

CEPC Klystron Development

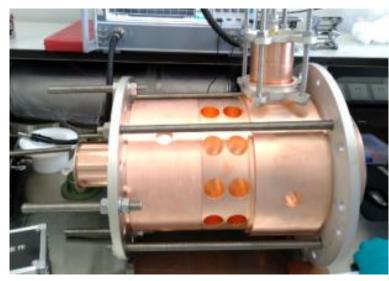
Zusheng Zhou Institute of High Energy Physics Oct.26, 2020

R&D status

- 1st klystron prototype
- High efficiency klystron(2nd klystron)
- MBK(Multi-beam klystron)
- **Future plan**

1st klystron prototype

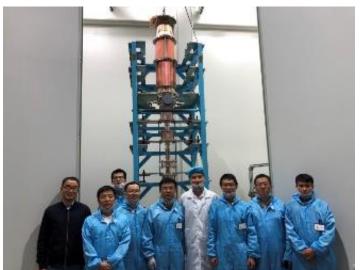
- **Oct. 2017 Design report**
- **A May. 2018 Mechanical design review**
- **Oct. 2019 Parts processing**
- **Nov. 2019 Baking out**
- **Dec. 2019 Delivery to IHEP**
- **♦**Mar. 2020 High power test (400kW CW and 800kW pulsed)
- **Sep. 2020 High power test (490kW CW)**



Parts processing

Cavity part

Cavity


Cold test

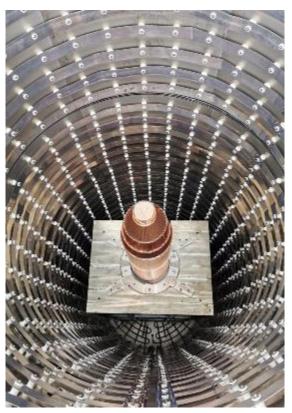
Collector brazing

Gun processing

Vacuum Assy assembly



Coil&Gird



Prototype installation

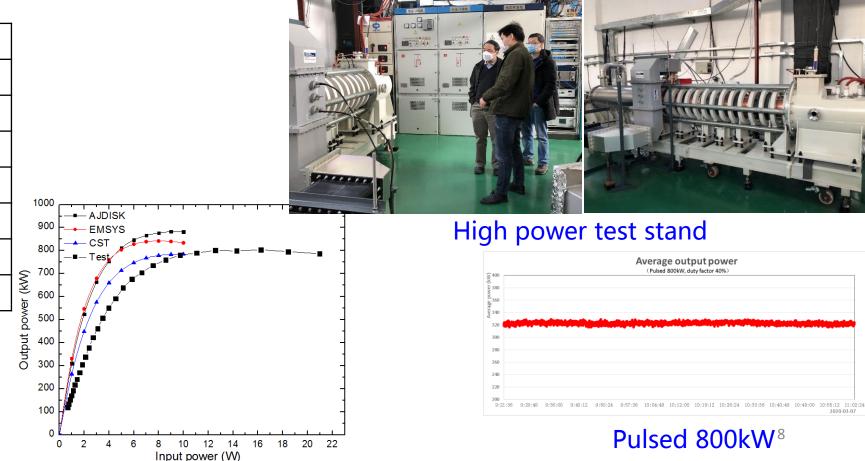
Top view

Delivery to IHEP

Before delivery

Packing

Arrived IHEP


In place at test stand

Phase I: 400 kW CW test and 800kW pulsed conditioning from Jan.3-Mar.9 2020

Parameters	Design	Test
Operating frequency (MHz)	650	650
Beam Voltage (kV)	81.5	80
Beam Perveance ($\mu A/V^{3/2}$)	0.65	0.7
Efficiency(%)	65	62
Saturation Gain(dB)	≥45	47
Output power(kW)	800	800
1 dB Bandwidth(MHz)	≥1	1.8

