

环形正负电子对撞机

Electron Positron Collider

中國科學院為能物別研究所 Institute of High Energy Physics Chinese Academy of Sciences

Development of CMOS pixel sensors with high resolution and low power for the CEPC vertex detector

Ying ZHANG (IHEP)

On behalf of the study group

26-28 October 2020, CEPC2020, Shanghai Jiao Tong University, Shanghai

Outline

CEPC vertex detector requirements

CMOS pixel sensor R&D activities

- > Study of sensing diode, low power binary pixel and readout architecture
- > Updates on JadePix3 prototype
- Perspective for the next step
- Summary

Introduction: requirements (CDR)

On the pixel sensor for the efficient tagging of heavy quarks

To achieve single point resolution

- > Digital pixel with in-pixel discriminator, pitch ~16 μ m
- Analog pixel, pitch ~20 µm (heavily rely on power pulsing as in the ILC)

To lower the material budget

- Sensor thickness ~ 50 µm
- Heat load < 50 mW/cm² constrained by air cooling

To tackle beam-related background

- > ~ µs level readout, 25 ns beam spacing @ Z-pole operation
- > 3.4 Mrad/year & 6.2×10¹² neq/ (cm²·year)

Physics driven requirementsRunning constraintsSensor specifications $\sigma_{s.p.} - 2.8 \,\mu\text{m}$ >Small pixel~16 μm Material budget - 0.15% X₀/layer>Air cooling ---->Thinning to50 μm \downarrow ---->Air cooling ---->low power $50 \,mW/cm^2$ r of Inner most layer---->beam-related background ---->fast readout~1 μ sr adiation damage---->radiation tolerance $\leq 3.4 \, Mrad/ year$

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector, http://cepc.ihep.ac.cn/

Baseline design parameters for CEPC vertex detector

	$R \ (mm)$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

26 October 2020, CEPC2020, Shanghai

 $\leq 6.2 \times 10^{12} n_{ea} / (cm^2 year)$

Double-sided ladder concept

Two different sensors mounted on the opposite sides of the ladder (layer 1-2)

- > A fine pitch, low power sensor for layer1
- \rightarrow To achieve high spatial resolution
- A faster sensor for layer2
- \rightarrow To provide necessary time-stamp for tracking

R&D for CEPC vertex based on the double-sided concept

Developed CMOS Pixel Sensor prototypes overview

	JadePix1	JadePix2	MIC4	JadePix3
Architecture	Roll. Shutter + Analog output	Roll. Shutter + In pixel discri.	Data-driven r.o. + In pixel discri.	Roll. shutter + end of col. priority encoder
Pitch (µm ²)	33 × 33 /16 × 16	22 × 22	25 × 25	16 × 26 16 × 23.11
Power con. (mW/cm ²)			150	~ 55*
Integration time (µs)*		40-50	~3	~100
Prototype size (mm ²)	3.9 × 7.9 (36 individual r.o)	3 × 3.3	3.1 × 4.6	10.4 × 6.1
Main goals	Sensor optimization	Small binary pixel	Small pixel + Fast readout+ nearly full functional	Smaller pixel + Low power + fully functional

* Assuming a matrix of 512 \times 1024 pixels

MIC4 (CCNU & IHEP)

All prototypes in TowerJazz 180 nm process

State Tax			din i			-		1000	and the second	Transferra	COLUMN ST			100
					-	 			-			-	- Contraction	1000
	.													. 10
20 C														
														12
State Street, St.			******	******	******					******		*****	*******	
	-													En l
Deres and the														64
TRADAD														
020000														8 1
Panaltymethornal														
Rozense														12.1
														81
		*******	*******	*******			*******	********	innorm	*****			*****	
and to														20
1	-													18
ALC: NO														20

JadePix3 (IHEP, CCNU, Dalian Minzu Unv., SDU)

