

Lithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Dr. Dazhang LI from AC, IHEP on behalf of THU-IHEP AAC group

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

Circular Electron Positron Collider

IHEP-CEPC-DR-2018-01

IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CDR (Acc.) International Review @ 2018.6.28-6.30 & Final Released @ 2018.9.2

Can we use a 10m scale plasma accelerator to boost the energy of the injector from 10GeV to about 45.5 GeV?

- to design
 Field reproducibility
 <29Gs*0.05%=0.015Gs → how to measure
- The Earth field ~0.2-0.5 Gs, the remnant field of silicon steel lamination ~ 4-6 Gs.

Thinking beyond CDR

- Nominal field error: ~0.1%
- Uniformity requirement: ~0.05%
- Eddy current effect
 - Sextupole coils outside vacuum chamber

Plasma-based wakefield acceleration

Plasma wave excitation, 1~100GeV/m gradient

- 2017.01: First discussion on CPI
- 2017.03: 1st THU-IHEP AAC group meeting
- 2018.08: CPI conceptual design V1.0
- 2018.11: CEPC CDR released, CPI mentioned as a backup injection method
- 2019.09: CPI conceptual design V2.0
- 2020.09: Linac requirement updated from CPI

> THU team:

- Prof.: <u>W. Lu, J. F. Hua,</u>
- PhD: <u>S. Y. Zhou, S. Liu, B. Peng, Y. P. Wu, Y. Ma, T. L. Zhang, H. Y. Xiao, Z. Song, Y. Fang, F. Yang.....</u>

> THU team:

- Prof.: J. Gao, J. R. Zhang, <u>Y. S. Huang</u>
- Staff: <u>D. Z. Li, M. Zeng, D. Wang, C. Meng, Y. W. Wang,</u> <u>X. H. Cui, G. Shu</u>
- PhD: X. N. Wang, J. Wang

> BNU team:

Prof. W. M. An

CPI conceptual Design V1.0\rightarrowV2.0

Key issues of CPI

- Electron Acceleration
 - > High transformer Ratio, High efficiency, Stability and error analysis
- Positron Acceleration
 - Stable acceleration (different schemes), energy spread control, efficiency enhancement, Stability and error analysis.....
- Conventional Accelerator design and optimization
 - Photon-guns, Linac, Positron generation and damping ring
- Beam manipulations:

> Dechirper, external injection, staging and cascading

CEPC plasma injector timeline

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

Table 5.1.1: Main parameters for the booster at injection energy

		H	W	Ζ
Beam energy	GeV		10	
Bunch number		242	1524	6000
Threshold of single bunch current	μA		25.7	
Threshold of beam current (limited by coupled bunch instability)	mA		100	
Bunch charge	nC	0.78	0.63	0.45
Single bunch current	μA	2.3	1.8	1.3
Beam current	mA	0.57	2.86	7.51
Energy spread	%	0.0078		
Synchrotron radiation loss/turn	keV	73.5		
Momentum compaction factor	10-5	2.44		
Emittance	nm	0.025		
Natural chromaticity	H/V		-336/-333	
RF voltage	MV	62.7		
Betatron tune $v_x/v_y/v_s$		263.2/261.2/0.1		
RF energy acceptance	%	1.9		
Damping time	S	90.7		
Bunch length of linac beam	mm		1.0	
Energy spread of linac beam	%	0.16		
Emittance of linac beam	nm		40~120	

Booster Requirement

Energy (GeV)	45.5
Bunch Charge (nC)	0.78
Bunch length(um)	<300
Energy Spread(%)	0.2
ε _N (µm∙rad)	<800
Bunch Size(um)	<200

Table 5.1.2: Main parameters for the booster at extraction energy

		H	Н		Z
		Off axis injection	On axis injection	Off axis injection	Off axis injection
Beam energy	GeV	12	0	80	45.5
Bunch number		242	235+7	1524	6000
Maximum bunch charge	nC	0.72	24.0	0.58	0.41
Maximum single bunch current	μΑ	2.1	70	1.7	1.2
Threshold of single bunch current	μΑ	30	0		
Threshold of beam current (limited by RF power)	mA	1.0	0	4.0	10.0
Beam current	mA	0.52	1.0	2.63	6.91
Injection duration for top- up (Both beams)	s	25.8	35.4	45.8	275.2
Injection interval for top- up	s	47.0		153.0	504.0
Current decay during injection interval		3		3%	
Energy spread	%	0.0	94	0.062	0.036
Synchrotron radiation loss/turn	GeV	1.5	2	0.3	0.032
Momentum compaction factor	10-5		2	.44	
Emittance	nm	3.5	7	1.59	0.51
Natural chromaticity	H/V		-330	5/-333	-
Betatron tune v_x/v_y			263.2	2/261.2	
RF voltage	GV	1.9	7	0.585	0.287
Longitudinal tune		0.13		0.10	0.10
RF energy acceptance	%	1.0		1.2	1.8
Damping time	ms	52	2	177	963
Natural bunch length	mm	2.8		2.4	1.3
Injection duration from empty ring	h	0.1	.7	0.25	2.2
				CEPC CI	OR (2018)

