

中國科學院高能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Alternatives injection design for FCCee injector linac

B. Bai, A. Faus-Golfe, Y. Han, I. Chaikovska, Z. Zhou, Y. Chi in collaboration with F. Zimmermann and K. Oide 26/10/2020 CEPC workshop

Colliders	SLC	LEP	SuperKEKB	CLIC	ILC	CEPC	FCCee
Parameters			Sapiri				10000
Incident e- beam energy [GeV]	33	0.2	3.5	5	125/250	4	4.46
e-/bunch[10 ¹⁰]	3-5	0.5-30	6.25	1.1	2	6.25	4.2 (or 6.25)
Bunch/pulse	1	1	2	312	1312	1	2
Repetition rate [Hz]	120	100	50	50	5	100	200
Incident beam power [kW]	~ 20	1	3.3	140	~ 60/43(photon)	4	12
Beam size @ target [mm]	0.6-0.8	< 2	> 0.7	2.5	1.72/0.5(photon)	0.5	0.5-1
Target scheme	convention	convention	convention	hybrid	convention	convention	convention
					(polarization)		(/hybrid)
Target thickness [mm]	21	7	14	1.4 + 10	14.8/7	15	16(/1.4+12)
Target mobility	moving	fixed	fixed	moving	moving	moving	moving
Deposited power [kW]	4.4	0.1	0.6	~ 11	~5.4/2.3	0.784	1.5-2.6
Capture system	AMD^*	QWT**	AMD	AMD	QWT	AMD	AMD
Magnetic field change [T]	6.8→0.5	1→0.3	4.5→0.4	6→0.5	5→0.5	6→0.5	7→0.7
Capture linac frequency [GHz]	2.856	2.999	2.856	1.999	1.3	2.856	1.999/2.856
DR energy [GeV]	1.15	0.5	1.1	2.86	5	1.1	1.54
e+ yield @ injector exit	1.2 (@ DR)	0.003	0.4	0.7	1.5 (@ DR)	≥ 0.3	≥ 0.7

* Adiabatic Matching Device ** Quarter Wave Transformer

Three different schemes – bypass options

1. Dogleg scheme

2. Chicane scheme

2. Chicane scheme e- beam

3. Arc scheme

1.1) before e+ target

4. Results

Dogleg scheme	Simple bypass (2 bends) + Additional 1.54 GeV linac (section 4) + 1.54 GeV e+ turnaround loop (arc)	High efficiency
Chicane scheme	Complex bypass (4 bends) + 1.54 GeV e+ turnaround loop (arc)	Less cost
Arc scheme	Most complex bypass (6 bends) + 4.46 GeV e- arc Additional 1.54 GeV linac (section 4)	Simple system

The three schemes design can meet the requirement of the Z mode of FCCee. (e+ yield is about 1.2, see backup slides)

Other new designs are being proposed by our team...

Our design can work as a scale and preliminary study for future proposals.

Realistic bunch properties will be studied in future with the experiments of test facilities for both species (e+/e-) injection.

Thanks!

Backups

CSR study – dogleg bypass 5nC e- (6.5nC RF gun)

S: bunch length

16

ρ=Qλs

CSR study – dogleg bypass 8.44nC e- (10nC thermal gun)

S: bunch length

ρ=Qλs

CSR study – chicane bypass 3.5nC e- (6.5nC RF gun)

S: bunch length

18

(FCC)

1.54 GeV e+ linac FODO cell

Section	L_Q (m)	$\frac{\text{Table 3}}{\mathbf{k} (\mathbf{m}^{-2})}$	$\frac{\beta_{max}(\mathbf{m})}{\beta_{max}(\mathbf{m})}$	$\frac{L_{Cell}}{L_{Cell}}$ (m)	$\frac{\text{erent FOI}}{N_{cell}}$	$\frac{DO \text{ cells}}{E_{input} \text{ (GeV)}}$	Eoutput (GeV)
1	0.3	±8.20	2	1.2	36	0.214	0.694
2	0.4	±4.69	3	1.8	17	0.694	1.254
3	0.4	±3.22	4	2.4	8	1.254	1.564

12 LAS + 28 normal S band

LAS		Normal S band		
Acceleration Length	2 m	Acceleration Length	2 m	
Frequency	2856 MHz	Frequency	2856 MHz	
Aperture radius (a)	~15 mm	Aperture radius (a)	~10 mm	
Gradient	10 MV/m	Gradient	20 MV/m	

Final results

Performances of 100 random machines after orbit steering

Error type	Value
Offsets	100um/urad
Rotation	100urad

Electron source: 6.5 nC RF Gun

Electron source: 10 nC thermionic Gun e-E = 4.36 GeV; $\frac{\delta E}{E} \sim 0.69\%;$ Q > 5.5 nC; $\sigma_z \sim 1 \text{mm} (0.8 \text{mm better});$ $\varepsilon_{x,y} = 10 \text{nm} \sim 50 \text{nm} (25 \text{nm better});$ $\sigma_x = 0.5 \text{mm} \sim 1.5 \text{mm} (\text{can choose 1mm});$ $\sigma_y = 0.5 \text{mm} \sim 1.5 \text{mm} (\text{can choose 1mm});$ $\sigma_{xp} \sim 20 \text{ urad};$ $\sigma_{yp} \sim 20 \text{ urad};$

Before e+ target