The Control system of CEPC

Presented by Gang Li On behalf of Control Group, Accelerator Center, IHEP

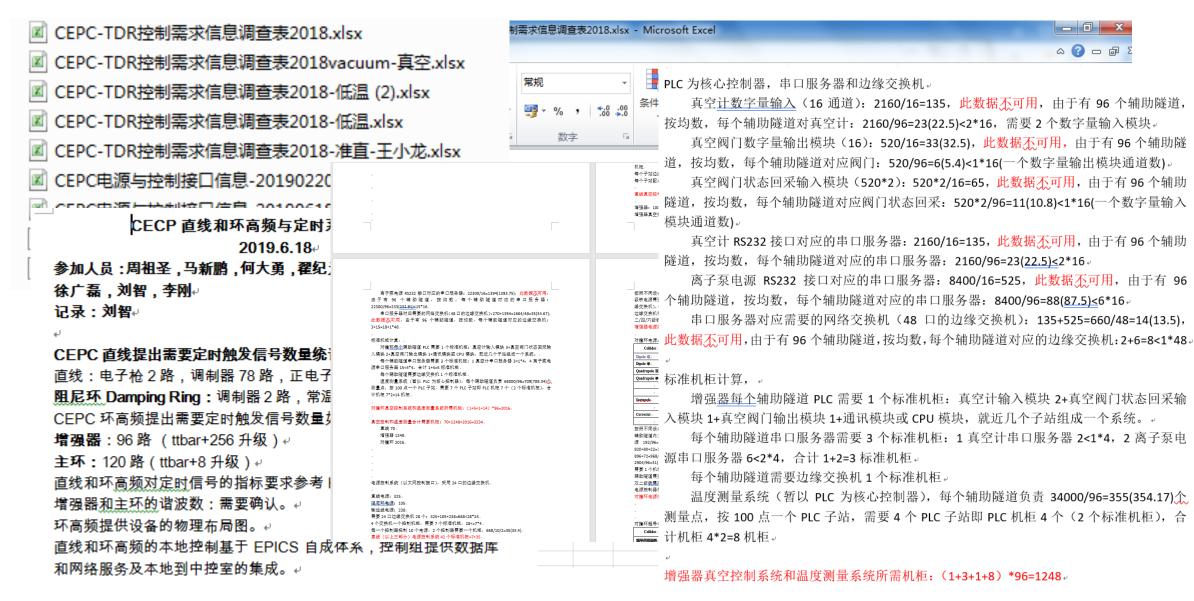
2020 international workshop on CEPC, Shanghai, Oct. 26th, 2020

Outline

• Performance and Scope of the CEPC control system

•Requirement information of controlled devices

•Control system and sub-system


Performance of the Control System

- 5bility+RT ≻Stability
 - Availability
 - ➢Flexibility
 - ➤Scalability
 - ➢ Reliability
 - ≻Real Time

Scope of the Control System

- Control Platform
- Central Control System
- Network System
- Timing System
- Post Mortem Analysis System
- Machine Protection System
- Power Supply Control System
- Vacuum Control System
- Temperature Monitoring System
- Integration of other system: RF, Cryogenic system, Injection/Extraction system etc.
- Others

Requirement information of controlled devices

Control Platform: Software

•The Choice of Control Platform

CERN: PVSSII/FESA (Process Visualization and Steuerung (Control) System)
 Most of European Accelerator facilities: TANGO