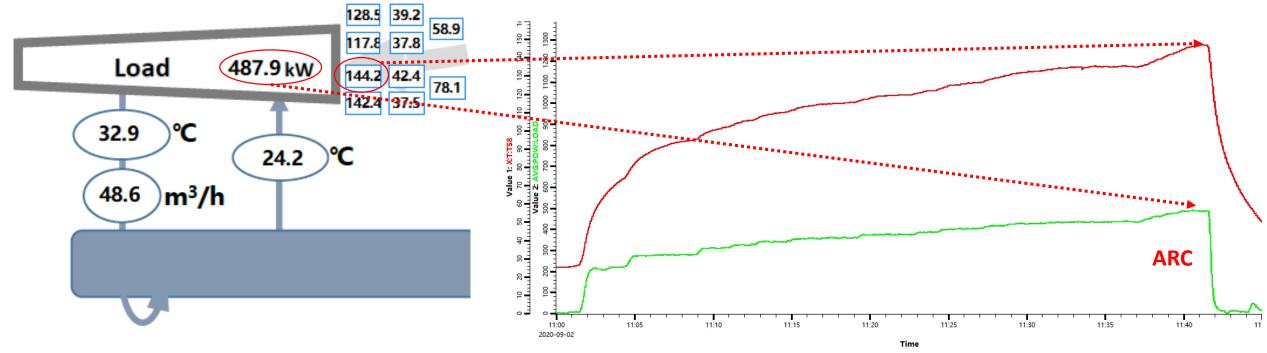
♦Phase II:

a) Phase II test is started from Aug. 24 2020, CW power is up to 490kW on Sep.1 2020.

Cold test for waveguide system

Test stand

800kW Load


♦Phase II:

b) Arc happened on load at CW 490kW On Sep.2 2020

1) Temp. at load end is more than 140 degree C.

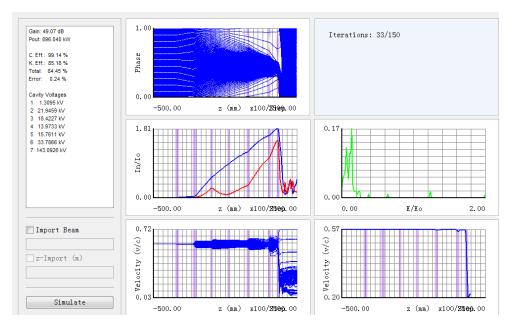
2) Arc happened on 2 load branches.

3) The RF conditioning is stopped on Sep.2 morning.

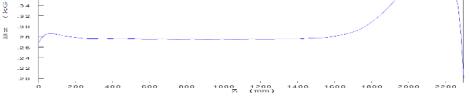
♦Phase II:

c) 400kW and 800kW are both send back Germany for repair on Sep.18 2020.

High efficiency klystron (2nd klystron)

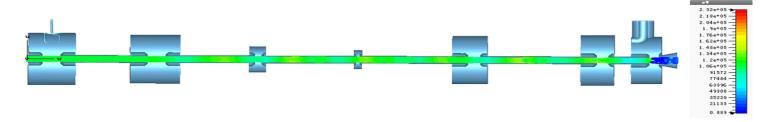


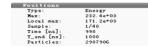
High efficiency design (final)


Ľ,

У

_

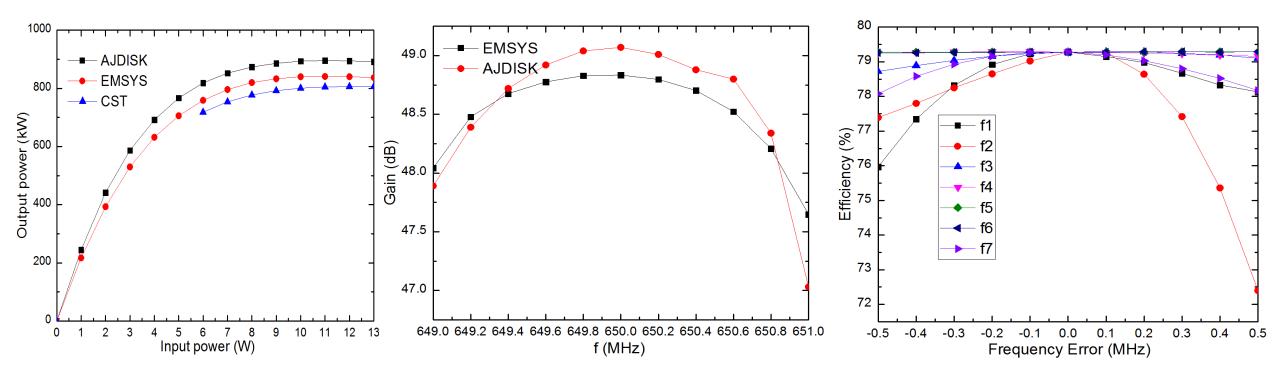



1.0 1.4 Energy_Profile _ -- 20 2000 2200 (1200 .38 .34

AJDISK(1D) EFF: 84.5%

EMSYS(2.5D) EFF: 79.3%

CST(3D) EFF: 77%


High efficiency design (final)

