

Andreas Crivellin

CERN Theory Division

Leave of absence from Paul Scherrer Institute & University of Zurich

Leptoquarks at Future e⁺e⁻ Colliders CEPC conference, 28.10.2020 (remote)

Work supported by FNSNE

Outline

- Introduction
- Leptoquarks and the Flavour Anomalies
 - b→sμμ
 - b→cτν
 - $-a_{\mu}$
- Leptoquarks in EW
 Precision Observables
 - Oblique Corrections
 - $-h \rightarrow \gamma \gamma$, $h \rightarrow gg$, $h \rightarrow \gamma Z$
 - $-Z \rightarrow \mu\mu$, $Z \rightarrow \nu\nu$
 - $-a_{\mu}$, h $\rightarrow \mu\mu$
- Conclusions

Based on:

Scalar Leptoquarks in Leptonic Processes arXiv:2010.06593 [hep-ph]

Correlating to the Anomalous Magnetic Moment of the Muon via Leptoquarks, arXiv: 2008.02643

Leptoquarks in Oblique Corrections and Higgs Signal Strength: Status and Prospects arXiv:1912.04224

Flavor Phenomenology of the Leptoquark Singlet-Triplet Model JHEP 06 (2020), 020

by AC, Dario Mueller, Francesco Saturnino Introduction

Discovering New Physics

- Cosmic Frontier Energy Cosmic rays and neutrinos **Frontier** – Dark Matter – Dark Energy Energy Frontier NP -LHCCosmic Intensity - Future colliders **Frontier Frontier** Intensity Frontier – Flavour
 - Neutrino-less double-β decay
 - EW precision observables (ILC, CLIC, FCC-ee, CEPC)
 - Proton decay

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables can be sensitive to higher energy scales than collider searches

Hints for New Physics

Scalar Leptoquark Representations

•5 representations of Scalar Leptoquarks

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline & \Phi_1 & \tilde{\Phi}_1 & \Phi_2 & \tilde{\Phi}_2 & \Phi_3 \\ \hline \mathcal{G}_{\rm SM} & \left(3,1,-\frac{2}{3}\right) & \left(3,1,-\frac{8}{3}\right) & \left(3,2,\frac{7}{3}\right) & \left(3,2,\frac{1}{3}\right) & \left(3,3,-\frac{2}{3}\right) \\ \hline \end{array}$$

 Couplings to quarks Le $ar{Q}$ $\kappa_L^1 \gamma_\mu V_1^{\mu\dagger} + \kappa^3 \gamma_\mu \left(\tau \cdot V_3^{\mu}\right) \qquad \lambda_{LR}^2 \Phi_2$ and leptons $L.\ell$ $\tilde{\lambda}^2 \tilde{\Phi}_2^T i \tau_2 \qquad \kappa_B^1 \gamma_\mu V_1^{\mu \dagger}$ $\lambda_{BL}^2 \Phi_2^T i \tau_2 \qquad \qquad \tilde{\kappa}_i^1 \gamma_\mu \tilde{V}_2^{\mu\dagger}$ LQ \bar{u} $\lambda^3 i \tau_2 (\tau \cdot \Phi_3)^{\dagger} + \lambda_{fi}^{1R} i \tau_2 \Phi_1^{\dagger} \kappa_{LR}^2 \gamma_\mu \left(V_2^{\mu \dagger} \right)^T$ \bar{Q}^c $O^{(c)} u^{(c)} d^{(c)}$ $ilde{\lambda}^1 ilde{\Phi}_1^\dagger$ \bar{d}^c $\kappa_{BL}^2 \gamma_\mu V_2^\dagger$ $\gamma_{\mu} \tilde{V}_{2}^{\mu\dagger}$ $\lambda_R^1 \Phi_1^\dagger$ \bar{u}^c

Possible couplings determined by the representation

LQ Explanations of the Anomalies

a_µ with m_t
 enhanced effect

 $b \rightarrow s\mu^{+}\mu^{-} (1\sigma)$ $Br[\mu \rightarrow e\gamma] < 4.2 \cdot 10^{-13} \text{ with } \Phi_{3}$ $Br[\mu \rightarrow e\gamma] < 4.2 \cdot 10^{-13} \text{ with } V_{1}^{\mu}$ $Br[\mu \rightarrow e\gamma] < 4.2 \cdot 10^{-13} \text{ with } V_{3}^{\mu}$ $Br[B \rightarrow K\mu^{\pm}e^{\mp}] \text{ with } \gamma = 1$ $Br[B \rightarrow K\mu^{\pm}e^{\mp}] \text{ with } \gamma = 2$ $Br[B \rightarrow K\mu^{\pm}e^{\mp}] \text{ with } \gamma = 2$