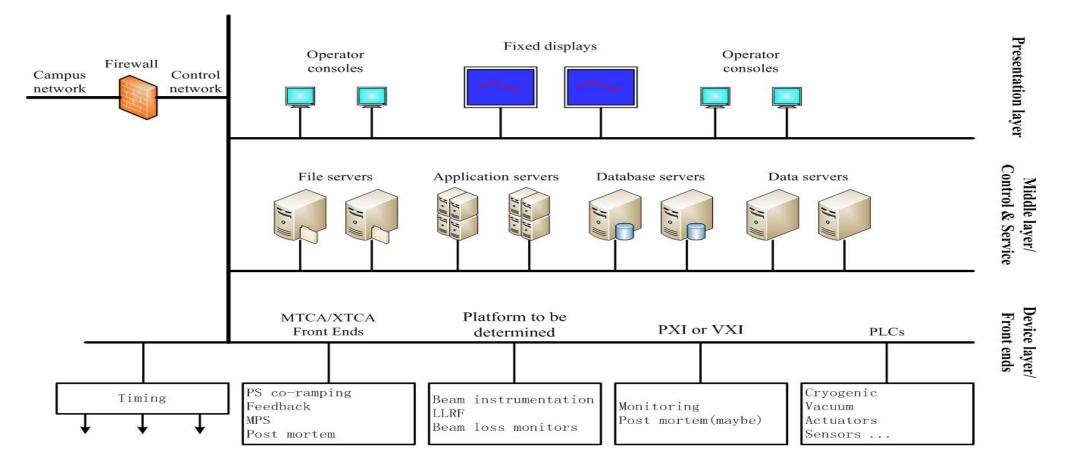
➢Most of American/Asian and parts of European Accelerator facilities : EPICS

Really Neat Things About EPICS

- ■1. It is **free**
- 2. It is open source
- 3. There are lots of users
- 4. All a client needs to know to access data is a PV name
- 5. You can pick the best tools out
- 6. ... or build your own
- 7. The boring stuff is already done
- 8. There is a lot of expertise available close
- 9. A good contribution becomes **internationally** known
- 10. It doesn't matter whether you need 10 PVs or 10 Million PVs
 Etc

Control Platform: Software

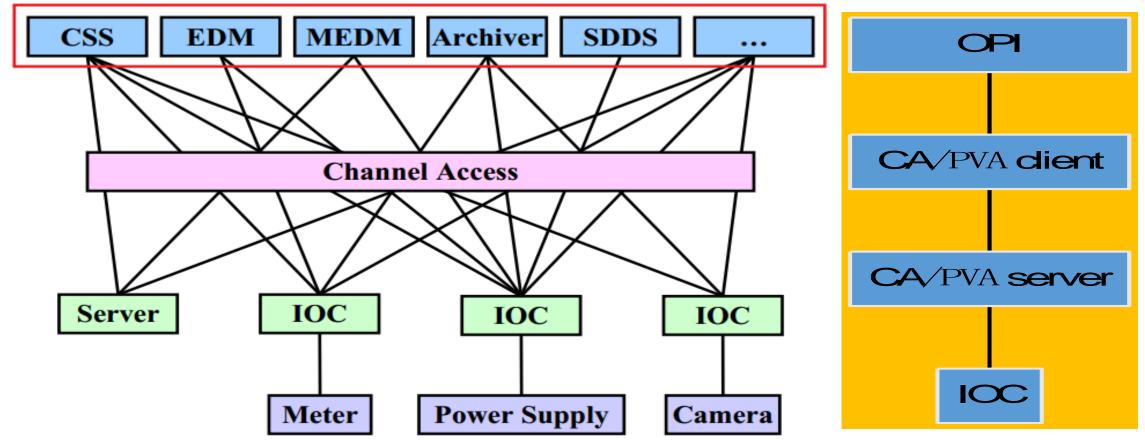
• EPICS (Experimental Physics and Industrial Control System)


- Open Source software toolkit
- •To create distributed soft real-time control systems
 - Particle accelerators
 - Telescopes
 - Large scientific experiments
- •Version:
 - V3.13->V3.14-->V3.15->V3.16-->V4->V7....
 - BEPCII:V3.13
 - CSNS:V3.14
 - HEPS:V3.15/V7
 - CEPC:Vxnn(X>=7)

