Analytical and Numerical Evaluation of 2- and 3-Loop Integrals with Massive Lines

- Manoj Kumar Mandal
 - **INFN & University of Padova**
- International workshop on the high energy Circular Electron-Positron Collider (CEPC) Sanghai (Virtual Meeting) **28 October 2020**

Università degli Studi DI PADOVA

Dipartimento di Fisica e Astronomia Galileo Galilei

Precision computation of the cross-section in perturbation theory requires the computation of multi-leg / multi loop Feynman Integrals.

The main bottleneck

Integration-By-Parts (IBP) identity

$$\int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \frac{\partial}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) = \int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \left[\frac{\partial v^{\mu}}{\partial k_{j,\mu}} \left(\frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) - \sum_{j=1}^{N} \frac{a_{j}}{D_{j}} \frac{\partial D_{j}}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) \right]$$

$$C_1 I(a_1, \cdots a_N - 1) + \cdots + C_r I(a_1 + 1, \cdots a_N) = 0$$

** Gives relations between different scalar integrals with different exponents ** l(1+E) number of equations

- Solve the system symbolically : Recursion relations
- Solve for specific integer value of the exponents : Laporta Algorithm

Chetyrkin, Tkachov

Loop and external momenta

LiteRed

orta Algorithm Fire, Reduze, Kira,...

- * Kira A Feynman Integral Reduction Program Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

* Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- * Kira A Feynman Integral Reduction Program Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

Integration-by-parts reductions of Feynman integrals using Singular and * **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

Intersection Theory

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

Integration-by-parts reductions of Feynman integrals using Singular and * **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

Twisted Cycle

 $u(\mathbf{z})$ is a multi-valued function

 $u(\mathbf{z})$ vanishes on the boundaries of \mathcal{C} , $u(\partial \mathcal{C}) = 0$

Intersection Theory

Twisted Co-cycle

 $\langle \varphi | \mathcal{C}]$

Pairing

Basics of Intersection Theory

$$0 = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C}} \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C}} u\left(\frac{du}{u} \wedge + d\right)\xi \equiv \int_{\mathcal{C}} u\,\nabla_{\omega}\xi$$

Equivalence Class

$$\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi \qquad \qquad \int_{\mathcal{C}} u \varphi = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C} } u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{$$

Vector Space of n-forms

$$H_{\omega}^{n} \equiv \{n \text{-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid$$

Dual space

$$H^n_{-\omega} \qquad \nabla_{-\omega} = d - \omega \wedge$$

$$\chi(X) = \sum_{k=0}^{2n} (-1)^k \dim H^k_{\omega}. \qquad H^{k \neq n}_{\omega} \text{ vanish}. \qquad \text{Aomoto}$$
$$\nu = (-1)^n \chi(X)$$
$$= (-1)^n (n+1 - \chi(\mathcal{P}_{\omega}))$$
$$= \{\text{number of solutions of } \omega = 0\}$$

$$Integral \qquad Intersection \\ \langle \varphi_L | \mathcal{C}_L] = \int_{\mathcal{C}_L} u(\mathbf{z}) \varphi_L(\mathbf{z}) \qquad \left\langle \varphi_L \right|$$

Master Decomposition Formula

$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_i |$$

Univariate Intersection Number

$$\langle \varphi_L | \varphi_R \rangle_\omega = \sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$$

Matsumoto, Mizera

$$\nabla_{\omega_p}\psi_p = \varphi_{L,p}$$

First Order Differential Equation

Intersection Theory: Algorithm

Integrals

$$I = \int_{\mathcal{C}} u \varphi = \langle \varphi | \mathcal{C}]$$

Number of MIs

$$\omega \equiv d \log u(\mathbf{z}) = \sum_{i=1}^{n} \hat{\omega}_i \, dz_i$$

 $\nu =$ Number of solutions of the system of equations

$$\hat{\omega}_i \equiv \partial_{z_i} \log u(\mathbf{z}) = 0, \qquad i = 1, \dots, n$$

$$I = \sum_{i=1}^{\nu} c_i J_i \qquad \qquad J_i = \langle e_i | \mathcal{C}]$$

Choice of Bases

$$e_i(\mathbf{z}) \qquad h_i(\mathbf{z})$$

$$\mathbf{C}_{ij} = \langle e_i | h_j \rangle$$
$$\langle \varphi | = \sum_{i=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_i |$$

i,j=1

Metric Matrix

Master Decomposition Formula

Manoj Kumar Mandal, INFN Padova, Italy

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)

