The 2020 International Workshop on the High Energy Circular Electron Positron Collider (Oct. 26-28, 2020)

CEPC Linac and damping ring R&D

Jingru Zhang

On behalf of CEPC linac team Institute of High Energy Physics, CAS

1 Linac baseline design

2 R&D activities

3 Linac alternative

• CEPC consists of Linac, Booster and Collider

- The energy electron and positron of the Collider is 120 GeV
- The booster and collider circumference is about 100 km
- The injector linac provides 10 GeV electron and positron beam to the Booster
- The length of the linac is about 1.2 km

• The requirements of the booster to the linac

Parameter	Symbol	Unit	Value	
e⁻ /e⁺ beam energy	E_e/E_{e^+}	GeV	10	
Repetition rate	f_{rep}	Hz	100	
Bunch numbers per pulse			1	
o- lot hunch nonulation	Ne-/Ne+		>9.4×10 ⁹	
e ⁻ /e ⁻ bunch population		nC	>1.5	
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³	
Emittance (e ⁻ /e ⁺)	ε _r	nm	<40	

• Linac design goals

- Meet the requirements of booster injector
- Top-up injection can be implemented
- High availability and reliability
 - ♦ About 15% backups for linac RF units
- More potential
 - Have potential to provide electron/positron beam with bunch charge large than 3 nC
 - ◆ Lower emittance with more cycles in Damping Ring

• Layout of linac

- Electron linac (Pre-injector+Linac 1+EBTL+Linac 3)
- Positron linac (Pre-injector+Linac 1+PS+Linac 2-1)
- +DR+Linac 2-2+Linac 3)
- Mature technologies: Thermionic gun, Fixed positron target, S-band RF system

RF distribution of the linac (80MW klystron)

- Bunching system
- Big hole accelerating structure after positron target
- One klystron to four accelerating structures

• Key components of baseline linac

- Electron gun
- SHBs
- Buncher
- S-band accelerating structure
- Pulse compressor
- Positron source
- Big hole accelerating structure
- DR 650MHz RF cavity
- LLRF
- Phase reference line
- **....**

• Tranditional thermionic triode gun

Parameter	Unit	Value
Туре		Thermionic Triode Gun
Cathode		Y796 (Eimac) Dispenser
Beam Current (max.)	А	10
High Voltage of Anode	kV	120 ~ 200
Bias Voltage of Grid	V	0 ~ -200
Pulse duration	ns	1

• Sub-harmonic buncher (SHB)

- Capacitively loaded structure
- Value Buncher **Parameters** Unit SHB2 SHB1 B Travelling wave Frequency 143 572 2860 MHz **2**π/3 Shunt Impedance 1.39 2.89 7.5 MΩ Unloaded Q 8139 13458 11083 -■ β=0.75, 6 cells Bunching Voltage(Max) 100 120 1200 kV **RF** Structure SW SW TW -1/-1/-1/n 5. 3e+07 + 6133 + 2, Star 17 2, Star 17 2, 22e 17 2, 22e 17 1, 32e 16 1, 32e 16 1, 33e 16 2, 32e 16 1, 33e 16 2, 32e 16 1, 33e 16 1, 35e 16 4.98e+07 -........ 5500 -4.66e+07-...... 5000 -4.34e+07-***************************** ******* 4.02e+07-4500 ** 3.69e+07 -4000 -3 37e+07 -3500 -..... 3.05e+07-3000 -..... 2.73e+07 2500 -2.41e+07-2000 -2.09e+07 -1.77e+07-1500 ------1.45e+07-1000 -1.12e+07-500 -8.03e+06 4.82e+06 -1/-82802 19406 17010 1242 29553 27465 25077 1050 17912 107 77784 -72766 -67747 -..... 62729 -57711 -52692 -47674 -42656 -37637 -32619-27601 -22582 -17564 -12546 7527 -SHB1 SHB2 Buncher 2020.10.26, Shanghai

- 3 meters long S band accelerating structure
- Cavity shape optimization
 - Rounding the cell :
 - ♦ Improve the quality factor by >12%
 - ♦ Reduce the power consumption
 - ♦ Increase the shunt impedance by ~10.9%
 - elliptical the irises shape (r2/r1=1.8)

• The main parameters of the whole structure

Parameters	Values	Unit
No. of Cells	84+2*0.5	-
Phase advance	2π/3	rad
Total length	3.1	m
Length of cell (d)	34.988	mm
Disk thickness (t)	5.5	mm
Shunt impedance (Rs)	60.3~67.8	MΩ/m
Quality factor	15465~15373	-
Group velocity: Vg/c (%)	2% ~ 0.94%	-
Filling time (t _f)	784	ns
Attenuation factor (τ)	0.46	Np
Power (@30MV/m)	74	MW