Control Platform: Hardware

•Standardization, Modularity and Commercial products

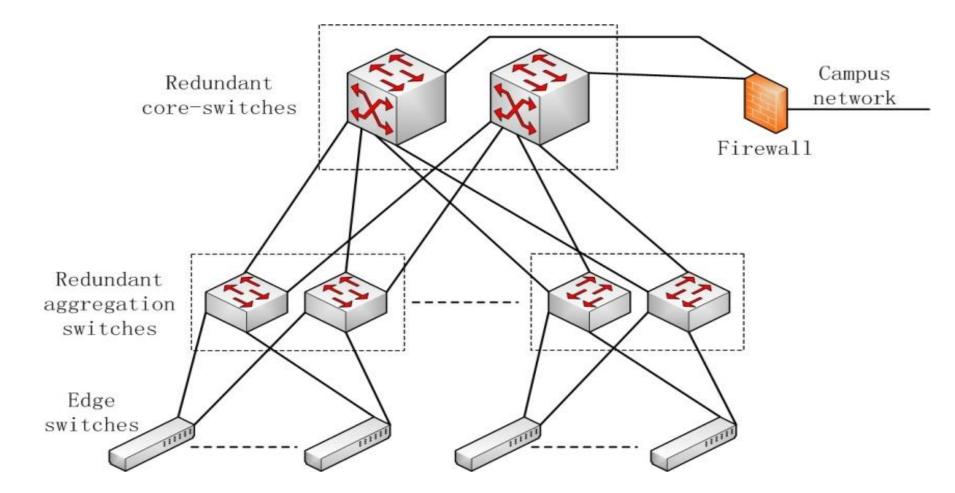
- ≻PLC
- ≻ATCA/uTCA
- ➤Serial device servers
- ➢Blade servers
- Motion controller/Driver
- ≻etc.


Control System and sub-system

Overall hardware architecture of the control system

Control System and sub-system

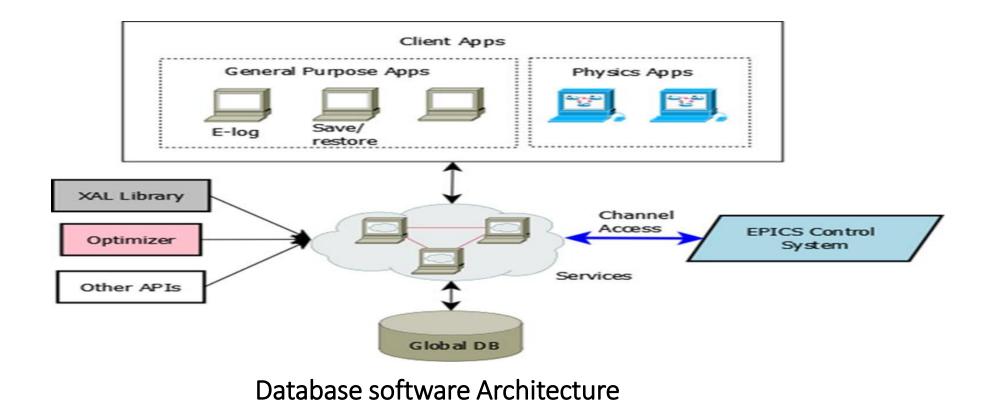
Client Tools


Softeware architecture of the control system

Control System and sub-system: CCS

•Central control system

- Management and operation of IOCs/OPIs
- Server and management of High level software
- CA/PVA Gateway
- CSS, caQtDM, PyDM etc
- Data Archiver
- Alarming system
- Issue information of machine via instant message(weChat)
- Machine status summary on Web
- Elog
- Issue tracking
- Etc


Control system and sub-system: Network

Control Network System: three layers

Control System and sub-system: Database

 Any important data throughout the entire life cycle of an accelerator should be captured systematically and stored persistently

Control System and sub-system: Database

• Prototypes of database based on the current requirement

D Parameter Database

Keep track of all important physics and equipment parameters consistently for an accelerator during the busy design period

② Naming Convention Database

>For a large accelerator project, everything has to be named according to strict rules

③ Magnet Database

Capture and store all essential data, including a few particular magnet measurement methods