Computation of Multivariate Intersection Number

Recursive Formula :

$$\mathbf{n} \langle \varphi_L^{(\mathbf{n})} | \varphi_R^{(\mathbf{n})} \rangle = -\sum_{p \in \mathcal{P}_n} \operatorname{Res}_{z_n = p} \left(\mathbf{n} - \mathbf{1} \langle \varphi_L^{(\mathbf{n})} | h_i^{(\mathbf{n} - \mathbf{1})} \rangle \psi_i^{(\mathbf{n} - \mathbf{1})} \right)$$

Intersection Theory: Example

$$u(\mathbf{z}) = \left((st - sz_4 - tz_3)^2 - 2tz_1 (s(t + 2z_3 - z_2 - z_4) + tz_3) + s^2 z_2^2 + t^2 z_1^2 - 2sz_2 (t(s - z_3) + z_4 (s + 2t)))^{\frac{d-5}{2}} \right)$$

Baikov Polynomial

The sectors containing the MIs are

3 MIs
$$\begin{cases} N_{\{1,2,3,4\}} = 1 \\ N_{\{1,3\}} = 1 \\ N_{\{2,3\}} = 1 \end{cases} \quad J_1 = \square, \quad J_2 = X, \quad J_3 = X \end{cases}$$

Integral Decomposition

One Loop Box : DE

$$\operatorname{Cut}_{\{\mathbf{2},\mathbf{4}\}}$$

$$\partial_s = K \int_{\mathcal{C}} u_{2,4} \varphi_{2,4} \qquad \varphi_{2,4} = \hat{\varphi}_{2,4} \, dz_3 \wedge dz_1$$

$$\hat{\psi}_{2,4} = \frac{1}{z_1} z_3^{\rho_1} u(z_1, 0, z_3, 0)$$
$$\hat{\varphi}_{2,4} = \frac{f}{z_1 z_3} \quad f = \frac{1}{K u} \frac{\partial(K u)}{\partial s}$$

