y

i=1

z
ai�1
i (1�zi)

bi�ai�1
, (32)

d
2z = dz1 ^ dz2, and where C is the square with zi 2

[0, 1]. The system !̂1 = !̂2 = 0 has three solutions,
corresponding to ⌫(12) = 3 MIs. We choose three master
forms, he(12)i | ⌘ ê

(12)
i d

2z, (i = 1, 2, 3),

ê
(12)
1 =

1

z1
, ê

(12)
2 =

1

z2
, ê

(12)
3 =

1

1� z2
, (33)

which correspond to the following set of MIs,

H
�a1�1,a2,a3

b1�1,b2
;x

�
, H

�a1,a2�1,a3

b1,b2�1 ;x
�
, H

�a1,a2,a3

b1,b2�1 ;x
�
. (34)

At the same time, we define the dual basis, |h
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ĥ
(12)
i d

2z, with ĥ
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as dictated by the geometrical properties of the graph
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i i , and Pn is the set of poles of
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mathematical details are provided in [35], for the
interested readers.
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Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
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After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z
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i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê
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• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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the end of the calculation. This is done in order to allow
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the complete decomposition [37], and then, using the
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the coefficients of those MIs that survive on the cut. As
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for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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(4)
1 =

1

z4
, ê
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• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:
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mathematical details are provided in [35], for the
interested readers.
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integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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(42)
2 = 1 , ê
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1 =
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, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
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ihe
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i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],
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where the functions  (n)
i are the solutions of the system

of differential equations
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The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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, ê
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2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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where a1 is in agreement with eq. (44) and
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Number of MIs The choice of Bases

4

have endpoints on z = 1 as it is the only place where
h(z) ! +1. This alone fixes the shape of the paths
of steepest descent and ascent uniquely up to contour
deformations. We illustrate them in Fig. 1.

The critical points together with paths of steepest of
descent and ascent triangulate the manifold X into what is
known as a Morse–Smale complex. Denoting the number
of q-dimensional elements of this complex by bq (called
the Betti number) we have

�(X) =
2nX

q=0

(�1)q bq. (29)

For example, in Fig. 1 we can count 3 vertices (the filled
dots are not a part of X), 12 edges (ignoring orientations),
and 6 faces. Together with eq. (18) this gives us yet
another way of computing the number of MIs:

⌫ = (�1)1 (3� 12 + 6) = 3. (30)

For more background on Morse theory, see, e.g., [12, 15]
and in the context of twisted geometries [1, 6, 7, 14].

Hypergeometric Function 3F2 – We discuss the
application of our decomposition algorithm for deriving
contiguity relation for the hypergeometric function 3F2.
Consider the function H, defined as,
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2z = dz1 ^ dz2, and where C is the square with zi 2

[0, 1]. The system !̂1 = !̂2 = 0 has three solutions,
corresponding to ⌫(12) = 3 MIs. We choose three master
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(12)
i d

2z, (i = 1, 2, 3),

ê
(12)
1 =

1

z1
, ê
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At the same time, we define the dual basis, |h
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ĥ
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2z, with ĥ
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i (i = 1, 2, 3). The decomposi-

tion of h1| = d
2z in terms of he(12)i |,

h1(12)| =
3X

i=1

ci he
(12)
i | , (35)

yields the decomposition of the function defined in eq. (31)
in terms of those in eq. (34), which amounts to a conti-
guity relation for 3F2 functions. The coefficients ci are
determined by means of eq. (3), requiring the computa-
tion of 12 intersection numbers for two-forms, that is 9
elements of the matrix (C(12))ij = (12)he

(12)
i |h

(12)
j i and 3

entries (12)h1|h
(12)
j i for i, j = 1, 2, 3.

To apply eq. (5), we consider the z1-subspace as the
inner space. In turn, the number of MIs for the inner
space is determined by counting the number of solutions
of !̂1 = 0 (w.r.t. z1), giving ⌫(1) = 2. The inner bases
are he
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i | ⌘ ê
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The individual intersection numbers are too large to be
printed here. Yet, the final result is rather simple, and,
in terms of 3F2-functions, it reads,
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where

c̃0 = (a1�1)(b1�b2) + (a1�a2)(b2�a3�1)x ,

c̃1 = (b1�1)(a1�b2) , c̃2 = (a2�b1)(1�b2) , (38)
c̃3 = (a1�a2)(1�b2)(1�x) .

This relation has been (numerically) verified with
Mathematica.