④ Equipment Database

Store all equipment including spared parts

ⓑ Lattice and Model Database

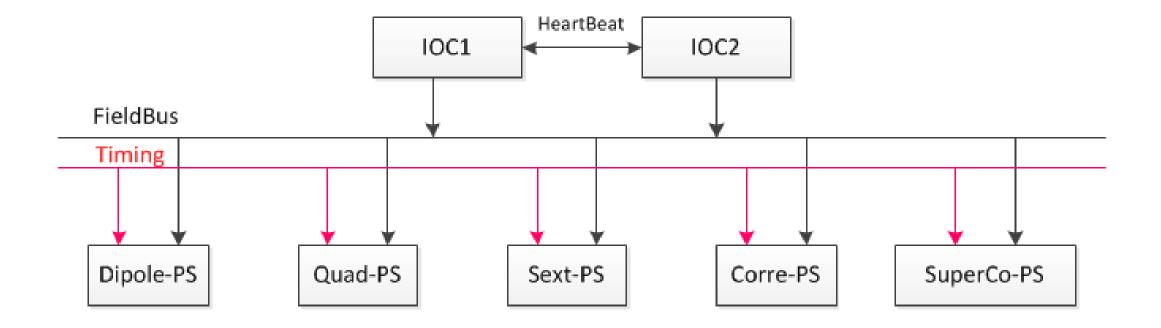
> Keep design lattices and their corresponding model calculation data

Control system and sub-system: PS

位量	电源数量	安装位】	Ħ.	箱度	接口类型								
Collider	8160		位量	电源数量	安装位量		inte entre 440 y	a MA and					
Dipole双	8	均匀	1			位置	电源数量	安装位置	t	精度	楼口 类型		
Dipole单	162	均匀分	Booster	430									
Quadrupole双	192	均匀分	Dipole	16	均匀分布在地」	Transport Li	ine 23	8					
Quadrupole单	920	均匀分	Quadrupole	32	均匀分布在地」	Dipole	6	0 均匀	分布在输运线电源厅	500ppm	以太网		
	80	均匀分	Sextupole	32	均匀分布在地。	Ł		4 均匀	分布在输运线电源厅	500ppm	以太网		
	22	均匀分	Corrector	350	均匀分布在地下9	Quadrupole	12	0 均匀	分布在输运线电源厅	500ppm	以太网		
Sextupole	896	均匀分				Corrector	5	4 均匀	分布在输运线电源厅	500ppm	以太网		
-	72	均匀分	-										
Corrector	2904	均匀分	-										
	2904	均匀分		at here bet					位量	电源数量	安装位量	精度	接口类型
			位量	电源数量	安装位量				Damping Ring	105			
			Transport Line	238		位量	电源数量	安装位置		32	均匀分布在直线电源厅	500ppm	以太网
			Dipole	60	均匀分布在输:		电源致重	安淀证量	Dipore				
			Dipore	4	均匀分布在输; 均匀分布在输;	Linac	32	5		6		500ppm	以太网
位置	电源数量	安装位				4			Quadrupole	52		500ppm	以太网
			Quadrupole	120		Dipole	1			13	均匀分布在直线电源厅	500ppm	以太网
Collider	36		Corrector	54	均匀分布在输:	Quadrupole	17	_	Sextupole	2	均匀分布在直线电源厅	500ppm	以太网
超导四极磁铁	8	均匀分				Solenoids	2	2 均匀	0				
超导反校正线圈	4	均匀分	布在地下对撞区电源	厅 20ppm	以太网			5 均匀	可分布在直线电源厅	500ppm	以太网		
超导反校正线圈	8	均匀分	布在地下对撞区电源	厅 50ppm	以太网	Corrector	11	0 均匀	可分布在直线电源厅	500ppm	以太网		
	16	均匀分	布在地下对撞区电源	厅 50ppm	以太网								

Control system and sub-system: PS

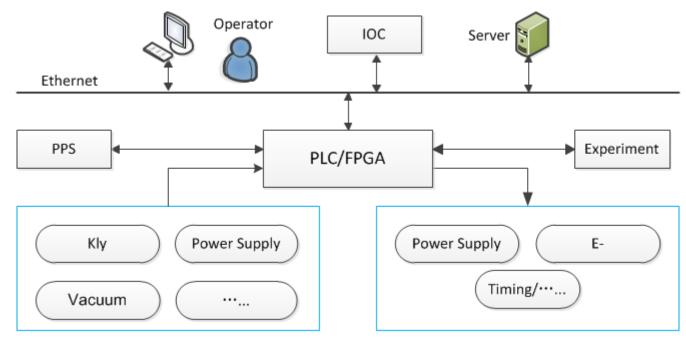
•Accelerate from 10/20GeV to 120GeV.


