Discussion on the CEPC detector: Physics Requirements & Benchmarks

Manqi RUAN

CEPC-SPPC: Higgs & Z

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km
 - Precision test of the SM Low Energy Booster(0.4Km)

Booster(50Km

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)

IP4

- Direct search for new physics
- Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 20/10/2020

Complementary

e+ e- Linac (240m)

IP₂

IP3

Requirements at the CDR

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$

Table 3.3: Physics processes and key observables used as benchmarks for setting the requirements and the optimization of the CEPC detector.

Higgs factory

- Jets (Hadronic system), Tracks, Isolated Lepton/Tau, Flavor Tagging
 - Hadronic system
 - The majority of Higgs events has jet final states; many important EW measurements relies on multi-jet processes.
 - BMR < 4%: to separate qqH signal from qqX background with recoil mass
 - Benchmarked with signal strength measurements at qqH, H→invisible, H→tautau, and vvH, H→bb (hadronic)
 - To investigate innovative color singlet identification algorithm (optimize jet clustering-matching or beyond)
 - Benchmarked with WW/ZZ separation with full hadronic final state
 - Benchmarked with signal strength measurements of H→hadronic final states (bb, cc, gg, WW/ZZ→4 jet) at qqH processes
 - Relative track momentum resolution $\sim 0.1\%$:
 - Benchmarked with H→mumu signal strength, and Higgs mass measurement via Higgs recoil analysis with IIH channel.

Higgs factory

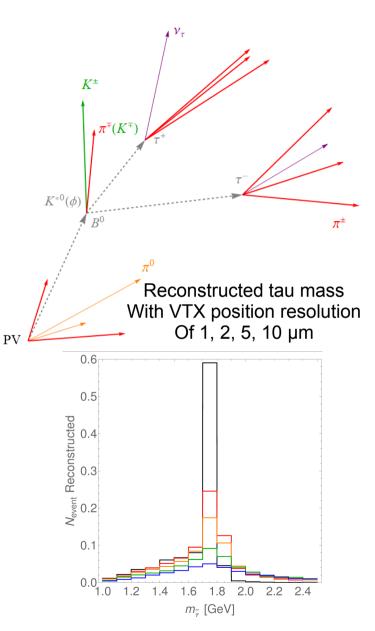
- Jets (Hadronic system), Tracks, Isolated Lepton/Tau, Flavor Tagging
 - Isolated Leptons and taus;
 - Many benchmarks: Isolated leptons eff*purity > 99% (eff > 0.995%, mis-id < 1%);
 - Benchmarked with $H \rightarrow$ tautau: Isolated Tau finding eff*purity > 70%.
 - VTX: efficiently separate the b, c, and light jets.
 - eff*purity of c-tagging at $H \rightarrow jj$ events. Aim for eff*purity >> 10% (i.e. 25%?)
 - Benchmarked with $H \rightarrow cc \& H \rightarrow gg$ measurements;

Z factory

- Z factory has extremely rich physics program, where a better detector is always better. More benchmark studies are needed, to quantify the Z factory potential & requirements.
- Detector acceptance: $|\cos(\text{theta})| < 0.99, ... \text{ or better}$
- Tracks
 - Momentum threshold: $\sim o(100)$ MeV to find pions generated in D* decay (D* \rightarrow D + pi)
 - Momentum resolution < 0.1%: Benchmarks? Narrow resonance generated at IP?
- Photons
 - Photons: ~o(100) MeV to find photons decay from low energy pi-0
 - Energy resolution < 5%/sqrt(E):
 - π^0 reco. Eff*purity ~50% at Z \rightarrow qq events
 - Benchmarks: $Bs \rightarrow 2\pi^0$, what else?
- Separation: to count number of π^0 in the Z $\rightarrow \tau \tau$ event
 - Separate photons from π^0 decay, with the energy of π^0 up to 30 GeV

 Benchmark with tau decay Branching ratio measurements 20/10/2020
CEPC WS

Z factory


- Separation: find objective particles inside jets
 - Tracks are usually well separated, while clusters can easily overlap with each other.
 - Jet lepton: identification performance usually degrades w.r.t. Isolated leptons. the detector separation capability should ensure the degrading is marginal.
 - Benchmark: measurement with neutral hadron (Klong, Neutron) in the final state
- Identification:
 - Leptons (in jet): benchmark with $R_{\mu} \& R_{p}$, and LFV measurements.
 - Tau (in jet): i.e. Bc→tv, b→stt analysis
 - Pion, Kaon&Proton: reco. eff*purity of objective particles decays into Kaon & proton final states (at IP, or decay from 2nd vertexes...).
 - D, Lambda_c, Lambda, Ds reconstruction require 3σ pi-kaon separation
 - Need dedicated benchmark analyses
 - Jet charge measurements for c/b-jets

$$R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)} \tau \nu)}{\text{BR}(B \to D^{(*)} \ell \nu)}, \ \ell = e, \ \mu \qquad R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\text{BR}(B \to K^{(*)} e^+ e^-)}$$

7

Z factory

- Vertex
 - Understand the correlation between
 - VTX intrinsic performance
 - 2nd/3rd vertex reconstruction performance: efficiency/purity, and position resolution as a function of the vertex charge multiplicity & polar angle
 - Flavor tagging performance
 - Detailed performance study is needed!
 - Distinguish different vertexes
 - $b \rightarrow B^{*}(PV) \rightarrow B \rightarrow D^{*}(2^{nd} V) \rightarrow D(3^{rd} V) \rightarrow ...$
 - b→t+X, tt+X
 - Reconstruct accurately the decay vertex, such that the tau mass can be reconstructed in b→stt event

Extra: from the Discussion

- A natural tracking performance objective at the Higgs runs is to balance the tracking performance with beam energy uncertainty. For the Higgs recoil analysis via IIH channel.
- For flavor channels need to focus on the measurements that where CEPC have comparative advantages
 - LFV
 - B->tau + X
 - ...
- Systematic control: positron monitoring to the accuracy of 10 µm & stability is essential for EW... and maybe many others.

Thanks to Franco, Abi, Jianming, Petra, Patrizia & all that participate the discussion