Differential Equation

$$\partial_{s} = a_{1} + a_{3} + a_{3$$

-						
	Integral family			Denominators		
	$s = (p_1 + j_2)$	z_2 z_3 z_4 z_4 z_4 z_4 z_4 z_4 z_4 z_5 z_7 z_7 z_8	$(p_2 + p_3)^2$	$z_1 = k^2 - m_1^2$ $z_2 = (k + p_1)^2 - m_2^2$ $z_3 = (k + p_1 + p_2)^2 - m_3^2$ $z_4 = (k + p_1 + p_2 + p_3)^2 - m_3^2$		
	au	ν		е		
	$z_4 = 0$	$\nu_{\{3\}} = 2$ $\nu_{\{32\}} = 3$ $\nu_{\{321\}} = 6$	$e^{(321)} =$	$e^{(3)} = \left\{1, \frac{1}{z_3}\right\}$ $e^{(32)} = \left\{\frac{1}{z_2}, \frac{1}{z_3}, \frac{1}{z_2 z_3}\right\}$ $\left\{1, \frac{1}{z_3}, \frac{1}{z_3 z_3}, \frac{1}{z_3 z_3}, \frac{1}{z_3 z_3}, \frac{1}{z_3 z_3}\right\}$		
	$z_3 = 0$	$ \begin{array}{c} \nu_{\{4\}} = 2 \\ \nu_{\{41\}} = 3 \\ \nu_{\{412\}} = 6 \end{array} $	$e^{(412)} =$	$e^{(4)} = \left\{ 1, \frac{1}{z_4} \right\}$ $e^{(41)} = \left\{ \frac{1}{z_1}, \frac{1}{z_4}, \frac{1}{z_1 z_4} \right\}$ $\left\{ 1, \frac{1}{z_1}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_4}, \frac{1}{z_2 z_4}, \frac{1}{z_1 z_2 z_4} \right\}$		
	$z_2 = 0$	$\nu_{\{4\}} = 2$ $\nu_{\{43\}} = 3$ $\nu_{\{431\}} = 6$	$e^{(431)} =$	$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$ $\left\{1, \frac{1}{z_4}, \frac{1}{z_1 z_3}, \frac{1}{z_1 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_1 z_3 z_4}\right\}$		
	$z_1 = 0$	$\nu_{\{4\}} = 2$ $\nu_{\{43\}} = 3$ $\nu_{\{432\}} = 6$	$e^{(432)} =$	$e^{(4)} = \left\{ 1, \frac{1}{z_4} \right\}$ $e^{(43)} = \left\{ \frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4} \right\}$ $\left\{ 1, \frac{1}{z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_2 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_2 z_3 z_4} \right\}$		
Reader		c_{10}	$+ c_7$	$c_{3} + c_{4} + c_{4} + c_{5} + c_{5} + c_{6} + c_{7} + c_{9} + c_{7} + c_{9} + c_{9$		

Work in progress

Evaluation of MIs

Manoj Kumar Mandal, INFN Padova, Italy

Evaluation of MIs

Smirnov (1999); Tausk (1999); Czakon (2005); Czakon, Gluza, Reimann (2005); Brown (2009); Panzer (2015);

Hepp (1966); Roth, Denner (1996); Binoth, Heinrich (2000); Carter, Heinrich (2010); Borowka, Carter, Heinrich (2012); Smirnov, Smirnov, Tentyukov (2011), Bogner, Weinzierl (2008); Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke (2017)

Catani, Gleisberg, Krauss, Rodrigo, Winter (2008); Bierenbaum, Catani, Draggiotis, Rodrigo (2010); Runkel, Szr, Vesga, Weinzierl (2019); Capatti, Hirschi, Kermanschah, Ruijl (2019); Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Bobadilla (2020);

MIs Evaluation : DE Method

* The singularities form the kinematics are governed by the Landau equation

Novel algorithm to construct the cannonical system, starting from one Uniformly Transcendental integral.

 \ll There has been a recent proposal to construct d log-form integrals of the hypergeometric type, treat them as a representation of Feynman integrals, and project them into master integrals using intersection theory.

$$(\epsilon)I(x;\epsilon), \quad i=1,\cdots,K$$

Matrix, with rational functions entries of x and d

$$= \epsilon A_i(x) F(x;\epsilon)$$

Henn(2013)

Cannonical form

Dlapa, Henn, Yan (2020)

- ◆ 3-Loop Higgs gluon form factors Harlander, Prausa, Usovitsch (2019)
- 2-Loop QCD correction to Higgs + jet production with internal top quark
- ◆ 3-Loop mixed QCD EW correction (light quarks) to Higgs production in gluon fusion
- ◆ 2-Loop mixed QCD EW correction to DY production
- + 2-Loop QCD correction to top pair production Adams, Choubey, Weinzierl (2018); Di Vita, Gehrmann, Laporta, Mastrolia, Primo, Schubert (2019)
- + 2-Loop QED correction to muon-electron scattering Mastrolia, Passera, Primo, Schubert (2017); Di Vita, Laporta, Mastrolia, Primo, Schubert (2018)

Differential Equation : Cannonical basis

Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov (2019); Frellesvig, Hidding, Maestri, FM, Salvatori (2019)

Bonetti, Melnikov, Tancredi

Bonciani, Di Vita, Mastrolia, Schubert (2016); Heller, Manteuffel, Schabinger (2019); Bonciani, Buccioni, Rana, Triscari, Vicini (2019)

+ 2-Loop mixed QCD EW correction to Higgs+jet production Bonetti, Panzer, Smirnov, Tancredi (2020); Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer (2020)

****** The series solution is found by the Frobenius method.

Wery efficient and allow for high precision in all kinematic regions, which is very suitable for MC integration.