CEPC Plasma Injector @ 2020 CEPC International Workshop

2020-10-27

Linac Requirement based on V2.0

	e1/e3 Before PWFA-I	e2/e4 Before PWFA-I	p1 Before PWFA-II	e3 After PWFA-I	e4 After PWFA-I	p1 After PWFA-II	Booster Requirement
Energy (GeV)	10/10	10/10 🔨	2.4	45.5	45.5	45.5	45.5
Bunch Charge (nC)	STEINER	A 15 SEALON	NGEALIN	1	>3	1	0.78
Bunch length (ps)	NLMO OF OF P	1 CHAUCH	CHASON	<1*	<1	<1*	<10
Energy Spread	NE 512-1/0 1	12 1.2% NO	.2%	~1%	1%	~1%	0.2%
E _{normal} (µm∙rad)	< <u>5</u> 0/<100	<50/<100	>` <50	~100	~100	~100	<800
Bunch Size (µm)	20/20	30/20	20	<20	<20	<20	<2000

* Need add a plasma dechirper

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

What is High Transformer Ratio?

Nonlinear(Bubble) regime: nb/np>>1 or $\Lambda = n_b/n_p k_p^2 \sigma_r^2 > 1$ **HIGH TRANSFORMER RATIO** (r, ξ) Phase space 10.0 4 с с/@p). rь(ξ) 1.0 0 10 ξ (c/ω_p) The equation of boundary: $r_b \frac{d^2 r_b}{d\xi^2} + 2 \left[\frac{dr_b}{d\xi} \right]^2 + 1 = \frac{4\lambda(\xi)}{r_c^2}$ $\psi(\mathbf{r}_{\perp}, \xi) \approx \frac{r_b^2(\xi)}{4} - \frac{r^2}{4}$ $E_z = \frac{\partial}{\partial \xi} \psi(\mathbf{r}_{\perp}, \xi) \simeq \frac{1}{2} r_b \frac{dr_b}{d\xi} \quad E_1 = E_r - B_{\theta} = \frac{r}{2}$

Lu W, Huang C, Zhou M, et al, PRL(2006)

For our case, try to make the TR \geq 3.55!

Optimize Conceptual Design V2.0

beam	Driver	Trailer	
Driver energy E(GeV)	10	10	
Nor. emittance $\epsilon_n(mm \ mrad)$	(head)≤50/≤500) ≤100	
Length(ps)	2	0.267	
Spot size(um)	20	20	
Charge(nC)	5.8	1	
Beam distance(um)	149		

Density $n_0(cm^{-3})$	0.503×10^{1}	.6
Trailer E (GeV)	45	
TR	3.5	>
Efficiency (%)	60	
Acc. gradient(GV/m)	2.9	
Acc. distance (m)	12	

Simulation performed by Dr. S. Y. Zhou and Prof. W. Lu (2018)

- **1)** Matched beam \rightarrow Preserve the emittance
- **2)** $Ez^{\uparrow} \rightarrow Trailer's Energy^{\uparrow} to 45.5 GeV$
- 3) Trailer's Q $\downarrow \rightarrow$ Flatten Ez \rightarrow Energy spread \downarrow

Optimized Design—e- Baseline 1.0

beam	Driver	Trailer	
plasma density n $_{\rm p}$ (× 10 ¹⁶ cm^{-3})	0.50334		
Driver energy E (GeV)	10	10	
Normalized emittance $\epsilon_n(mm mrad)$	50→20	100	
Length (um)	600	77	
(matched) Spot size(um)	20→3.87	20→8.65	
Charge (nC)	5.8	1→0.84	
Energy spread δ_E (%)	0	0	
Beam distance (um)	149		

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

- Much smaller $\sigma_{x,y}$ → Linac difficulty ↑
- > Trailer's charge close to minimum request
- > Start studies on real beam & error analysis

For a "real" linac generated beam

For a "real" linac generated beam

MAKE the beam initial $[x, y, px, py] \sim [0, 0, 0, 0]$

CEPC Plasma Injector @ 2020 CEPC International Workshop 2020-10-27 20

For a "real" linac generated beam

Even assuming the beam is ideal at the exit of e- gun, the beam profile is still not the same as we expected at the linac exit. NEED MORE OPTIMIZATION!!

