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Key Ideas for this Talk 

•  Determining the thermal history of EW 
symmetry breaking is a key challenge for 
particle physics 

•  The “electroweak temperature” ! a scale 
provided by nature that gives us a clear BSM 
target for colliders to address this challenge 

•  Precision tests and direct searches are vital 

•  Robust test of theory requires a new era of 
EFT & non-perturbative computations ! new 
results highlight this theoretical frontier 
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Outline 

I.  Context & Questions 

II.  EWPT: A Collider Target 

III.  Higgs Boson Properties 

IV.  Theoretical Robustness 

V.  Outlook 
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I. Context & Questions 



Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

•  Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ? 

•  Gravitational waves ! If a signal observed in 
next generation probes, could a cosmological 
phase transition be responsible ? 
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Thermal History of Symmetry Breaking 

QCD Phase Diagram ! EW Theory Analog?  
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? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

9 



EWSB Transition: St’d Model  

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

SM EW: Cross over transition 

EW Phase Diagram 

Te
m

pe
ra

tu
re

 

Higgs Mass 

125 GeV 

10 

FOEWPT 



EWSB Transition: St’d Model  

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

SM EW: Cross over transition 

EW Phase Diagram 

How does new TeV scale 
physics change this picture ? 
What is the phase diagram ? 
EWPT ? If so, what kind ? 

Te
m

pe
ra

tu
re

 

Higgs Mass 

125 GeV 

11 

FOEWPT 



Patterns of Symmetry Breaking 

12 

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
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indicated in the left and right panels of Fig. 3, respectively.
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end up here ? 
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
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•  Baryogen* 

•  GW  

* Need BSM CPV: 
see P. Pasquini talk 
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cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
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exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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of potentials and their 
thermal histories? 
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•  What is the landscape 
of potentials and their 
thermal histories? 

•  How can we probe this 
T > 0 landscape 
experimentally ? 
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
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Extrema can evolve differently as T evolves ! 
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•  What is the landscape 
of potentials and their 
thermal histories? 

•  How can we probe this 
T > 0 landscape 
experimentally ? 

•  How reliably can we 
compute the 
thermodynamics ? 



Experimental Probes 

23 

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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FIG. 4: Gluon luminosity ratio
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TABLE IV: Single heavy higgs production via ggF.
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
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⇥
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
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When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
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1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
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•  Higgs self-coupling 
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Singlets: Precision & Res Di-Higgs Prod 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    
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•  Real gauge singlet (SM + 1) 

•  Real EW triplet (SM + 3) 
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•  Two occasions for GW generation 
•  Step 1: create baryon asymmetry ! 

Step 2: pass it to the Higgs phase 
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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Associated Production 
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Real Singlet 

14

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form

Ṽ0(H) = �

✓
H

†
H �

v
2

2

◆2

+
1

⇤2

✓
H

†
H �

v
2

2

◆3

, (38)

where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
both cases, the potential minimum occurs at hH0

i = v/
p
2 and the square of the Higgs boson mass is m2

h
= 2�v2.

Writing Eq. (38) in terms of the field h gives

Ṽ0(h) = Ṽ0 �
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2
h
2 +

�̃

4
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1

8⇤2
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where
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��

3v2

4⇤2

�
v
2

, �̃ = ��
3v2

2⇤2
. (40)

For ⇤2
< 3v2/� = 3v4/m2

h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to

Higher Dim Operators 

•  Cao, Huang, Xie, Zhang 2017... 
•  Grojean, Servant, Wells 2004… 
•  Grinstein, Trott 2008… 

Electroweak Multiplets 

Loop contributions 

MJRM, Jiang-Hao Yu, Jia Zhou 
2010.NNNN 
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IV. Theoretical Robustness 

•  L. Niemi, H. Patel, MRM, T. Tenkanen, D. Weir  1802.10500 

•  O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. Tenkanen, D.J. 
Weir: 1903.11604 

•  L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 2005.11332 
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EWPT & Perturbation Theory 

Expansion parameter 

SM lattice studies: geff ~ 0.8 in vicinity of 
EWPT for mH ~ 70 GeV  

Infrared sensitive 
near phase trans 
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Theory Meets Phenomenology 

A.  Non-perturbative 

 

B.  Perturbative 

•  Most reliable determination of character 
of EWPT & dependence on parameters 

•  Broad survey of scenarios & parameter 
space not viable 

•  Most feasible approach to survey broad 
ranges of models, analyze parameter 
space, & predict experimental signatures 

•  Quantitative reliability needs to be verified  
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Strategy 

•  Employ dimensionally-reduced 3D EFT in two regimes: 

•  Heavy BSM scalars ! integrate out and 
“repurpose” existing lattice computations 