• $b \rightarrow s\mu^+\mu^- \& b \rightarrow c\tau v$ at tree-level

LQs can explain the three flavour anomalies

Combined Explanation with $\Phi_1 \& \Phi_3$

•SU(2) singlet + SU(2) triplet Leptoquark

	κ_{22}	κ_{32}	κ_{23}	κ_{33}	λ_{22}	λ	32	λ_2	23	λ_{33}	$\hat{\lambda}_{32}$	$\hat{\lambda}_{23}$	
$\bullet p_1$	-0.019	-0.059	0.58	-0.11	-0.0082	-0.	.016	-1	.46 –	0.064	-0.1	1.34	
$\bullet p_2$	-0.017	-0.070	-1.23	0.066	0.0078	-0.	055	1.3	36 0	052 -0.		53 -1.47	
● p ₃	0.0080	0.081	1.18	-0.073	-0.0017	0.	16	-0	.76 –	0.068	0.02	3 1.23	
$\bullet p_4$	-0.0032	-0.21	0.44	-0.20	0.014	-0	.10	-1	.38 –	0.068	-0.0	32 0.57	
	$C_9^{\mu\mu} = -C_1^{\mu}$	${}^{\iota\mu}_0 C_9^{\ell\ell}$	$\frac{R(D)}{R(D)_{\rm SM}}$	$\frac{R(D^*)}{R(D^*)_{\rm SN}}$	$\frac{1}{A} \frac{B_s \to \tau}{B_s \to \tau\tau}$	$\tau \tau$	$\begin{array}{c} \tau \to \mu \\ \times 10^8 \end{array}$	$\left \begin{array}{c} \iota \gamma \\ {}_8 \end{array} \right $	$\frac{\delta a_{\mu}}{\times 10^{11}}$	$ \begin{bmatrix} \tilde{V}^e_{cb}/\tilde{V} \\ \times 1 \end{bmatrix} $	$\frac{7^{\mu}_{cb} - 1}{10^6}$	$\begin{array}{c} Z \rightarrow \tau \mu \\ \times 10^{10} \end{array}$	
$\bullet p_1$	-0.52	-0.21	1.15	1.10	59.88	5	4.35		207	2	91	0.117	
$\bullet p_2$	-0.56	-0.28	1.14	1.10	99.76	;	0.766		199	4	48	2.38	
• p ₃	-0.31	-0.31	1.14	1.09	112.5		3.62		255	1	.7	0.129	
$\bullet p_4$	-0.31	-0.31	1.13	1.11	112.5		0.734 23		230	934		45.6	
	$C_{\alpha I}^{\tau \tau} = -4C_{\alpha}$	$\begin{bmatrix} \tau \tau \\ T \end{bmatrix} C_{VT}^{\tau \tau}$	$R^{K^{(*)}}_{-}$	$\Delta m_{B_s}^{\rm NP}$	$B \to K$	$\tau \mu$	$\tau \to \phi \mu$		$\tau \to \mu ee$	$ \Lambda_{33}^{LQ}(0) $		$\Delta_{33}^L(m_Z^2)$	
	SL 10		- 000	$\Delta m_{B_s}^{\rm SM}$	$\times 10^{5}$		$\times 10^{8}$		$\times 10^{11}$	×	10^{5}	$\Lambda_{\rm SM}^{L\ell} \times 10^{-5}$	
$\bullet p_1$	0.023	0.040	2.33	0.1	0.512		1.27		44.94 1.		11	-3.64	
$\bullet p_2$	0.020	0.040	0.87	0.16	3.32		4.73		7.783	0.	90	-3.02	
$\bullet p_3$	0.023	0.037	1.08	0.19	4.07		1.00		37.89	0.	89	-3.51	
$\bullet p_4$	0.010	0.047	2.43	0.18	3.69		0.0021		18.60	3.	12	-10.04	

