Double-charm Tetraquark Production at CEPC

Fu-Sheng Yu Lanzhou University

Q.Qin, F.S.Yu, arXiv:2008.08026

The 2020 International Workshop on the High Energy Circular Electron Positron Collider (Oct. 26-28, 2020)

1. Introduction

2. Production of cc-tetraquark

3. Decay channels

4. Summary

utline

Key problems in particle physics

• Beyond the Standard Model: To search for the new physics

• Within the Standard Model:

To understand the non-perturbative strong interaction

The blind men and the elephant

- The elephant is the new physics or the nature of non-perturbative strong interaction.
- We are the blind men.
- What can we do is investigating from different perspectives.

Non-perturbative strong interaction

• Hadron spectrum: exotic XYZ states...

Chen, Chen, Liu, Zhu, '16; Esposito, Pilloni, Polosa, '16; Lebed, Mitchell, Swanson, '16; Guo, Hanhart, Meissner, Wang, Zhao, Zou, '17; Ali, Lange, Stone, '17; Olsen, Skwarnicki, Zieminska, '18 ...

- for example, $X_{0,1}(2900)$
- Unclear about their nature
 - Bound states & resonances:
 - compact tetraquarks
 - loosely molecular

- Kinematic effects:
 - triangle singularity
 - low energy production

Double-heavy tetraquarks

-heavy diquark, light anti-diquark: easily understood, analogous to Λ_c and Ξ_{cc}

- high-energy direct production: not possible kinematic effects
- $bb\bar{u}\bar{d}$ and $bc\bar{u}\bar{d}$ have been extensively studied during the past few years but difficult to be observed due to their hard productions and small decay rates
- $cc\bar{u}d$ is the lightest double-heavy tetraquark state, possible to be observed

many references... Ali, Parkhomenko, Qin, Wang, '18

Production of $cc\bar{u}d\bar{d}$ **at Tera-Z factories**

• About 10^{12} Z bosons will be produced at a Tera-Z factory, like CEPC, FCC-ee

• Two steps to produce cc-tetraquarks

1. cc collinear \rightarrow diquark jet

2. cc diquark \rightarrow fragmentation into hadrons (T_{cc}, Ξ_{cc})

Ali, Parkhomenko, Qin, Wang, '18

- cc quarks are produced collinearly
- cc diquark jet requires a jet definition, such as the invariant mass

$$M_{cc-jet} < 2m_c + \Delta M$$

• The jet-resolution parameter ΔM is determined by B_c meson production, $b\bar{c} \rightarrow B_c$

$$\Delta M = \begin{cases} (2.0^{+0.5}_{-0.4}) \text{ GeV, for LHCb,} \\ (2.7^{+1.3}_{-0.5}) \text{ GeV, for Z factori} \end{cases}$$

The results of production rate

$$\sigma(p+p \to H_{cc} + X) = (2.2^{+2.0}_{-0.6})$$

 $\mathcal{B}(Z \to H_{cc} + X) = (3.0^{+2.7}_{-0.9}) \times 10^{-5}$

8

Qin, FSY, '20

Fragmentation

- Different from ordinary heavy mesons and baryons with excited states decaying into the ground states,
- The excited cc-tetraquarks would directly decay into DD mesons, but not the ground states
- Primarily production *v.s.* final production
- The ground-state fragmentation fraction is

$$\frac{f_{\Lambda_c}}{f_{\Lambda_c + \Sigma_c + \Lambda_c^*}} = 0.48$$

Belle, arXiv:1706.06791 LHCb, 1902.06794

Results of production

Convoluting the cc-diquark jet and the fragmentation

$$\mathcal{B}(Z \to T^{\{cc\}}_{[\bar{u}\bar{d}]} + X) = (1.1^{+1.0}_{-0.4}) \times 10^{-6} \longrightarrow 10^{6} T^{\{cc\}}_{[\bar{u}\bar{d}]} \text{ for Tera-Z factory}$$

$$\sigma(pp \to T^{\{cc\}}_{[\bar{u}\bar{d}]} + X) = (1.5^{+0.7}_{-0.5}) \times 10^{4} \text{ pb} \longrightarrow 10^{8} T^{\{cc\}}_{[\bar{u}\bar{d}]} \text{ for LHCb 9 fb}^{-1}$$

Cross checking the results by double-charm baryon productions at LHC 13TeV

$$\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \approx 47 \text{ nb} \quad \longleftarrow$$

Qin, FSY, '20

Possible to be observed !!

 $\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \approx 62 \text{ nb}$

Chang, Qiao, Wang, Wu, '06

- Decay channels are important in the experimental searches.
- For example, the prediction of themes favorable decay channels of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ in [FSY, Jiang, Li, Lu, Wang, Zhao, '17] is helpful for the discovery of Ξ_{cc}^{++} by LHCb in 2017.
- The decay processes of cc-tetraquark depend on its mass, which is predicted differently in literature.

Reference	[24]	[25]	[27]	[26]	[28]	[29]	[17]	[19]	[21]	[22]
$T^{\{cc\}}_{\bar{n}\bar{n}'}$	-79	-96	-150	+53	+166	+60	-	AT	+102	+88
$T^{\{cc\}}_{\bar{n}\bar{s}}$	-9	-56	+94	+128	+255	+166	+143	AT	+179	+181
Reference	[30]	[20]	[31]	[32]	[33]	[34]	[18]	[23]		
$T^{\{cc\}}_{\bar{n}\bar{n}'}$	BT	-215	-149	-182	+7	+98	+91	AT		

Decay channels

compared to the DD^* threshold

• The decay processes can be classified into three cases, according to the mass

Decay channels

	most favored channel
y:	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^{*+}$
EM decay:	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^+ \gamma$
	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+ K^- \pi^+$

Summary

- Double-charm tetraquark states are helpful to understand the non-perturbative strong interaction
- The direct production at high energy collisions would simplify its nature
- It is found 10^6 of cc-tetrquark produced at Tera-Z factory, and 10^8 produced at LHCb

respectively for different mass cases

• The most favored decay channels are $T^{\{cc\}}_{[\bar{u}\bar{d}]} \rightarrow D^0 D^{*+}$ $T^{\{cc\}}_{[\bar{u}\bar{d}]} \rightarrow D^0 D^+ \gamma$ $T^{\{cc\}}_{[\bar{u}\bar{d}]} \rightarrow D^+ K^- \pi^+$

Thank you!