Differential Equation for One-loop Box - Let us consider
the differential equation:

@s = a1 + a2 + a3 , (39)

where we restore the s-dependent prefactor:
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We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
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2 z
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• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
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choose to be,

ê
(1)
1 = ĥ

(1)
1 =

1

z1
, ê

(1)
2 = ĥ

(1)
2 =

1

1� z1
. (36)

The individual intersection numbers are too large to be
printed here. Yet, the final result is rather simple, and,
in terms of 3F2-functions, it reads,

c̃0 3F2

�a1,a2,a3

b1,b2 ;x
�
= c̃1 3F2

�a1�1,a2,a3

b1�1,b2
;x

�
+

c̃2 3F2

�a1,a2�1,a3

b1,b2�1 ;x
�
+ c̃3 3F2

�a1,a2,a3

b1,b2�1 ;x
�
, (37)

where

c̃0 = (a1�1)(b1�b2) + (a1�a2)(b2�a3�1)x ,

c̃1 = (b1�1)(a1�b2) , c̃2 = (a2�b1)(1�b2) , (38)
c̃3 = (a1�a2)(1�b2)(1�x) .

This relation has been (numerically) verified with
Mathematica.

Differential Equation for One-loop Box - Let us consider
the differential equation:

@s = a1 + a2 + a3 , (39)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (40)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (22), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (41)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from



Box with four different masses

Integral family Denominators

s = (p1 + p2)2, t = (p2 + p3)2

z1 = k
2
�m

2
1

z2 = (k + p1)2 �m
2
2

z3 = (k + p1 + p2)2 �m
2
3

z4 = (k + p1 + p2 + p3)2 �m
2
4

⌧ ⌫ e
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⌫{3} = 2 e
(3) =

n
1, 1

z3

o
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n
1
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,

1
z3
,

1
z2z3

o

⌫{321} = 6 e
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n
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z2
,

1
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,
1

z1z3
,

1
z2z3

,
1

z1z2z3

o
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n
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o
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n
1
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,

1
z4
,

1
z1z4

o
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(412) =

n
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,
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z1z4
,
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z2z4

,
1

z1z2z4

o
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n
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o
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n
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,
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,

1
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o
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n
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,

1
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,
1

z1z4
,

1
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,
1
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o
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⌫{4} = 2 e
(4) =

n
1, 1

z4

o

⌫{43} = 3 e
(43) =

n
1
z3
,

1
z4
,

1
z3z4

o

⌫{432} = 6 e
(432) =

n
1, 1

z3
,

1
z2z3

,
1

z2z4
,

1
z3z4

,
1

z2z3z4

o

= c1 + c2 + c3 + c4 + c5

+ c6 + c7 + c8 + c9

+ c10 + c11 . (5.79)
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.

⌫(31) = 2
<latexit sha1_base64="t7D0HOQR+e2Yf+SXDbuePowymQg=">AAAB/3icbVDLSgMxFM3UR2t9VV26iS1CBSkz7UIFhYIblxXsA9qxZNJMG5pJhiQjlKEL/8KtbtyJWz9ERNB/MdN2oa0H7uVw7rnk5ngho0rb9qeVWlpeWU1n1rLrG5tb27md3YYSkcSkjgUTsuUhRRjlpK6pZqQVSoICj5GmN7xM5s07IhUV/EaPQuIGqM+pTzHSRrrt8KgbFyvO0RhewHI3V7BL9gRwkTgzUqjm0wfv598ftW7uq9MTOAoI15ghpdqOHWo3RlJTzMg424kUCREeoj5pG8pRQJQbT64ew0Oj9KAvpCmu4UT9vRGjQKlR4BlngPRAzc8S8ThpWgim/nO1I+2fujHlYaQJx9Mn/YhBLWASBuxRSbBmI0MQltRcDfEASYS1iSxr4nDmP79IGuWSUymVr00uZ2CKDNgHeVAEDjgBVXAFaqAOMJDgATyCJ+veerZerNepNWXNdvbAH1hvP/k7mIk=</latexit>

⌫(3) = 2
<latexit sha1_base64="bgV5PS/3qQIHAEUYLSqN6gIB8k8=">AAAB/nicbVDLSgMxFM3UR2t9VV26iS1CBSkz7UIFhYIblxXsA9qhZNJMG5pJxiQjlKHgX7jVjTtx64+ICPovZtoutPXAvRzOPZfcHC9kVGnb/rRSS8srq+nMWnZ9Y3NrO7ez21AikpjUsWBCtjykCKOc1DXVjLRCSVDgMdL0hpfJvHlHpKKC3+hRSNwA9Tn1KUbaSG6HR924WDkawwtY7uYKdsmeAC4SZ0YK1Xz64P38+6PWzX11egJHAeEaM6RU27FD7cZIaooZGWc7kSIhwkPUJ21DOQqIcuPJ0WN4aJQe9IU0xTWcqL83YhQoNQo84wyQHqj5WSIeJ00LwdR/rnak/VM3pjyMNOF4+qQfMagFTLKAPSoJ1mxkCMKSmqshHiCJsDaJZU0czvznF0mjXHIqpfK1yeUMTJEB+yAPisABJ6AKrkAN1AEGt+ABPIIn6956tl6s16k1Zc129sAfWG8/hG2YTg==</latexit>