• Coupler design

- The asymmetry of the coupling cavity will cause emittance growth
- The shape of the coupling cavity is racetrack dual-feed type

$$\varepsilon_{n-fin} = \sqrt{\varepsilon_{n-initial}^{2} + \sigma_{x}^{2} \left(\frac{\sigma_{\Delta p_{x}}}{mc}\right)^{2}}$$
$$\Delta p_{x} = -\frac{e\Delta z E_{0}}{2\omega a} [\Delta \theta + \sin \varphi - \frac{\Delta E}{E_{0}} \cos \varphi]$$

• Factors to limit the gradient (cavity):

- Peak surface electric field (E_peak)
 - E_peak < 160MV/m at S-band</p>
- Peak surface magnetic field (H_peak)
 - pulsed heating effect will cause the temperature rise at the coupler window. $\Delta T = \frac{\left|H_{\parallel}\right|^2 \sqrt{t_p}}{\sigma \delta \sqrt{\pi \rho c k}}, \text{ for S-band } \Delta T < 50^{\circ}\text{C is safe}$
- Modified Poynting vector (Sc)
 - $S_c = Re\{\bar{s}\} + \frac{Im\{\bar{s}\}}{6}$, $\frac{S_c^{15}t_p^{5}}{BDR} = \text{const.}$ If the beam break down rate is 1*10⁻⁶bpp/m, the safe value for 1µs pulse length is 2.3 MW/mm²
- Pulse length (1µS)

• Factors to limit the gradient (cavity):

- 3D program HFSS is used to confirm the design
- The 1st cell adjacent the input coupler is simulated for Pin=75 MW
- The values are safe. Both E_peak and Sc locates at the iris area

E_peak=73 MV/m. Surface electric field

H_peak=86 kA/m. Surface magnetic field Sc_max=0.59 MW/mm². Modified Poynting vector

• Factors to limit the gradient (coupler):

- To reduce the pulsed heating, the coupler window edge is rounded.
- For S-band copper: $\Delta T[^{\circ}c]=127 |H_{||}[MA/m]|^2 \sqrt{f.[GHz].t_p[uS]}$
- For 75 MW input power, the maximum value of the peak surface magnetic field is $2.1*10^5$ A/m. for 1µS pulse length, ΔT =9.4^oC.

Mechanical design

- Inner water-cooling has been adopted. 8 pipes are around the cavity.
- Compact coupler arrangements. The splitter is milling together with the coupling cavity.
- Two tuners are outside the cavity.

Cold test result

- The phase shift and the cumulative phase shift are less (a) than 1 deg
- The VSWR is 1.02 at working frequency
- Filling time is 780 nS

• High power test result (with SLED)

- The modulator voltage is 37.5 kV
- the SLED energy multiplication factor: 1.8
- The tested gradient has reached 33 MV/m

$$P_{in} = \frac{(V^*L)^2}{RL(1 - e^{-2\alpha L})M^2}$$

Modulator and klystron

High power test bench

The waveform without SLED

Boonton 4	500C Puls	е			Chan 1 >	Selection
Freq VidBW	2.86 GHz High	TrA +(TrB	CH1 39.9 MW Off	VScale VCent	20 MW 78.86 MW	CH 1
Avging	16	Tr Dly	-1.16 us	Offset	96.70 dB	Channel
155	5.4 ^{>MK1}	673	.727 ^{Ratic}	2	3.07 ^{MK2}	On Off
						Vert Scale
						20 MW/Div
						Vert Center
						78.86 MW
						Calibration
						MENU
	- A					Extensions
-6.16 us		1	us/Div		3.84 us	MENU
iniggered						

Pulse compressor

- It is used to improve the peak power from the klystron and saving cost
 - Input power: 80 MW

- Pulse width: be compressed from 4uS→0.8uS
- Mode converter & spherical cavity

Parameter	Value
SLED water temperature	30 °C
Room temperature	25 ℃
Filling time	780 ns
Klystron output power	80 MW
Pulse width	4 µs
Pulse repetition rate	100 Hz

Mode converter

- The TE10 mode input from Port 1 will be converted into two degenerated TE₁₁ modes at Port 3
- There are two degenerated TE₁₁₃ modes in the spherical cavity, The phase difference of the two modes is about 90°
- The input port S₁₁ is -62.7 dB
- The S₄₁ is -71dB for port 4 is for vacuum

Spherical cavity

- Two degenerated TE₁₁₃ mode in a single spherical cavity
- f₀=2855.9986 MHz, 2855.9994 MHz,
- Q₀=139583, 139551
- Cavity diameter
 - ∎ 365mm

Parameter	value
VSWR	≤1.1
Coupling factor	~6.9
Tuning rang	≥±1 MHz
Peak power gain	≥7dB
Energy gain factor	~1.6

- •Thermal stress analysis
 - The maximal temperature rise is on the coupling hole of 2.5
 °C (the water cooling flow set as 50 L/min)
 - The frequency tunable range of ±1 MHz is enough for all the frequency shift resulted from the input power, vacuum pumping, air pressure, etc.