Linac optimization for ideal beams

L-band photocathode rf gun under design.

Finished the preliminary linac design and the end-to-end simulation (e- gun \rightarrow FFS). Beam distribution improved but can not meet the requirements yet.

NEED MORE OPTIMIZATIONS Optimized by Dr. Cai Meng (2020)

Error analysis based on ideal beams

Perturba	ation	Limitation	limiting factor
heam charge	Driver	[-1%, 0.8%]	$egin{array}{c} E_t \ \delta_E \end{array}$
beam enarge	Trailer	[-0.24%, 2%]	E_t
hoom longth	Driver	±1%	E_t
beam length	Trailer	±5%	E_t
initial onergy	driver	[-1%, 0.38%]	E_t
Initial energy	trailer	[-1.75%, 0.37%]	E_t
initial energ	y spread	3.9%	$egin{array}{c} E_t \ \delta_E \end{array}$
Snot size	driver	[-40%, 2%]	E_t
Spot size	trailer	[8%, 8%]	E_t

Error analysis based on ideal beams

P	erturbation		Limitation	limiting factor	Linac simu. data
	Transverse	position	±2.38um	$Q_{t} \ arepsilon_{N}$	Same level
Centroid offset	Transverse	Driver	On going	E _t	25prod/60prod
	velocity	Trailer	On going	E_t	Soliau/O9lilau
Slice jitter	Transverse	Driver	On going	E_t	Need more
Sice jitter	position	Trailer	±3.7um	E_t	studies
Ве	am distance		[-1um, 0.25um]	E_t	~3um (10fs)
Pla	sma density		±0.3%	E_t	

Error analysis – transverse offset

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

Baseline changed \rightarrow asymmetry beam \Im

- High efficiency 60%
- Low energy spread ~0.5%
- **Small emittance growth**
- Need e- driver, e+ trailer and plasma channel coaxial, not very practical

Simulation performed by Dr. S. Y. Zhou and Prof. W. Lu (2018)

27

Gradient~5GV/m, Efficiency >30%, Energy Spread~1.5%

Simulation performed by Dr. S. Y. Zhou and Prof. W. Lu (2018)

纵向场不适合负载

Why plasma wakefield is thought to be unfit for positron acceleration?

 $E_{z0} = \frac{\partial \Psi_0(\xi)}{\partial \xi} \approx \frac{\partial \Psi_b(\xi)}{\partial \xi}$ d $(n_t+1)r_t^2$ $r_b \partial \mathcal{E}$

Efficiency ~22%, Energy Spread~1.6% (not well optimized)

Simulation performed by Dr. S. Y. Zhou and Prof. W. Lu (2018)

Basic requirement for DR & BC

- 1. Transverse emittance cooling: 2400mm.mrad \rightarrow 20mm.mrad
- 2. Bunch compression: 4.4mm $\rightarrow 20$ um
- 3. Transverse beam size focus: $2mm \rightarrow 20um$

Damping Ring Optics Design V3.0

• Superconducting wiggler \rightarrow shorter damping time & smaller equilibrium emittance

Slides from Dr. Dou Wang (2020)

Positron Damping Ring Parameters

	DR V2.1
Energy (MeV)	400
Circumference (m)	20.5
Bunch number	2 (3*)
B0 (T)	0.97
U0 (keV/turn)	5.0
Damping time x/y/z (ms)	10.9/10.9/5.4
δ0 (%)	0.054
ε0 (mm.mrad)	11
Nature σz (mm)	4.3
Extract σz (mm)	4.4
εinj (mm.mrad)	2400
ɛext x/y (mm.mrad)	68/57 (14/9*)
δinj /δext (%)	0.6 /0.054
Storage time (ms)	20 (30*)

Wiggler parameters	
Dipole strength (T)	4.61
Magnetic period (m)	0.176
Total length (m)	1.42
average βx (m)	1.3

RF parameters	
RF frequency (MHz)	500
RF voltage (MV)	1.5
Cavity number (single cell)	2
Energy acceptance by RF(%)	2.3
harmonic	34
Cavity length (m)	0.5

* 120GeV upgrade are taken into account

Slides from Dr. Dou Wang (2020)