Gain(3D):48.3dB

Bandwidth(2.5D):≥0.8MHz

Frequency tolerance : f1, f2, f7 \pm 0.2MHz, others \pm 0.5MHz

Mechanical design

1) Mechanical design discussion meeting was held on Aug. 31 2020.

The experts provide several views and recommendations

专家意见讨论↩

1 电干险装定由电干所为变定成。 根表式导装定这种中由干缺乏阳威两以无法同步 电干 防的式带给定力法及式通货尺, 即按每电干所装定的装定力度, 据准确定提升与原则则 的比如监察 (太比如正母们比如)。

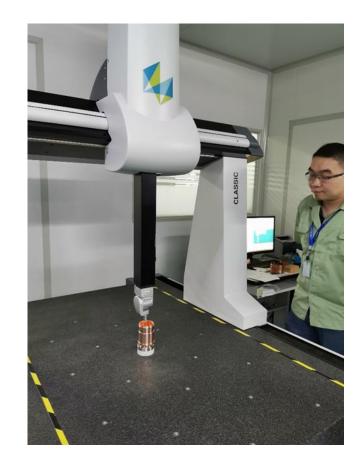
- 1.1 当年本科书》如果不用的中报日为汉本书本、在历代周期日本在加强军公式、因为 中述 异型可行力法。
- 2 经支持营养实际运行过程中、当输出防患运到4000W 超等数件、输出被限性体表间呈 分表几度运输,表下一步测试中压高端一步纤动临测并用限原带室沟上,为除下来的水 为除计模仿依据。
 - 2.1 電気物具重支持等其成素的構成支援以後,13,20%)。並且同時の内心で力深 点行場所(目分)、加速設大型運用内水型、具設設体水型力定体の内容 支援局限定、同時、設備加工用产量数据数件指数二级使,用利用三级数据内内 升 単点行用單具定、用支量等可用于局加水及用列中而供。
- 5 数据模处里说说头的这种方式无论唤证判证数据的考虑员,我以同一判证这里 附正 资 袋 2 个里说说头。然都将且印证、两外。目的范围的判里处倒不适合加度的水稻带展坏 物处以范围等你纠须判里处倒。
- 3.1 8 / 9 / 3.1 8 / 9 / 7 / 7 / 7 / 7
- 数集操器时间发送将表工之间器、发送服用、使用使力多至于好、成时采用未用有数有 的原则和多生得用用多生间含土局品质用有数的发发方式。
 - 4.1 **同力学成长规模方法** 动行政党的转动员或国力力的历史会
- 3 建江度等的处地出成用点工程处于合适。或以货水积厚积高增压方并及非过地增强地。 建立或工作上电物医头口医效润存在于压实的风、医效润疗疗法 usa 型医颈。或以用导 更快电物医头。地口公司或有实地观念。杆杂直医制造方法动。或以单计发现。 5.1 **采用。财后会尤其将**为进起使单计等美工作。
- 5 通用管管件放置表出计支架上层以近向轴段方轴(将表角向的复数,再要按伦袋变方 深重变重杂档次成杂改业、表面同管放置运行支架的,再列支架本分库计考查技平。并 列支架相关设计库计模化。
 - 6.1 目力等结合资料交流设计能等等优点算量化力速。伸张点。
- 2 近期費用額數等額以再要加支持。
- 2.1 四方線 武光用原方法
- a 刘中井可与虎采用窟殿王之段井,丹使用赵刘中井。
 - 3.1 電管機構構成工艺,每年電視算工艺,列中科系建築協合本在式供用因力現象は 原始其他未保定。
- 2 通用营业指述供中版中间的刘中方案问题,将营销船舶使用标移量单称刘中村具用 节级限制能的方案。就用表式通过供中数量不通径,积荣超过用节制接出计会调用节, 最后只通知过能强刘中村长度没有经验税刘中委来。就用来差的长止口方案将表接定 服味,且单近口.13-0.2== 的制品使因为装定成后的刘中正员召使满足要求的问题,而 要是一步制定,提供的教法是无制两个1长止口)的局部背景头。就装定一下来制定装 实际局待使及示点的刘中英点。
- 3.1 董中州中部不用州中州方案来考虑、金石利用州中州市委大部院联系集团委员 登記、 同人出行长上口口帮讨关键、上口间的新新 0.0mm 事件法、相关登记集 运行性 杂产生的州中采品。