 $\frac{a}{dt} = Fas(been) = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}$

$$\underbrace{\substack{(\epsilon, \vec{s}) \mathbf{F}(\epsilon, \vec{s}), \\ S_b}}_{s_b} \underbrace{\underset{n \in \{1, \dots, N\}}{\text{Series}}}_{s(t) = \vec{s}_a} \underbrace{\text{Expansion}}_{t \in [\vec{s}_b - \vec{s}_a]t, t \in [\vec{t}_b]}_{t \in [\vec{s}_b - \vec{s}_a]t, t \in [\vec{t}_b]}$$

 $\vec{s}(t) = \vec{s}_a + (\vec{s}_b - \vec{s}_a)t, \quad t \in [0, 1]$

$$\mathbf{F}(\epsilon, \mathbf{H}) = \sum_{n=1}^{N} \mathbf{A}_{n}(\epsilon, \vec{s}(t)) \frac{ds_{n}(t)}{dt} \frac{ds_{n}(t)}{dt} \frac{ds_{n}(t)}{dt}$$

N
plitude for
$$\vec{Higgs} + \vec{jet production}$$
 keeping the top mass dt

ing (2020) eng (2020)

$\frac{\nabla \partial x}{\partial x}I = A_x (m_s, x, \epsilon) I$ **Numerical Approach**

Differential Equation: Numerical Integration

Differential Equation: Numerical Integration

$$\begin{array}{c} \text{IC1}(s=-1.33,t=-0.891)\\ \text{IC2}(s=-1.63,t=-0.632)\\ (s=5,t=-2) & c_0 & t_{1}\\ (s=5,t=-2) & c_0 & t_{2}\\ (s=5,t=-2) & c_0 & t_{3660251-i0.45602298}\\ (s=5,t=-2) & c_0 & t_{3660251-i0.45602309}\\ (s=6,t=-2) & c_0 & t_{1}\\ (s=6,t=-2) & c_0 & c_1 & c_2\\ (s=5,t=-2) & c_1 & c_2 & c_2\\ (s=5,t=-2) & c_1 & c_2 & c_2\\ (s=5,t=-2) & c_1 & c_2 & c_2\\ (s=5,t=$$

Movel Algebraic Property Unveiled

- The algebra of Feynman Integrals is controlled by intersection numbers
- Intersection Numbers : Scalar Product/Projection between Feynman Integrals
- **I** Useful for both Physics and Mathematics
- **Movel decomposition method**
 - Direct decomposition in a Integral Basis
 - No Intermediate relation required
- Evaluation of MIs
 - DE has been the most successful in case of analytical or numerical
 - Series expansion of the DE looks very promising
 - **More is a set of the set of the**

Conclusion

Thank you

Back-up

Basics of Intersection Theory

$$0 = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C}} \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C}} u\left(\frac{du}{u} \wedge + d\right)\xi \equiv \int_{\mathcal{C}} u\,\nabla_{\omega}\xi$$

Equivalence Class

$$\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi \qquad \qquad \int_{\mathcal{C}} u \varphi = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C} } u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{$$

Vector Space of n-forms

$$H_{\omega}^{n} \equiv \{n \text{-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid$$

Dual space

$$H^n_{-\omega} \qquad \nabla_{-\omega} = d - \omega \wedge$$

$$\chi(X) = \sum_{k=0}^{2n} (-1)^k \dim H^k_{\omega}. \qquad H^{k \neq n}_{\omega} \text{ vanish}. \qquad \text{Aomoto}$$
$$\nu = (-1)^n \chi(X)$$
$$= (-1)^n (n+1 - \chi(\mathcal{P}_{\omega}))$$
$$= \{\text{number of solutions of } \omega = 0\}$$

$$Integral \qquad Intersection \\ \langle \varphi_L | \mathcal{C}_L] = \int_{\mathcal{C}_L} u(\mathbf{z}) \varphi_L(\mathbf{z}) \qquad \left\langle \varphi_L \right|$$

