

# Impact of EMD of initial state on luminosity measurement at Z-pole CEPC



Ivanka Bozovic Jelisavcic, Ivan Smiljanic, Goran Kacarevic VINCA Institute of Nuclear Sciences, University of Belgrade, SERBIA

CEPC WS 2020, 26-28 October 2020, Shanghai

### Overview

- EMD as a beam-interaction induced effect
- Impact of EMD on initial state  $p_x$  kick
- Implication of  $p_x$  kick on luminosity measurement
- What about EMD of final state possible corrective methods
- Summary

### Electromagnetic deflection

#### General facts

- Interaction of beams happens prior to the physics interaction at the IP (1 and 2) and final state particles may interact with incoming beam (3)
- 1. EM field of the incoming bunch of the opposite charge induces radiation (*Beamstrahlung*) of the initial state
- 2. EM field of the outgoing (opposite-charged) beam impacts the initial state leading to effective reduction of the crossing angle (p<sub>x</sub> kick)
- 3. Similar deflection effects the Bhabha **final state** by the EM field of the incoming bunches We are going to discuss 2 and touch 3.
- Both 2 and 3 contribute to *Electromagnetic deflection (EMD*) effect in luminosity measurement



### p<sub>x</sub> kick of the initial state

- $p_x$  component of the initial state four-vector is normally induced by the crossing angle  $\alpha$
- At CEPC:  $\alpha$ =33 mrad,  $p_x^0$ =743 MeV
- Additional non-zero p<sub>x</sub> component (**p<sub>x</sub> kick**) of the initial state is induced by EMD
- @ Z<sup>0</sup> pole it is estimated at FCCee to be ~3.5 MeV per initial state particle [arXiv:1908.01698v3 [hep-ex]]
- $p_x$  kick  $(2 \cdot \Delta p_x)$  is  $\Leftrightarrow$  to reduction of the crossing angle  $\alpha$ , i.e.  $(2 \cdot \Delta p_x)$ :5-10 MeV  $\Leftrightarrow \Delta \alpha$ : 0.1-0.2 mrad
- What is the exact size of the effect at CEPC? We haven't run the full Guinea Pig simulation, but a knowledgeable guess will be ≤than at FCCee, due to difference in beam parameters.



|       | σ <sub>x</sub> (μm) | σ <sub>y</sub> (nm) | σ <sub>z</sub> (mm) | N·10 <sup>10</sup> |
|-------|---------------------|---------------------|---------------------|--------------------|
| FCCee | 6.4                 | 28.3                | 3.5                 | 17                 |
| CEPC  | 5.9                 | 78                  | 8.5                 | 8                  |

# p<sub>x</sub> kick of the initial state

Two questions can be asked:

- 1. Can we measure the p<sub>x</sub> kick (effective crossing angle)?
- 2. What is the impact of the initial state  $p_x$  kick  $(2 \cdot \Delta p_x)$  on integrated luminosity measurement?
  - Knowing that  $\Delta p_x$  is equivalent to  $\Delta \alpha/2$ , we can describe the  $p_x$  kick of the initial state as the effective shift (x) of the luminometer along the (-x)-axis, positioned at the distance L from the IP, along the outgoing beam-pipe z'
  - From the relations between the sides of the triangle if follows:  $x=L\cdot(\Delta p_x/p_{z'}) = L\cdot tg(\Delta \alpha/2)$
  - Assuming that p<sub>z'</sub>≈E<sub>beam</sub> and L=0.95m, for (2·∆p<sub>x</sub>):5-10 MeV at Z-pole CEPC

x=50-100µm



# What does it $(p_x kick of the initial state)$ mean for luminosity?

- Fiducial volume of the luminometer:

r<sub>in</sub> = 50 mm; r<sub>out</sub> = 75 mm

- Require asymmetric acceptance in  $\theta$  on the L-R side of the detector (within the fiducial volume): move inner and outer fiducial radii towards each other for  $\Delta r_{cut}$
- Require high energy Bhabha (E>0.5 E<sub>beam</sub>)
- Luminometer at the outgoing beam
- 10<sup>7</sup> Bhabha events at a generator level with ISR and FSR
- Close-by particles are summed up to imitate cluster merging

#### What have we learned?

- 1. In a full fiducial volume, 100  $\mu$ m x-shift of the detector gives contribution of ~4.10<sup>-3</sup> to relative uncertainty of luminosity
- 2. If the detector is at the outgoing beam, asymmetric selection can be tuned to keep luminosity insensitive  $(\Delta \mathcal{L}/\mathcal{L} \approx 10^{-4})$  to the x-shift almost up to 1 mm



# Can we measure the $p_x$ kick (effective crossing angle)?

As proposed at FCC [arXiv:1908.01698v3 [hep-ex]], it is wise to use a central (instead of very forward) process, i.e. di-muon production  $e^+e^- \rightarrow \mu^+\mu^-$  to measure the effect.