Accordingly, if we use the water temperature to tune the frequency, the temperature need to be ±3.6 °C change

• Vacuum speed and vacuum level

- The pumping speed of the ion pump is 100 L/s
- Finished mechanical design

- Layout of positron source
 - ◆ Target (Conventional)
 - ✓ tungsten@15 mm
 - ✓ Beam size: 0.5 mm
 - ◆ Electron Beam
 - ✓ 4GeV/10nC/100Hz
 - ✓ Beam power 4kW
 - Energy deposition
 - ✓ 0.784 GeV/e- @ FLUKA
 - \checkmark 784 W \rightarrow water cooling
 - AMD (Adiabatic Matching Device)

4 GeV

- ✓ Flux Concentrator
- ✓ Length: 100mm
- ✓ Aperture: $8mm \rightarrow 26mm$
- \checkmark Magnetic field: (5.5T \rightarrow 0T) + 0.5T

FLUX concentrator

- It produces a pulsed magnetic field of 6 T to 0.5 T
- The maximum output value of the solid-state pulsed power generator is 15 kA / 15 kV / 5 μs

The mechanical design of FLUX concentrator

The finished FLUX concentrator

D 1 5.004V ② 2.004V ③ 5.004V ③ 5.004V ③ 5.004V ③ 5.004V ④ 15.05 ↓

The output of 10kA measurement

• Damping ring

Unit	Value
GeV	1.1
m	75.4
ms	20
Μ	3.565
Т	1.03
keV	36.3
ms	15.2/15.2/7.6
%	0.05
mm.mrad	376.7
mm	5.0
mm	7.5
mm.mrad	2500
mm.mrad	530/180
%	0.2/0.05
%	1.0
MHz	650
MV	2.0
	Unit GeV m M 5 M 1 1 4 8 4 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

β (m)

- HOM longitudinal impedance & threshold Y.D. Liu
 - The cavity diameter is 90 mm

Electric f

Cavity design

- Fundamental mode: TM₀₁₀
- Parameters at field balancing

	Unit	Value
Beam tube aperture	mm	90
Cell length	mm	5*230.61
π -mode frequency	MHz	650.0
Q ₀		32000
Shunt impedance	MΩ	16
R/(Q*I)	Ω/m	430
Accelerating voltage	MV	1.0 (1.2)
Accelerating gradient	MV/m	0.87 (1.04)
Dissipated cavity power (20% margin)	kW	38 (54)

- Input coupler, doorknob and tuner
 - The diameters of neck tubes of tuner and vacuum ports are 94mm
- Vacuum
 - 2 pump ports near the ceramic of coupler and 1 pump port for each tuner with flanges CF35 are considered
 - The inner diameters of these pump ports are 38mm

Electromagnetic field distribution

Mechanical design

- The preliminary design has finished
- Multiple iteration with the physical design of the DR, RF design and mechanical design is needed

- Linac design must match booster requirment
- As long as the booster requirement changes, the linac must give the corresponding design
 - High luminosity scheme at Higgs energy
 - ◆The linac beam emittance 40nm (CDR)→10 nm
 - Full injection for Z(2T_39MW)

•20 GeV linac

- Reduce the difficulty of the Booster design
- Reduce the technical risk of low magnetic field magnets of the Booster
- •S-band+C-band RF system
 - C-band start energy: 4GeV

•20 GeV linac (S-band + C-band)

- The gradient of C-band structure is 45 MV/m
- The total length is 1.4 km, 200 m longer than the baseline design

Parameter	Unit	S-band	C-band	Parameter	Symbol	Unit	Baseline	Alternative
				e ⁻ /e ⁺ beam energy	E_{e}/E_{e+}	GeV	10	20
Frequency	MHz	2860	5720	Repetition rate	f_{rep}	Hz	100	100
Length	m	3.1	1.8	Bunches/pulse			1	1
		2 /2	2 14	o: lot hunch population	Ne-/Ne+		>9.4×10 ⁹	>9.4×10 ⁹
Cavity mode		2π/3	3π/4	e yer build population		nC	>1.5 (3)	>1.5 (3)
Aperture diameter (mm)	mm	20~24	11.8~16	Energy spread (e /e ⁺)	σ_{ε}		<2×10 ⁻³	<2×10 ⁻³
				Emittance (e ⁻ /e ⁺) Req.	\mathcal{E}_{r}	nm	< 40	< 20
Gradient	MV/m	21	45	Length	L	m	1200	1400

The main parameters of the linac exit

The main parameters of the C-band structure

•Full injection for Z(2T_39MW)

- Two bunches/pulse
 - Preliminary evaluation
 - > Physics design/control systm/instrumentation
- Repetition: 200 Hz
 - ◆ RF Power source: no mature product
 - > Modulator: The price increased by 1 times
 - Klystron: The price increased by 1.5 times
 - RF system (The average power increase 1 times)
 - > Load
 - > Water cooling

- The linac baseline design is a 10 GeV S-band accelerator
- The key components of the linac baseline are being developed. The accelerating structure, the spherical pulse compressor, The FLUX concentrator and damping ring RF cavity
- According to the change of the booster requirement , the linac has made the corresponding considerations

Thank you for your attention!