Scalar LQs can explain the anomalies simultaneously

Leptoquark-Higgs Interactions

 LQs can (must) couple to the SM Higgs $\mathcal{L}_{H\Phi} = -A_{\tilde{2}1} (\tilde{\Phi}_2^{\dagger} H) \Phi_1 + A_{3\tilde{2}} (\tilde{\Phi}_2^{\dagger} (\tau \cdot \Phi_3) H) + Y_{\tilde{2}2} (\Phi_2^{\dagger} H) (Hi\tau_2 \tilde{\Phi}_2)$ $+Y_{3\tilde{1}}(Hi\tau_2(\tau\cdot\Phi_3)^{\dagger}H)\tilde{\Phi}_1+Y_{31}(H^{\dagger}(\tau\cdot\Phi_3)H)\Phi_1^{\dagger}+\text{h.c.}$ $-Y_{22}(Hi\tau_2\Phi_2)(Hi\tau_2\Phi_2)^{\dagger}-Y_{\tilde{2}\tilde{2}}(Hi\tau_2\tilde{\Phi}_2)(Hi\tau_2\tilde{\Phi}_2)^{\dagger}$ $-iY_{33}\varepsilon_{IJK}H^{\dagger}\tau_{I}H\Phi_{3,K}^{\dagger}\Phi_{3,J}$ $-\sum \left(m_k^2 + Y_k H^{\dagger} H\right) \Phi_k^{\dagger} \Phi_k - \sum \left(\tilde{m}_k^2 + Y_{\tilde{k}} H^{\dagger} H\right) \tilde{\Phi}_k^{\dagger} \tilde{\Phi}_k \,.$ k=1hh $= \tilde{\Phi}_{21}^{-1/3} = \Phi_{3}^{-1/3} = \tilde{\Phi}_{32}^{-1/3} = \Phi_{32}^{-1/3} = \Phi_{32}^{2/3} = \tilde{\Phi}_{32}^{2/3} = \tilde{\Phi}_{32}^{2/3$ $\Phi_1^{-1/3}$

Additional sources of EW Symmetry Breaking

Oblique Corrections

Positive effect in T parameter

Higgs signal strength (yy vs gg)

Representations experimentally distinguishable

$Z \rightarrow II, Z \rightarrow vv and W \rightarrow Iv$

Per-mill effect for O(1) couplings and TeV masses

$(g-2)_{\mu}$ and $h \rightarrow \mu \mu$: Φ_1 and Φ_2

Chirally enhanced effects with direct correlation

$(g-2)_{\mu}$ and $h \rightarrow \mu \mu$: $\Phi_1 \& \Phi_3$ with mixing

Scenario already excluded by $h \rightarrow \mu \mu$

AMM of the muon and Z->ll

- Wµv modification also leads to an effect in $Z \rightarrow ee$
- Z \rightarrow vv constraining for Φ_2

Observable effect in $Z \rightarrow \mu \mu$

Lepton Flavour Violating

$Z \rightarrow \tau \mu$ promising channel

Conclusions

- Leptoquarks are well motivated by the flavour anomalies
- Even without couplings to fermions, they can affect oblique parameters and Higgs decays to gauge bosons
- $(g-2)_{\mu}$ motivates LQ couplings to muon and top quarks \implies sizable effect in Z \rightarrow $\mu\mu$ and $h\rightarrow$ $\mu\mu$
- Discovery potential at future e⁺e⁻ colliders

Flavour Anomalies strengthen the physics case for future colliders like the CEPC

Backup

QCD corrections to the Matching

- Perform matching
- Correct for 4-dimensional Fierz identities

Results

J. Aebischer, AC, C. Greub, 1811.08907

Slightly weaker LHC constraints

Correlations the neutron EDM with S1

Effect in B predicts measurable nEDM effect

Hadronic Vacuum Polarization

New BMWc lattice QCD result

Up to 4σ tension in EW fit

b→cτν Global Fit

- Pure scalar-tensor explenations in tension
 with the B_c
 lifetime
- Pure left-handed
 vector, i.e. contribution^{-0.4}
 to the SM operator
 gives good fit

Global fit give up to 4σ preference for NP

Two Scalar Leptoquarks AC, D. Mueller, T. Ota arxiv:1703.09226

- Φ_1 scalar leptoquark singlet with Y=-2/3
- Φ_3 scalar leptoquark triplet with Y=-2/3