- 10 电手指确定向并存的使自觉容易要求。不计使也再要说明严格要求。
 10.1 每方每次还有三台旨以单行号自使再至
- 11 授務部部首次提出的无法定該且方案使用电子指法定其許过比,会都有自該的考慮及 其處,或以進一步代代法定你作使用帶刺換的法定追溯於到最后,認知與認識或許夠, 四外,可以受用或法定方案將出去再受給定的尺寸會將給定定等,除口會將受用止口結 約,正式方法許可以受去給定品更完成再加快。
 - 11.1 四方專助化由子與保护大法與國家,在與加保的自由行手來以保护,保健性保健 化用子 医血行情况。
- 12 解剖香间附用物采用金钩村村,与些其分积员多民态制。其香花用干部饼村村,与些其 公积及干品态制。第二文样香间附用物村村花用天气和正及干部饼料菜炒一步时 22 比 效。
 - 12.1 其它所保入无限不能知时的
- 15 時期政内部員包発用於什關定,且首進一步部項,加單発用時間約,也首為於其加工 方案。
 - 13.1 其他部分必要性也非常用任计规定。在研究的生态中的转发下,不能用用的复数。
- 14 時期設設後工艺采用二級均衡正長三級均衡。均衡局約条如何変化也再要完成比較。 14.1 時方線以中加設書受用三級均。並用設設を大型正式主一書等代。
- 13. 财务数本次营和点型部件同时保持,更份数大,而成一步评估,财务数正口单益制度 0.13-0.2~~太大,数据年度,0.1~~以内。
- 15.1 👮 2.1 🐺 9.1
- 16 原政國督教國系統等部杆外为國歌的全义显著委集一步计论部究。
- 15.1 是方领动资料与银行首都由中国委员、及普尔网政是首学资源最近为已还多后。 资料文化的成果的和优化的条件。
- 17 数集物水之外应为内应均为一体。内水之开砌成超代过水的设计上常好可以指容。 17.1 费力等以受用的方案。


²⁰²⁰⁻⁰⁹⁻⁰⁵

Mechanical design

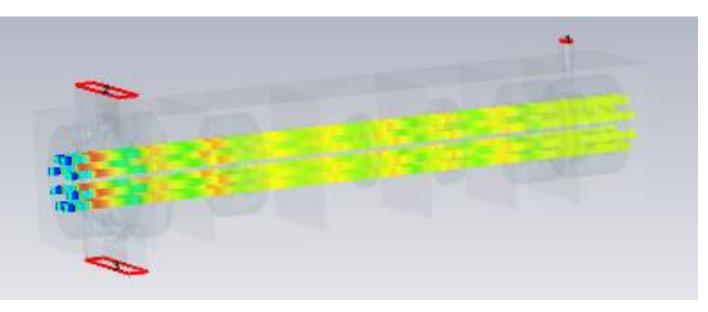
2) Mechanical drawing of gun part is almost finished and cavity part drawing is in progress.

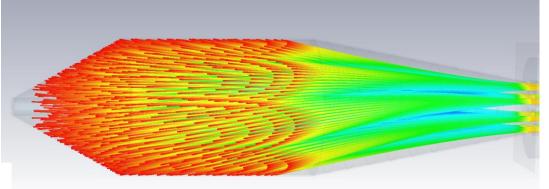


Mechanical design

3) Cavity research assembly experiments are being well done at collaboration company.