•Magnets' power supply co-ramping within an accuracy of tens of μ s.

•Two methods of PS ramping

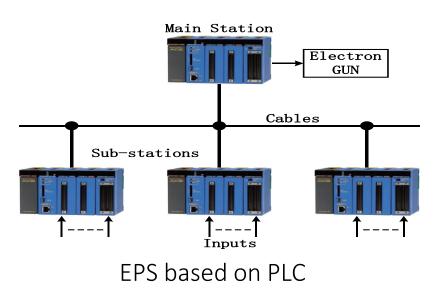
Waveform can be pre-downloaded into the front end controller, then coramping starts with an synchronized signal.

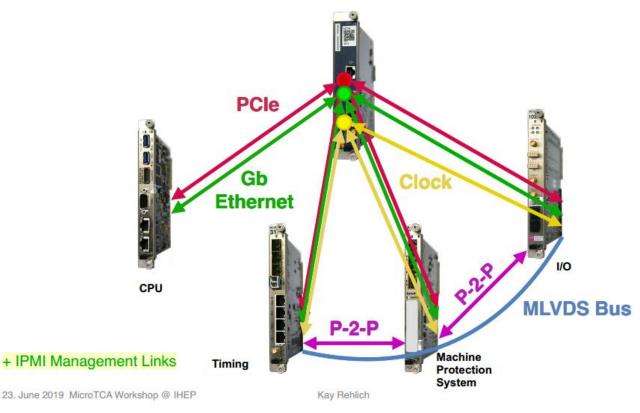
- Waveform can be written into the front end controller in real time with an deterministic latency.
- •High reliability and high availability (Redundancy).


Control system and sub-system: PS

Redundant IOCs for power-supply controls

Control system and sub-system: MPS

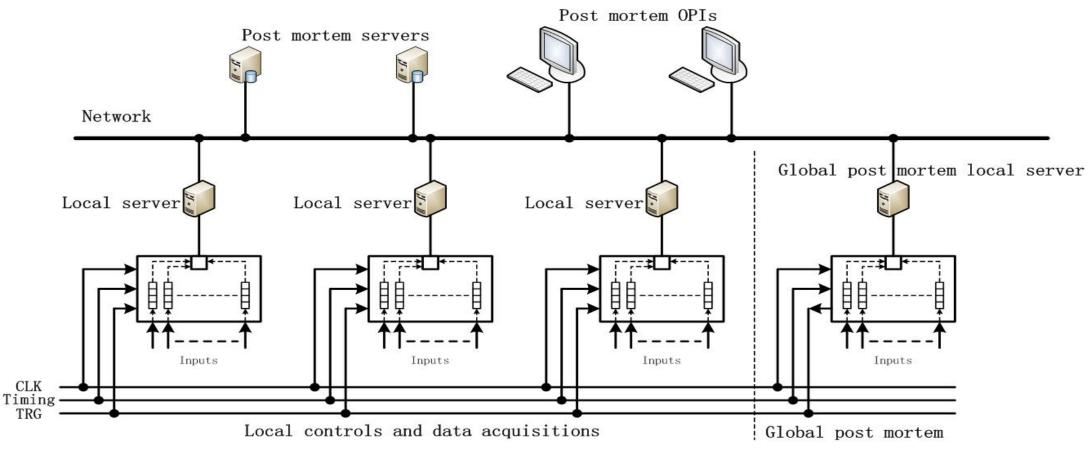

- •Tightly related to the accelerator design
- Stop beam or steer beam to dump, when key device or sub-system is a fault or abnormal
- •Generally, the structure of MPS=EPS (PLC)+FPS (FPGA)



The MPS Architecture of CEPC

Control system and sub-system: MPS

- PLC for slow inputs, a response time of tens of ms is defined.
 - The actuators are RF power ramp down and shutdown of electron gun.
 - Preliminary name : Equipment Protection System (EPS).
- FPGA for fast inputs, a response time of tens of micro seconds is defined.
 - The actuators are RF power off and shi
 - Preliminary name : Fast Protection Sys
- Individual systems for loose coupling