ê(3)1 =
1
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<latexit sha1_base64="ObFAODmQF0I6yx3bT9Q3qbcQfG8="></latexit>

ê(3)2 = 1
<latexit sha1_base64="4+3YRow6Li24uPnqDOyoXo9WikY=">AAACBHicbVC7SgNBFJ2NrxhfG8XKZjEKESTsJoI2QsDGMoJ5QBLD7GSSDJndWWbuKmHZ1k+ws9XGTqwEf8DKUvBjnE1SaPTAvRzOPZe5c9yAMwW2/Wmk5uYXFpfSy5mV1bX1DTO7WVMilIRWieBCNlysKGc+rQIDThuBpNhzOa27w7NkXr+mUjHhX8IooG0P933WYwSDljpmtjXAENH4KsqXDuJO8dTpmDm7YI9h/SXOlOTK2693+fePvUrH/Gp1BQk96gPhWKmmYwfQjrAERjiNM61Q0QCTIe7TpqY+9qhqR+PTY2tfK12rJ6QuH6yx+nMjwp5SI8/VTg/DQM3OEvEwaSAEV/+5miH0TtoR84MQqE8mT/ZCboGwkkSsLpOUAB9pgolk+mqLDLDEBHRuGR2HM/v5v6RWLDilQvFC53KEJkijHbSL8shBx6iMzlEFVRFBN+gePaBH49Z4Mp6Nl4k1ZUx3ttAvGG/fKXSa5w==</latexit>

ê(31)1 =
1

z1z3
<latexit sha1_base64="NR8jDD4dqOzUHRv6II/CA5RERNI="></latexit>

ê(31)2 = 1
<latexit sha1_base64="lSE3HAvuKIotaFNynDRDwg2LZIE=">AAACBXicbVC7SgNBFJ2Nrxhfa8TKZjEKESTsJoI2QsDGMoJ5QBLD7GSSDJndWWbuimHZ2j+wtNXGTmws/AArS8GPcTZJodED93I491zmznEDzhTY9qeRmptfWFxKL2dWVtfWN8zNbE2JUBJaJYIL2XCxopz5tAoMOG0EkmLP5bTuDs+Sef2aSsWEfwmjgLY93PdZjxEMWuqY2dYAQ0Tjqyhfcg7iTvHU6Zg5u2CPYf0lzpTkytuvd/n3j71Kx/xqdQUJPeoD4VippmMH0I6wBEY4jTOtUNEAkyHu06amPvaoakfj22NrXytdqyekLh+ssfpzI8KeUiPP1U4Pw0DNzhLxMGkgBFf/uZoh9E7aEfODEKhPJk/2Qm6BsJJIrC6TlAAfaYKJZPpqiwywxAR0cBkdhzP7+b+kViw4pULxQudyhCZIox20i/LIQceojM5RBVURQTfoHj2gR+PWeDKejZeJNWVMd7bQLxhv36AfmyI=</latexit>
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Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,
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, ê

(3)
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2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z
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u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1
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. On this specific cut we have:

= c1 + c2 , (43)
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Box with four different masses

Integral family Denominators

s = (p1 + p2)2, t = (p2 + p3)2

z1 = k
2
�m

2
1

z2 = (k + p1)2 �m
2
2

z3 = (k + p1 + p2)2 �m
2
3

z4 = (k + p1 + p2 + p3)2 �m
2
4

⌧ ⌫ e

z4 = 0

⌫{3} = 2 e
(3) =

n
1, 1

z3

o

⌫{32} = 3 e
(32) =

n
1
z2
,

1
z3
,

1
z2z3

o

⌫{321} = 6 e
(321) =

n
1, 1

z2
,

1
z1z2

,
1

z1z3
,

1
z2z3

,
1

z1z2z3

o

z3 = 0

⌫{4} = 2 e
(4) =

n
1, 1

z4

o

⌫{41} = 3 e
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n
1
z1
,

1
z4
,

1
z1z4

o

⌫{412} = 6 e
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n
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z1
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1
z1z2

,
1

z1z4
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1
z2z4

,
1

z1z2z4

o

z2 = 0

⌫{4} = 2 e
(4) =

n
1, 1

z4

o

⌫{43} = 3 e
(43) =

n
1
z3
,

1
z4
,

1
z3z4

o

⌫{431} = 6 e
(431) =

n
1, 1

z4
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1
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,
1

z1z4
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1
z3z4

,
1

z1z3z4

o

z1 = 0

⌫{4} = 2 e
(4) =

n
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z4

o

⌫{43} = 3 e
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n
1
z3
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1
z4
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1
z3z4
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1
z2z3

,
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z2z4
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1
z3z4

,
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= c1 + c2 + c3 + c4 + c5

+ c6 + c7 + c8 + c9

+ c10 + c11 . (5.79)
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