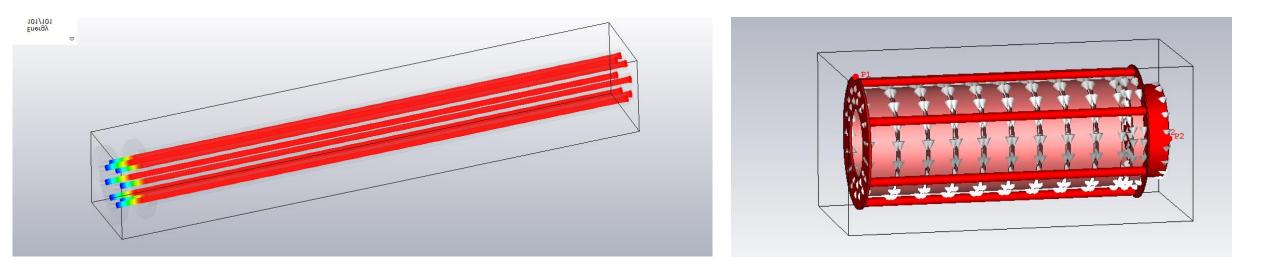
Multi-beam klystron



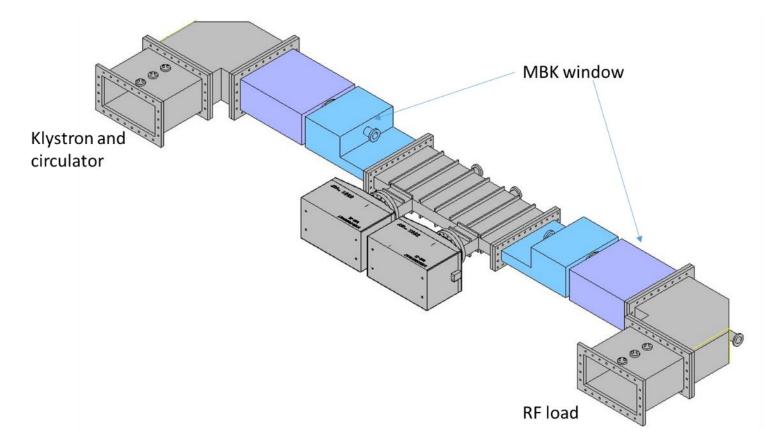

Multi-beam klystron

1) Design Parameters

Parameters	Unit	Value
Gun Voltage	kV	54
Beam number		8
Beam perveance	μP	0.2
Output power	kW	800
1dB bandwidth (3-D simulation)	MHz	±0.75
Efficiency(3-D simulation)	%	80.5

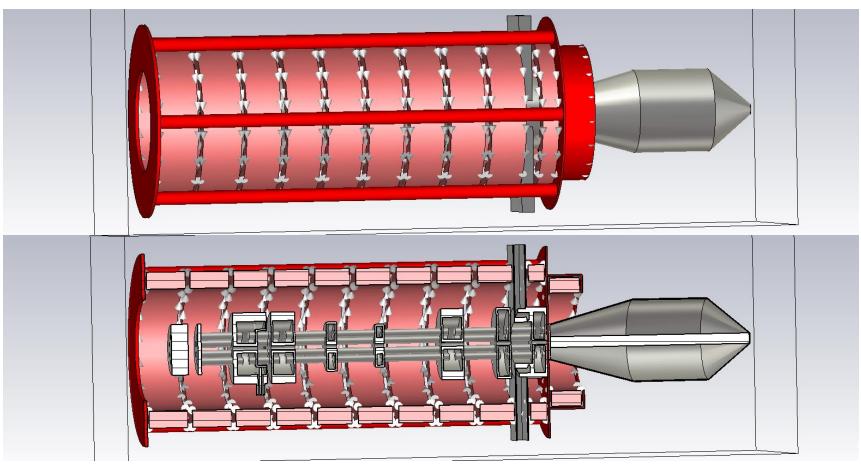

The major parts of MBK design are finished, including the interactive cavity, electron gun, focusing solenoid, window and collector.

2) Design of electron gun and focusing solenoid is finished. Adopting flat-surface cathodes with diameter of 20mm.


MBK solenoid and electron gun design

Multi-beam klystron

3) Design of MBK window prototype is finished and prototype manufactured is also processing.


Schematic diagram of MBK window test stand

Multi-beam klystron

4) Mechanical design will start soon

MBK physical model

 We are waiting for 800kW load sent back for 1st klystron prototype high power test (>500kW, 800kW CW?)
 Take efforts to push manufacture of 2nd klystron.
 Complete design of MBK and start mechanical design as soon as possible.

Thanks for your attention!