Master Decomposition Formula

$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_i |$$

Univariate Intersection Number

$$\langle \varphi_L | \varphi_R \rangle_\omega = \sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p} \Big(\psi_p \, \varphi_R$$

Matsumoto, Mizera

$$\nabla_{\omega_p}\psi_p = \varphi_{L,p}$$

First Order Differential Equation

Intersection Theory: Example

$$u(\mathbf{z}) = \left((st - sz_4 - tz_3)^2 - 2tz_1 (s(t + 2z_3 - z_2 - z_4) + tz_3) + s^2 z_2^2 + t^2 z_1^2 - 2sz_2 (t(s - z_3) + z_4 (s + 2t)))^{\frac{d-5}{2}} \right)$$

$$u(z) - ((zt - zz_{1} - zz_{2} - zz_{2} - zz_{1}) + tz_{3})$$

$$+z^{2}z_{1}^{2} - 2zz_{2}(t(z - zz_{3} - zz_{2} - zz_{1}) + tz_{3})$$

$$+z^{2}z_{1}^{2} - 2zz_{2}(t(z - zz_{3} - zz_{2} - zz_{1}) + tz_{3})$$

$$+z^{2}z_{1}^{2} - 2zz_{2}(t(z - zz_{3}) + zz_{4}(z + 2t)))^{\frac{d}{2}z^{2}}$$
Baikov Polynomial
$$\int = K \int_{C} \frac{u d^{4}z}{z_{1}z_{2}z_{3}z_{4}} \quad K = (-st(s+t))^{2-\frac{d}{2}}$$
Cut(1,3)
$$u_{1,3} = z_{2}^{2}z_{1}^{6} u_{0}(zz_{2})$$

$$u_{1,3} = z_{2}^{2}z_{1}^{6} u_{0}(zz_{2})$$

$$u_{1,3} = z_{2}^{2}z_{1}^{6} u_{0}(zz_{2})$$

$$(z_{1},z_{2})$$
Integral Decomposition
$$\int = c_{1} + c_{2} + c_{3}$$

$$u_{1,3} = z_{2}^{2}z_{1}^{6} u_{0}(zz_{2})$$

$$u_{1,3} = z_{2}^{2}z_{1}^{6} u_{0}(zz_{2})$$

$$(z_{1}) = z_{1}^{2} + z_{2}^{2} (zz_{1}z_{2})^{2} (zz_{1}z_{2}) + z_{3}^{2} (zz_{1}z_{2})^{2} (zz_{1}z_{2}) + z_{3}^{2} (z$$

One Loop Box : DE

Cut_{2,4}
$$\partial_s \rightarrow \cdots \rightarrow = K \int_{\mathcal{C}} u_{2,4} \varphi_{2,4}$$
 $\varphi_{2,4} = \hat{\varphi}_{2,4} dz_3 \wedge dz_1$ $u_{2,4} = z_1^{\rho_1} z_3^{\rho_3} u(z_1, 0, z_3, 0)$ $\hat{\varphi}_{2,4} = \frac{f}{z_1 z_3}$ $f = \frac{1}{Ku} \frac{\partial(Ku)}{\partial s}$ Number of MIsThe choice of BasesDifferential Equation