	BCI	BCII	BCIII
Initial energy (MeV)	400	400.1	405
δinj (%)	0.05	0.367	2.17
Initial σz (mm)	4.4	600	100
f_{RF} (GHz)	2.860	5.712	5.712
Voltage(GV)	0.0056	0.12	4.18
Gradient (MV/m)	20	40	40
L (m)	0.28	3	104
$\phi_{\!\scriptscriptstyle RF}$ (degree)	89	88	61.5
R ₅₆ (mm)	1200	27.6	5.5
Final energy(MeV)	400.1	405	2400
δext (%)	0.367	2.17	1.83
final σz (um)	600	100	20

BC1

2

z mm

-0.4

3

6 [%]

• Energy: $400 \text{MeV} \rightarrow 2.4 \text{ GeV}$

- Bunch length: $4.4 \text{mm} \rightarrow 20 \text{um}$
- Energy spread: $0.054\% \rightarrow 1.8\%$

250.

Slides from Dr. Dou Wang (2020)

δ [%]

300.

BC3

0.05

z [mm]

s (m)

50.

45.

40.

35.

30. 25.

20.

15.

10.

5. 0.0

δ [%]

0.0

50.

0.4

BC2

100.

-0.10

150.

-0.05

200.

Positron Final Focus Design

- Goal: 20um beam size for horizontal/vertical
- E=2.4GeV, $\varepsilon xn = 15mm \cdot mrad$, $\varepsilon yn = 10mm \cdot mrad$
- L*=3.0m
- $\beta x^*=0.12m, \beta y^*=0.18m$
- Local chromaticity correction included

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

Laser system upgrade (finished)

Amplifier output profile before expander

Pulse compressor efficiency: 72%

8	04				(6.5	1	mJ	(
		DATA	λ. 800 n	n RA1	NGE Ito	MODE Energy	ZERO Off	DISPLA Statistic	Y DAT/ cs Acquist
00 nm Auto Energ	gy Off Statistics	ACQUISITION	Avera	ice Value:		A CALLER OF	6.39	mJ	
verage Value:	8.87 mJ		Maxin	num Value	e:		6.59	mJ	
aximum Value:	9.20 mJ		Minin	num Value	2		6.05	mJ	Ĩ
inimum Value:	8.53 mJ		RMS	Stability:			1.253	%	
15 Stability: P Stability:	1.198 % 7.576 %	Running	PTP :	Stability:			8.346	%	Running 513 pulses
			-		Q	?		1	*
		-14							

Pulse duration

Slides from Dr. Bo Peng (2020)

We're ready (may start 2020.12)

Plasma dechirper experiment @ THU

- 1. Decrease the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

Planned to finish it before February, but delayed by COVID-19. Re-started last month

Slides from Dr. Shuang Liu (2020)

Slides from Dr. Shuang Liu (2020)

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Two Stage Cascaded High-Transformer-Ratio Plasma Wakefield Accelerator

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Mark Hogan, Chan Joshi, Jie Gao
Institution:	Tsinghua University, SLAC, IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li
Collaborating Institutions:	
Funding Source (optional)	NSFC, DOE
Approximate Duration:	3-5years

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Stable Mode in Hollow Channel

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Chan Joshi, Mark Hogan, Jie Gao
Institution:	Tsinghua/UCLA/SLAC/IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li,
Collaborating Institutions:	
Funding Source (optional)	NSFC、DOE
Approximate Duration:	3 years

Hello Wei,

E-mail from Prof. Mark Hogan, head of plasma acc. group in SLAC

So good to hear from you! I very much agree that these are important ideas that can be very impactful for our field. I want to do everything we can to ensure that the proposals are highly reviewed and that we develop a plan that ensures the best chance of success.

Proposals will be reviewed tonight by SLAC group!!

Outlines

Introduction

Recent progress on CEPC plasma injector

- Linac requirement of CPI
- High transformer ratio e- acceleration
- Investigation positron acceleration
- Performed & proposed experiments

Summary and prospects

HTR e- acceleration

- Start-to-end simulation performed, linac and CPI requirement updated
- Detailed error analysis is ongoing, multi-parameter effects are under consideration
- Linac can not meet the CPI requirement yet, both sides work on it
- For plasma acceleration, increase the plasma wavelength and lower the TR will be the effective methods

e+ acceleration

- New methods are studied
- Fix the baseline parameters at the end of 2020
- EA and related linac design will start as soon as baseline fixed
- Experiments affected by COVID-19, but much better now
 - Test facility for PWFA is crucial and under consideration
- Feasibility report \rightarrow CDR \rightarrow TDR: it's a long way to go

Thank you for your attentions Welcome to 1HEP, Beijing!