•  Light BSM scalars ! perform new lattice 
simulations 
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Real Triplet: One-Step EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 
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Real Triplet & EWPT: Novel EWSB 

Niemi, R-M, Tenkanen, Weir 2005.11332 
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Real Triplet & EWPT: Novel EWSB 

Niemi, R-M, Tenkanen, Weir 2005.11332 
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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Real Triplet & EWPT: Novel EWSB 

Niemi, R-M, Tenkanen, Weir 2005.11332 
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phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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TDLI/SJTU Program 

EW Phase Transition & 
EW Baryogenesis 

Model building & 
cosmological scenarios 

Pheno: Collider, EDM, 
Gravitational Radiation 

Robust theory computations: 
formal “machinery”, analytic, 
non-perturbative 
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Global EWPT+ Seminar 

https://indico-tdli.sjtu.edu.cn/category/19/ Fridays 
10:00 
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TDLI Di-Higgs Workshop 

https://indico-tdli.sjtu.edu.cn/event/283/ 

November 19-21 Shanghai Kun Liu 
MJRM 
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IV. Outlook 
•  Determining the thermal history of EWSB is field 

theoretically interesting in its own right and of practical 
importance for baryogenesis and GW ! a key challenge 
for particle physics 

•  The scale TEW ! any new physics that modifies the SM 
crossover transition to a first order transition must live at M 
< 1 TeV and couple with sufficient strength to yield (in 
principle) observable shifts in Higgs boson properties   

•  A robust confrontation of of experiment and theory requires 
new level of theoretical rigor combining EFT methods with 
lattice simulations and new advances in theoretical tools 



76 

Was There an Electroweak Phase Transition?  

Answering this question is an exciting frontier at the interface 
of particle physics and cosmology, with ample opportunities 
for significant theoretical and experimental advances 
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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| sinθ | > 0.01  ~ 

| Δλ / λ | > 0.003  ~ 
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Having scaled the parton center of mass (CM) energy by 2M�, we observe a universal behavior, with a maximum
occurring at

p
ŝ/2M� ⇡ 1.7 for all values of M� but with the magnitude of FZ dropping by about an order of

magnitude for each representative choice of M�. Thus, for a given e
+
e
� CM energy ECM, the maximal sensitivity

will be for a scalar mass ⇠ ECM/3.4. To be concrete, the CLIC 1.5 TeV option would be best suited to M� ⇡ 440
GeV, while a 500 GeV ILC would having maximum sensitivity to a mass roughly 150 GeV. Similarly, the FCC-ee
with ECM = 340 GeV would be ideally suited to probing a 100 GeV new scalar. For M� near the upper end of our
conservative EWPT-viable range, the optimal CM energy is roughly 2.4 TeV. The degradation in sensitivity by going
to higher energy, such as the CLIC 3 TeV option, is modest. Note, however, that for a given beam energy, the cross
section drops quickly with increasing M�, going to zero as M� ! ECM/2.

With this information in hand, it is straightforward to determine the number of produced � pairs for a given M�,
ECM, and integrated luminosity. In Table I, we give this information for each prospective collider, choosing M� in
each case to given the maximum cross section. For purposes of illustration, we will assume the scalar multiplet is
a real electroweak triplet and that the final state consists of a �

+
�
� pair. We take as projected design integrated

luminosities as given n the fourth column of Table I. The anticipated numbers of signal events are shown in the final
column.

In general, it is evident that even for new scalars at the upper end of the conservative EWPT mass range, the various
e
+
e
� colliders will yield 10, 000 or more signal events. Given the clean environment for these colliders, observation of

a signal should in principle be feasible. Obtaining concrete projections will require more detailed information about
the expected signature, detector resolution, e�ciency and other experimental details. For example, in the absence of
Z2-breaking interactions, the neutral component of � may be stable. Electroweak radiative corrections will increase
the mass of the components of charge Q with resect to the neutral state by MQ�M0 ⇡ Q

2�M , with �M = (166±1)
MeV. The �± will thus decay to the �0 plus a soft lepton pair or soft pion that is di�cult to detect, yield a disappearing
charged track (DCT). The detectability of the DCT will depend on the �

± lifetime, detector resolution, and trigger.
Assuming these issues are addressed, the upper limit �± mass reach will depend on the collider CM energy.

ECM(GeV) M� (GeV) �̂ (fb)
R
dtL (ab�1) N ⇥ 10�3

340 100 142 fb 5 710
500 100 94 fb 2 188

150 63 fb 2 126
1500 150 13 fb 2.5 32.5

440 7 fb 2.5 17.5
3000 440 3 fb 5 15

700 2 fb 5 10

TABLE I: Comparison of a circular e+e� collider and two linear e+e� options (ILC-500 and CLIC) to NC production of a
�+�� pair for representative choices of M�.