$R(D^{(*)}), b \rightarrow sll and a_{\mu}$

4 benchmark points

AC, D. Mueller, F. Saturnino arxiv:1912.04224

	κ_{22}	κ_{32}	κ_{23}	κ_{33}	λ_{22}	λ	λ_{32}		23	λ_{33}	$\hat{\lambda}_{33}$ $\hat{\lambda}_{33}$		$\hat{\lambda}_{23}$	
$\bullet p_1$	-0.019	-0.059	0.58	-0.11	-0.0082	-0.016		-1.46 -		0.064	0.064 - 0.1		19 1.34	
$\bullet p_2$	-0.017	-0.070	-1.23	0.066	0.0078	-0	0.055 1		36 0	0.052	-0.053		-1.47	
• p ₃	0.0080	0.081	1.18	-0.073	-0.0017	.0017 0.16		-0.76		0.068	0.023		1.23	
$\bullet p_4$	-0.0032	-0.21	0.44	-0.20	0.014	_(0.10	-1	.38 –	0.068	-0.0	32	0.57	
	$C_0^{\mu\mu} = -C_0^{\mu}$	$L^{\prime} = -C_{10}^{\mu\mu}$ $C_{0}^{\ell\ell}$		$R(D^*)$	$B_s \to \gamma$	ττ	$\tau \to \mu$	$\rightarrow \mu \gamma$		$\tilde{V}^e_{cb}/\tilde{V}$	$\frac{1}{cb} - 1$	Z	$ ightarrow au\mu$	
	eg ej	10 09	$R(D)_{\rm SM}$	$R(D^*)_{\mathrm{SI}}$	$M \mid B_s \to \tau \tau$	- SM	$\times 10^{3}$	8	$\times 10^{11}$	$\times 10^{6}$		$\times 10^{10}$		
$\bullet p_1$	-0.52	-0.21	1.15	1.10	59.88	3	4.35	5	207	2	291		0.117	
$\bullet p_2$	-0.56	-0.28	1.14	1.10	99.76	5	0.760	6	199	4	448		2.38	
● p ₃	-0.31	-0.31	1.14	1.09	112.5	5	3.62		255]	17		0.129	
$\bullet p_4$	-0.31	-0.31	1.13	1.11	112.5	5	0.734		230	9	934		45.6	
	$C^{\tau\tau} - AC$	$-AC^{\tau\tau}$		$\Delta m_{B_s}^{\rm NP}$	$B \to K$	$B \to K \tau \mu$		$b\mu$.	$\tau \to \mu e e$	$\left \Lambda_{33}^{\mathrm{LQ}}(0)\right $		$\Delta^L_{33}(m_Z^2)$		
	$O_{SL} = -40$	$TL \cup VL$	$\Pi_{\nu\bar{\nu}}$	$\Delta m_{B_s}^{\rm SM}$	$\times 10^5$	$\times 10^5$		8	$\times 10^{11}$	×	$\times 10^5$		$\overline{\Lambda_{\rm SM}^{L\ell} \times 10^{-5}}$	
• <i>p</i> ₁	0.023 0.04		2.33	0.1	0.512	2	1.27		44.94	1.	1.11		-3.64	
$\bullet p_2$	0.020	0.040	0.87	0.16	3.32		4.73		7.783	0.	0.90		-3.02	
● p ₃	0.023	0.037	1.08	0.19	4.07		1.00		37.89	0.	0.89		-3.51	
$\bullet p_4$	0.010	0.047	2.43	0.18	3.69		0.002	21	18.60	3.	.12	-10.04		

Common explanation possible

Important Loop-Effects

 Explanation of b→cτν requires large bτ and sτ couplings (follows from SU(2) invariance)

AC, C. Greub, D. Müller, F. Saturnino, PRL 2018

Large loop effects in $b \rightarrow s \mu \mu$

Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (~150)
- Several NP hypothesis 2 give a good fit to data significantly preferred over the SM hypothesis

$$O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \ell$$
$$O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \gamma^{5} \ell$$

Fit is 5-6 σ better than the SM

b→cτν Measurements

All measurements above the SM prediction O(10%) constructive effect at 3 σ preferred

Muon Anomalous Magnetic Moment

- Single measurement from BNL
- Theory prediction sound but challenging because of hadronic effects. $\Delta a_{\mu} = (279 \pm 76) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822
- Soon new experimental results from Fermilab

• Small tension in Δa_e with opposite sign

3.7σ deviation (order of SM-EW contribution)

Possible UV completions

- SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions
 L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450
- SU(4)×U(2)_L×SU(2)_R + Vector-like fermions L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4)×SU(4)×SU(4)
 M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368
- SU(4)×U(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos
 J. Heeck, D. Teresi, arXiv:1808.07492
- SU(8) might even explain ε'/ε
 S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312
- SU(4)×U(2)×SU(2)_R in RS background

M. Blanke, AC, arXiv:1801.07256

Good solution, but challenging UV completion

Pati-Salam RS Phenomenology

Model well motivated + limited but sizable effect

Higgs signal strength (γ Z)

γZ provides complementary information