26 October 2020, CEPC2020, Shanghai

Sensing diode optimization

Higher Q/C lower analog power

Fixing the S/N for a given bandwidth

- Different sensor geometries verified in JadePix1
 - Small collection electrode and large footprint preferred to achieve high Q/C
 - Small collection electrode and large footprint can yield high S/N ratio → preferred for efficient detector operation
- Electrode size = 4 µm², Footprint = 36 µm² chosen for JadePix3
- Apply a negative bias voltage (up to -6V) to the substrate in JadePix3
 - \rightarrow to reduce C, enhance Q/C

Binary pixel validated

- In-pixel discrimination preferred for lower power comparing with end-of-column dis.
- Two different approaches validated
 - Digital pixel in MIC4
 - Based on a low power binary front-end (derived from ALPIDE chip*), with modified data-driven readout architecture

*Ref: D. Kim et al., 2016 JINST 11 C02042

- Measured ENC ~32 e⁻, analog power ~0.11 µW/pixel
- Pixel size: $25 \times 25 \ \mu m^2$
- pros: fast readout (integration time of ~ 3 μs)
- cons: difficult to achieve ~3 μm resolution

- Digital pixel in JadePix2
 - AC-coupled sensor (allows a larger S/N)
 + amplifier + comparator + dynamic latch
 + rolling shutter readout
 - Measured ENC: ~31 e⁻, analog power of ~6.7 μW/pixel
 - Pixel size: $22 \times 22 \ \mu m^2$
 - pros: expected to offer < 4 µm resolution
 - cons: difficult to evolve 30 µs readout time

A binary pixel in JadePix2

Binary pixel design in JadePix3

- Design goals: smaller pixel size and low power
- 16 × 23.11 μm² binary pixels implemented in JadePix3
 - Low power binary front-end benefits from MIC4
 - Reduction on the layout area
 - Lower analog power: 0.04 μW/pixel (60% reduction)
 - Pixel read out in rolling shutter mode → very limited in-pixel logics needed (D-FlipFlop & switch) → reduce area
 - Custom-designed DFF to reduce the layout area by 60%

Pixel structure of JadePix3

Periphery data processing of JadePix3

Rolling shutter readout combined with a novel zero suppression scheme

> 512 row × 192 column pixels, one row selected at a time

> Zero suppression at the end of column

- Every 48 columns divided into 16 blocks
- 'Fired' blocks identified sequentially by
- a 4-bit priority encoder at the end of column
- Readout time: 200 ns/row → 102 µs/frame
- > Only hit information fed into FIFO

Row #	Block #	hits in block		
9-bit	4-bit	3-bit		

- FIFO R/W at 80 MHz
- FIFO depth: 48
- > Data stream steered by a Finite State Machine
- > Data rate after 8b/10b: 800 Mbit/s
- Estimated power cons. ~76 mW
 - 15 mW (Zero suppression), 25 mW (Serializer), 20 mW (PLL), 16 mW (LVDS)
 - \rightarrow Expected power density of 55 mW/cm², considering a matrix of 1 × 2 cm²

Block diagram of periphery circuit in JadePix3

JadePix3: fully functional prototype with small pixel

- Submitted in Oct. 2019
- Fabrication finished in May 2020
- Chip size 10.4 mm × 6.1 mm
- 512 row × 192 col. pixel array
 - Rolling shutter readout
- Fully functional periphery logics
 - > Fully integrated logics for zero suppression
 - > On-chip bias generation
 - Data transmission logics
 - 8B/10B encoder, PLL, serializer, LVDS

4 variants of pixel to investigate possible optimization

Sector	Diode	Front-end	Pixel digital	Pixel layout	
0	$2+2\ \mu m$	FE_V0	DGT_V0	16×26 μm ²	[
1	$2+2 \ \mu m$	FE_V0	DGT_V1	16× 26 μm²	Characterization of
2	$2+2\ \mu m$	FE_V0	DGT_V2	16× 23.11 μm ²	Jadel 1x3 will Start Soon
3	$2+2\ \mu m$	FE_V1	DGT_V0	16×26 μm ²	

Plan of JadePix3 test and next prototype design

Test board for JadePix3 under fabrication, readout system finalizing

• Tests to do:

- Electrical test to characterize the individual parts on chip, noise, threshold, power, data rate, etc.
- Measurement with radioactive sources
- Beam test in 2021

Next prototype (JadePix4) design

With the concept of double-sided ladders, two options considered:

- > Option 1: Expanding pixel matrix to 512 rows by 1024 columns using the architecture of JadePix3, to provide ~3 µm spatial resolution
- Option 2: Exploiting prototype with ~µs level readout, which may derived from MIC4, to features the required speed

Perspective for the R&D of next few years

Design parameters of the CEPC vertex system in CDR

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X0

- Optimization for system requirements: resolution, radiation level, Z-pole operation mode, ...
- Development of CMOS sensors with fast readout and time stamp
- Exploration of new process to improve JadePix3 performance
 - > 3D-integrared process
 - > 65 nm CMOS process
- allow improving readout speed, while keep/reduce pixel size (min.16 \times 23.11 μm^2 in JadePix3)
- Ultra-light, self-supported layers with stitching CMOS sensors, allow for a loosen requirement on the spatial resolution

SOI based 3D integration

SOI-3D has been demonstrated by the SOFIST 3D chip for the ILC

Lower Tier

IHEP designed the first SOI-3D chip (CPV4_3D) for CEPC

- $\succ~$ Pixel size: 17.24 \times 21.04 μm^2
- Readout time: ~1 µs
- Power density: ~ 50 mW/cm²
- > will be submitted in Nov. 2020

Lower tier (sensor + analog)

Upper tier (digital)

The lower tier can be either SOI or CMOS pixel sensor

→ a hybrid 3D-integration of CMOS + SOI may considered

Summary

- Stringent requirements for CEPC vertex detector have driven R&D programs
- JadePix3, a medium scale (512 × 192 pixels) fully functional CMOS prototype, fabricated and will be tested soon
 - small pixel: min.16 × 23.11 µm²
 - power density < 100 mW/cm²
- New process (65 nm process, a hybrid 3D-integration of CMOS + SOI) and stitching CMOS technology will be explored

ACKNOWLEGMENTS

- IHEP: Y. Lu, Y. Zhang, Y. Zhou, Z. Wu, L. Song, J. Dong, Q. Ouyang, L. Chen, H. Zhu, R. Kiuchi, X. Shi, K. Wang, N. Wang
- CCNU: P. Yang, L. Xiao, D. Guo, D. Zhang, W. Ren, C. Meng, A. Xu, X. Sun
- Dalian Minzu Unv: Z. Shi
- SDU: L. Zhang, M. Wang

This work was supported partially by

- the National Key Program for S&T Research and Development (2016YFA0400400, 2016YFE0100900)
- the National Natural Science Foundation of China (11605217, 11575220, 11935019, 11505207)
- the CAS Center for Excellence in Particle Physics (CCEPP)

Thanks for your attention !

Backup slides

ALICE ITS3 with stitching CMOS technology

Beam pipe Inner/Outer Radius (mm)	16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0	24.0	30.0	
Length (sensitive area) (mm)		300		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer		2		
Pixel size (µm ²)	O (10 x 10)			

Similar layout with CEPC layer 1-3

New beam pipe:

- "old" radius/thickness: 18.2/0.8 mm
- new radius/thickness: 16.0/0.5 mm

Extremely low material budget:

- Beam pipe thickness: 500 μm (0.14% X0)
- Sensor thickness: 20-40 μm (0.02-0.04% X0)
- Material homogeneously distributed:
 - essentially zero systematic error from material distribution

M. Mager | ITS3 | VERTEX 2019 | 17.10.2019 | 14

An ultra light structure vertex layout

both within the requirement

Ref: Q. Ouyang, 30 July, ICHEP 2020

CEPC Beam Timing

	Higgs	W	Z (3T)	Z (2T)
Center-of-mass energy (GeV)	240	160	9:	L
Number of IPs		2	2	
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	3	10	16	32
Number of years	7	1	2	
Total Integrated Luminosity (ab ⁻¹) - 2 IP	5.6	2.6	8	16
Total number of particles	1×10 ⁶	2×107	3×1011	7×1011
Bunch numbers (Bunch spacing)	242 (680 ns)	1524 (210 ns)	120 (25ns + 1	00 0% gap)