$$\nu_{(31)} = 2 \qquad \hat{e}_1^{(31)} = \frac{1}{z_1 z_3} \qquad \hat{e}_2^{(31)} = 1 \qquad \hat{\partial}_s = 1 \qquad a_1 = \sum_{j=1}^2 \langle \varphi_{1,j} | e_j^{(j)} \\ \hat{e}_1^{(3)} = \frac{1}{z_3} \qquad \hat{e}_2^{(3)} = 1 \qquad a_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_1^{(j)} = \frac{1}{z_3} \qquad \hat{e}_2^{(j)} = 1 \qquad a_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_1^{(j)} = \frac{1}{z_3} \qquad \hat{e}_2^{(j)} = 1 \qquad a_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_1^{(j)} = \frac{1}{z_3} \qquad \hat{e}_2^{(j)} = 1 \qquad \hat{e}_2^{(j)} = 1 \qquad \hat{e}_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_1^{(j)} = \frac{1}{z_3} \qquad \hat{e}_2^{(j)} = 1 \qquad \hat{e}_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_3^{(j)} = \frac{1}{z_3} \qquad \hat{e}_3^{(j)} = 1 \qquad \hat{e}_3 = \sum_{j=1}^2 \langle \varphi_{2,j} | e_j^{(j)} \\ \hat{e}_3^{(j)} = \frac{1}{z_3} \qquad \hat{e}_3^{(j)} = 1 \qquad \hat{e}$$

$$=a_1$$
 $+a_3$ $+$

$${}^{42)} \rangle \left(\mathbf{C}_{(42)}^{-1} \right)_{j1} = \frac{(d-6)t - 2s}{2s(s+t)}$$

$$\binom{(31)}{j} \langle (\mathbf{C}_{(31)}^{-1})_{j2} = -\frac{2(d-3)}{st(s+t)}$$

Ι	ntegral famil	Denominators	
$s = (n_1 + $	$\begin{array}{c c} \hline & z_1 \\ z_2 \\ z_2 \\ z_3 \\ z_4 \\ z_3 \\ z_4 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \\ z_8 \\ z_6 \\ z_6 \\ z_7 \\ z_8 \\$	$ \begin{array}{c c} z_1 = k^2 - m_1^2 \\ z_2 = (k + p_1)^2 - m_2^2 \\ z_3 = (k + p_1 + p_2)^2 - \\ z_4 = (k + p_1 + p_2 + p_3)^2 \end{array} $	
	(P_2) , (P_1)		
$z_4 = 0$	$ \begin{array}{c c} \nu_{\{3\}} = 2 \\ \nu_{\{32\}} = 3 \end{array} $	(201)	$e^{(3)} = \left\{1, \frac{1}{z_3}\right\}$ $e^{(32)} = \left\{\frac{1}{z_2}, \frac{1}{z_3}, \frac{1}{z_2 z_3}\right\}$
	$\nu_{\{321\}} = 6$	$e^{(321)} =$	$= \left\{1, \frac{1}{z_2}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_1 z_2}\right\}$
$z_3 = 0$	$\nu_{\{4\}} = 2 \\ \nu_{\{41\}} = 3$		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(41)} = \left\{\frac{1}{z_1}, \frac{1}{z_4}, \frac{1}{z_1 z_4}\right\}$
	$\nu_{\{412\}} = 6$	$e^{(412)} =$	$= \left\{1, \frac{1}{z_1}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_4}, \frac{1}{z_2 z_4}, \frac{1}{z_1 z_2}\right\}$
$z_2 = 0$	$\nu_{\{4\}} = 2$ $\nu_{\{43\}} = 3$ $\nu_{\{431\}} = 6$	$e^{(431)} =$	$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$ $= \left\{1, \frac{1}{z_4}, \frac{1}{z_1 z_3}, \frac{1}{z_1 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_1 z_3}\right\}$
$z_1 = 0$	$\nu_{\{4\}} = 2$ $\nu_{\{43\}} = 3$ $\nu_{\{432\}} = 6$	$e^{(432)} =$	$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$ $= \left\{1, \frac{1}{z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_2 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_2 z_3}\right\}$
	c_6	$+ c_7$	$c_{3} \xrightarrow{z_{1}} + c_{4} \xrightarrow{z_{2}} + c_{5}$
+		$+ c_{11}$	