We now turn to the corresponding analysis for pp collisions. In this case, while the beam energy is fixed, the parton
CM energy is not. Instead, one must integrate over the parton distribution functions (pdfs), leading to the following
expression for the cross section �(pp ! �1�2X):

�(pp ! V
⇤
! �1�2X) =

X

a,b

Z 1

ŝ0

dŝ

✓
dLab

dŝ

◆
�̂(ab ! V

⇤
! �1�2) , (36)

where the sum is over all partons a and b in the colliding protons,
p
ŝ0 = 2M�, and dLab/dŝ is the parton luminosity

function constructed from the pdfs, suitably evolved to the energy scale of the partonic sub-process. We consider the
charged current (CC) process pp ! W

+⇤
! �

+
�
0 as the factor GW is larger than the corresponding factors for the

neutral current pair production.
For purposes of comparing di↵erent collider options, it is useful to plot dLab/dŝ for CC processes as a function of ŝ

for three di↵erent CM energies: 14 TeV, 27 TeV, and 100 TeV. Recalling that for a given M� the optimal parton CM
energy is ⇠ 3.4M�, we see that for a 700 GeV particle, a 100 TeV pp collider will have roughly 60 times more signal
events than the LHC, assuming the same integrated luminosity. Given the proposed FCC-hh integrated luminosity of
30 ab�1, the total number of signal events would be 600 times greater than for the HL-LHC. To make this comparison
more concrete, we provide in Table II the cross sections and expected number of signal events for representative values
of M�, assuming the design integrated luminosities for the LHC, HE-LHC, and FCC-hh. The caption indicates the
corresponding K-factors used in arriving at the total cross sections.

need to get K-factors for DY process.
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FIG. 5: Ratio of the gluon luminosity in pp collisions at CM energies 100 TeV to that at 14 TeV as a function of parton CM
energy

p
ŝ.

Table IV, one should bear in mind that the values of | sin ✓| obtained in Refs. [29, 47, 48] are considerably larger than
0.01. The results in these studies were obtained by scanning over the parameters of the potential in Eqs. (7,8,21), and
requiring that the first order EWPT completes (e.g., a su�ciently large tunneling rate) and that the baryon number
preservation criterion be satisfied. Hence, the benchmarks given in Table IV appear to be quite conservative.

ECM(TeV) M� (GeV) � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 7.7 3 23
714 0.63 3 1.9

27 415 26 30 720
714 3 30 90

100 415 183 30 5490
714 29 30 870

TABLE II: Comparison of the LHC, HE-LHC and 100 TeV pp sensitivities to �+�0 electroweak Drell-Yan production for
representative choices of M�. Note that K-factors have not been applied, as discussed in the text.

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N

340 150 0.01 0.01 5 50
500 150 0.01 0.005 2 10

240 0.01 0.003 2 6
1500 150 0.01 5⇥ 10�4 2.5 1

400 0.01 4⇥ 10�4 2.5 1
700 0.01 2⇥ 10�4 2.5 < 1

3000 150 0.01 1⇥ 10�4 5 < 1
400 0.01 1⇥ 10�4 5 < 1
700 0.01 1⇥ 10�4 5 < 1

TABLE III: Single heavy Higgs production via associated production at prospective e+e� colliders.
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FIG. 5: Ratio of the gluon luminosity in pp collisions at CM energies 100 TeV to that at 14 TeV as a function of parton CM
energy

p
ŝ.

Table IV, one should bear in mind that the values of | sin ✓| obtained in Refs. [29, 47, 48] are considerably larger than
0.01. The results in these studies were obtained by scanning over the parameters of the potential in Eqs. (7,8,21), and
requiring that the first order EWPT completes (e.g., a su�ciently large tunneling rate) and that the baryon number
preservation criterion be satisfied. Hence, the benchmarks given in Table IV appear to be quite conservative.

ECM(TeV) M� (GeV) � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 7.7 3 23
714 0.63 3 1.9

27 415 26 30 720
714 3 30 90

100 415 183 30 5490
714 29 30 870

TABLE II: Comparison of the LHC, HE-LHC and 100 TeV pp sensitivities to �+�0 electroweak Drell-Yan production for
representative choices of M�. Note that K-factors have not been applied, as discussed in the text.