- Continuous colliding mode
 - Duty cycle ~ 50% @ Higgs, close to 100% @ W/Z
- General requirement on the detector development:
 - Precise measurement, Low power, Fast readout, Radiation-hard

Y. LU, Circular Electron Positron Collider workshop, Beijing, Nov. 2018.

Beam-induced Radiation Backgrounds

Radiation level for VTX first layer

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Table 9.4: Summary of hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) with combined contributions from pair production and off-energy beam particles, at the first vertex detector layer (r = 1.6 cm) at different machine operation energies of $\sqrt{s} = 240$, 160 and 91 GeV, respectively.

Vertex detector occupancy

Operation mode	H (240)	W(160)	Z (91)
Hit density (hits \cdot cm ⁻² \cdot BX ⁻¹)	2.4	2.3	0.25
Bunching spacing (µs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

Table 4.2: Occupancies of the first vertex detector layer at different machine operation energies: 240 GeV for ZH production, 160 GeV near W-pair threshold and 91 GeV for Z-pole.

Detector **occupancy** < 1%, assuming 10 µs of readout time for the silicon pixel sensor and an average cluster size of 9 pixels per hit.

CEPC CDR Volume II- Physics & Detector, IHEP-CEPC-DR-2018-02.

Improving the spatial resolution

Single point resolution $\sigma_{sp} \leq 3 \ \mu m \rightarrow pixel size$?

spatial resolution vs. pixel pitch

Data-driven readout of MIC4

Improvements on pixel matrix readout structure to reduce area

- 25 × 25 μm² binary pixels implemented and verified in MIC4
 - OR-gate chain inside a super pixel (8×8 pixels) to do the zero-suppression, two dimension projection (ADDRX & ADDRY) to identify the hit pixel → save pixel logic and routing lines area
 - Zero-suppression: OR-gate chain & Address Encoder and Reset Decoder
 (AERD) combination → for highly compact pixel & fast readout & low power
 - > Measured TN = 6 e^{-} , FPN = 31 e^{-} for pixels with version-1 front-end

Low power front-end in MIC4

JadePix-2 design

- Pixel size: 22 × 22 μm²
- Two versions of front-end
 - Version 1: differential amplifier + dynamic latch
 - Version 2: single-ended amplifier + dynamic latch
- Offset cancellation and high precision comparator
 - > FPN (Fix Pattern Noise) ~ 20 e-
 - > TN (Temporal Noise) ~ 7 e-

Version 1: differential amplifier + latch

Version 2: two stage common source amplifiers + latch

JadePix-2 test results

Noise performance Measured noise of version-1 pixel Threshold Distribution Temporal Noise 1536 Entries Entries 1536 350 400F Mean 0.575 Mean 0.0004174 Std Dev 0.00108 Std Dev 0.0002302 FPN: 29.1 e⁻ TN: 10.8 e⁻ 300 350 Numbers per entry 1200 1200 1200 100 Numbers per entry 300 250 200 150 100 50 50 0 0.572 0.574 Threshold [V] 0 0.576 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.566 0.568 0.57 0.578 0.58 Noise [V] Measured noise of version-2 pixel Threshold Distribution Temporal Noise Numbers per entry Entries 768 Numbers per entry 10 Entries 768 Mean 0.7046 50 Mean 0.01027 Std Dev 0.05332 Std Dev 0.002514 8 40 FPN: 29 e⁻ TN: 5.5 e⁻ 30 20 10 ᅆ 0.65 0.75 0.035 0.04 0.55 0.6 0.7 0.8 0.85 0.9 0.95 0.005 0.01 0.015 0.02 0.025 0.03

Threshold [V]

Noise [V]

JadePix3: Diode & Front-end design