- 1.5 nb x-section for  $\mu^+\mu^-$  production at the Z<sup>0</sup> pole
- muon reconstruction  $\Delta p_t/p_t^2 \sim 10^{-5}$
- $10^5$  simulated events (1 min of integrated  $\mathcal{L}$  at Z<sup>0</sup> pole post CDR design),
- TPC acceptance  $|\cos\theta| < 0.78$
- Detector resolution contributes insignificantly (10s of keV) to the  $p_x$  width.
- Beam-spread and ISR widen the p<sub>x</sub> distribution
- p<sub>x</sub> mean remains linearly proportional to the effective crossing angle (calibration plot)





# Electromagnetic deflection of the final state

- Similar focusing effects of the Bhabha final state by the EM field of the incoming bunches
- Centrally produced muons (s-channel) are not affected
- But Bhabha e<sup>+</sup>/e<sup>-</sup> are (t-channel)
- $\rightarrow$  we have to use luminometer
- 1. We can talk about the overall focusing effect on the final state that will include  $p_x$  kick + final state EMD
- 2. The net effect will be effective shift of the luminometer along –x axis for  $\Delta \theta_{\text{EMD}}$
- 3. The count will become asymmetric for different  $\varphi$  (luminometer around outgoing beam)

- 2. and 3. can be exploited to define observable(s) describing the effect



### Discussion on possible corrective methods

#### Few more fact about the EMD effect:

- The effect is smaller at larger center-of-mass energies (i.e. for the CLIC beam we have estimated  $\Delta \theta_{EMD}$  to be 43 µrad @ 500 GeV and 20 µrad @ 1 TeV [JINST 8 P08012, 2013], at FCCee Z<sup>0</sup> it amounts up to 150 µrad [arXiv:1908.01698v3 [hep-ex]]
- Even with 150 µrad focusing, that translates to <150 µm x-shift of the luminometer front plane, with detector at the outgoing beam pipe and appropriate event selection asymmetric in  $\theta$  one can keep the count ( $\mathcal{L}$ ) relative uncertainty < 10<sup>-4</sup>
- <u>Othervise, it is an order of magnitude larger than luminosity precision goal of 10<sup>-4</sup></u>
- Can we measure/correct it?
- EMD is not measured yet experimentally
- There is more than one way to correct for it calibrating the effect in combination of simulation and experiment
- We have proposed a method in [JINST 8 P08012, 2013] for ILC/CLIC and working on another possibility for CEPC
- Another method have been proposed at FCCee Z<sup>0</sup> pole [arXiv:1908.01698v3 [hep-ex]]

### Discussion on possible corrective methods

Our method proposed for ILC/CLIC [JINST 8 P08012, 2013]

- $\Delta \mathcal{L} / \mathcal{L} = \mathbf{x}_{\text{EMD}} \cdot \Delta \theta_{\text{EMD}}$
- Calibrate from experiment (measure slope x<sub>EMD</sub>)
- Determine from  $\Delta \theta_{EMD}$  simulation down-side, but
- ~  $\Delta \theta_{\text{EMD}}$  is stable w.r.t. the variation of beam parameters (bunch size variations by ±10 and ±20% of both bunches and one-sided variations by +20%, of bunch charge and dimensions)  $\Rightarrow$  dissipation gives uncertainty of the method



# Summary

- Electromagnetic deflection of initial (final) states by outgoing (incoming) bunches of opposite charge results in focusing of the final state particles equivalent to the effective shift of their p<sub>x</sub> momenta
- For the Bhabha final state, the net effect corresponds to the shift of luminometer halves along (-x) axis
- Based on numerical arguments, the shift at  $Z^0$  pole CEPC should be of order of 100-200  $\mu$ m
- If:
  - Luminometer is centered at the outgoing beam and
  - Asymmetric selection in  $\theta$  is applied subsequently to the luminometer halves
- Relative luminosity uncertainty  $\Delta L/L$  can be maintained below required 10<sup>-4</sup>
- Based on geometrical features of the EMD effect in luminometer (effective shift of the detector, asymmetries) there is ongoing work on possible experiment driven corrective methods.