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N

340 150 0.01 0.01 5 50
500 150 0.01 0.005 2 10

240 0.01 0.003 2 6
1500 150 0.01 5⇥ 10�4 2.5 1

400 0.01 4⇥ 10�4 2.5 1
700 0.01 2⇥ 10�4 2.5 < 1

3000 150 0.01 1⇥ 10�4 5 < 1
400 0.01 1⇥ 10�4 5 < 1
700 0.01 1⇥ 10�4 5 < 1

TABLE III: Single heavy Higgs production via associated production at prospective e+e� colliders.

Single φ production in pp via GF:  14

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form

Ṽ0(H) = �

✓
H

†
H �

v
2

2

◆2

+
1

⇤2

✓
H

†
H �

v
2

2

◆3

, (38)

where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
both cases, the potential minimum occurs at hH0

i = v/
p
2 and the square of the Higgs boson mass is m2

h
= 2�v2.

Writing Eq. (38) in terms of the field h gives

Ṽ0(h) = Ṽ0 �
µ̃
2

2
h
2 +

�̃

4
h
4 +

1

8⇤2
h
6 (39)

where

µ̃
2 =


��

3v2

4⇤2

�
v
2

, �̃ = ��
3v2

2⇤2
. (40)

For ⇤2
< 3v2/� = 3v4/m2

h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to
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ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form
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where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
both cases, the potential minimum occurs at hH0

i = v/
p
2 and the square of the Higgs boson mass is m2

h
= 2�v2.

Writing Eq. (38) in terms of the field h gives
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h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to
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ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
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That being said, there remain a few other general considerations that one should address on this topic.
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at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
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• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
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where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
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µ̃
2

2
h
2 +

�̃

4
h
4 +

1

8⇤2
h
6 (39)

where

µ̃
2 =


��

3v2

4⇤2

�
v
2

, �̃ = ��
3v2

2⇤2
. (40)

For ⇤2
< 3v2/� = 3v4/m2

h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to

14

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form
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Ṽ0(h) = Ṽ0 �
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CW Potential: Vacuum Uplift 

•  Huang et al ’15 (NMSSM)  
•  Dorsch et al ’17 (2HDM) 

16

the transition temperature arises from a reduction in the di↵erence between the broken and unbroken phase vacuum
energies:

�V ⌘ V (' = 0)� V (' = v) . (42)

At tree-level in the SM, this di↵erence is given by
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The one-loop contribution can be obtained from the Coleman-Weinberg potential
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where the sum is over all particles of spin sk that interact with the field �; Mk(') are the corresponding field-
dependent masses; and µ is the renormalization scale6. Note that one may eliminate the µ-dependence of the full
e↵ective potential by replacing the tree-level couplings and mass parameters by their µ-dependent running values,
with the latter determined by the appropriate renormalization group (RG) equation. By a suitable choice of µ, one
may in principle eliminate any explicit large logarithms from Eq. (44) and re-sum them via the RG evolution. In
particular, the vacuum energy di↵erence �V0 will inherit these re-summed logarithms via the running Higgs quartic
self-coupling, �(µ). 7

The resulting vacuum energy di↵erence will then be given by
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Depending on the initial conditions for the RGE, �V may be smaller than �V0, corresponding to a vacuum energy
“uplift” due to the T = 0 loops. Explicit, model-dependent studies performed in the next-to-minimal supersymmetric
Standard Model[54] and Two Higgs Doublet Model[56] indicate that such a vacuum energy uplift may, indeed, occur.
Näıvely, it is straightforward to see how this situation may arise. If µ ⇠ Mk(0) ⇠ Mk('), so that the logarithmic
contributions are negligible; and if M2

k
(') > M

2
k
(0), then the explicit loop contribution to �V will be positive. In this

case, the value of TEW will be lower than given in Eq. (4) since it takes less thermal energy to heat the vacuum and
restore the symmetry. On the other hand, if these assumptions do not apply, then the presence of BSM interactions
may lower the broken phase vacuum energy.

3. Higher Dimension Operators and the Transition Temperature

For the potential of Eq. (38) determination of the critical temperature requires inclusion of the T > 0 loops, which
yield a one-loop contribution
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Recalling that m2
h
= 2�v2, one observes that the first four terms inside the square brackets in Eq. (47) are the same

as in the SM. The contribution from the d = 6 operator coe�cient will reduce the value of c from its SM value. The
critical temperature for the first order EWPT is then given by
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6 In an unfortunate clash of notation, the symbol µ in the present discussion does not refer to the Higgs mass parameter appearing in the
tree-level SM.

7 One may similarly move the �3/2 constant term into Eq. (44) by making the replacement µ2 ! µ2 exp(�3/2) though there is no a
priori reason to do so.
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1.  Bubbles nucleate and grow 
2.  Expand in a plasma - create reaction 

fronts 
3.  Bubbles + fronts collide - violent process 
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