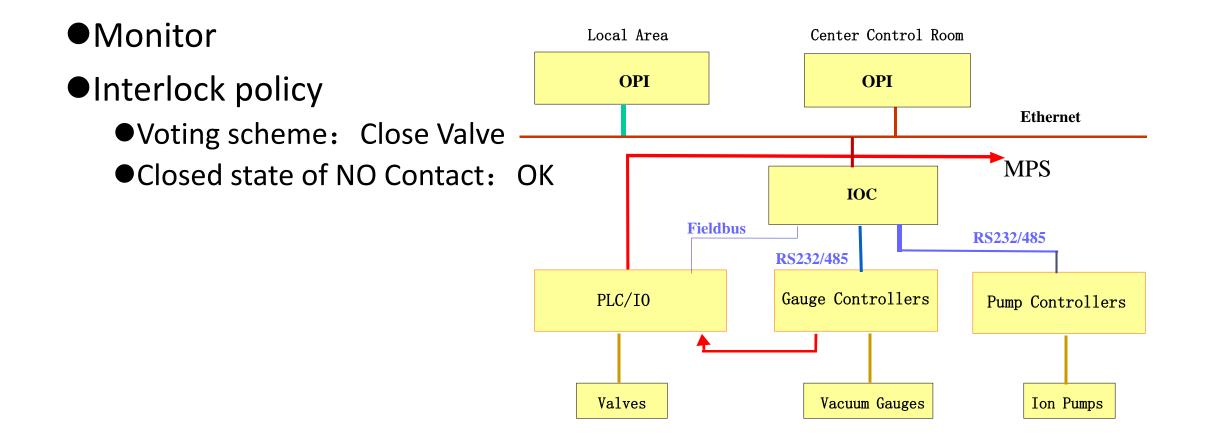


Control system and sub-system: Post Mortem Analysis

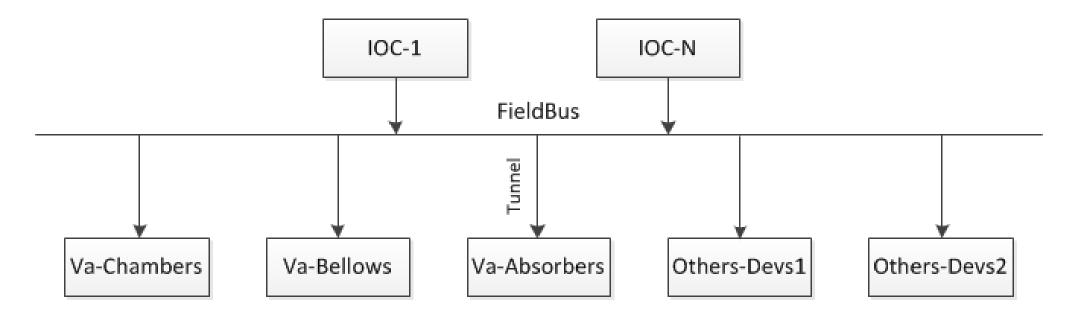
- For fast and accurate fault diagnostics.
- •Both hardware and software works.
- •Tightly related to the devices' controls.
- •Accurate timestamp needed.
- •Global trigger, global clocks, global timing, analysis software ...

Control system and sub-system: PMA

Preliminary design of post mortem analysis


Control system and sub-system: Vacuum CS

A	В	С	D	E	F	G	Н
系统名称	被控设备	与控制接口设备/传感器	指标需求	区域 (位置:直线、阻尼环、输运约	数量	连接电缆芯数	接口类型
真空系统	真空计	真空控制器	测量极限:10 ⁻¹¹ mbar	直线/阻尼环/输运线	620	2(铜线)	RS485,继电器接点
				增强器	2160	2(铜线)	RS485,继电器接点
				对撞机	4320	2(铜线)	RS485,继电器接点
	真空阀门	阀门控制器	全金属气动阀门PLC	直线/阻尼环/输运线	38	6(铜线)	24Ⅴ开关量
				增强器	520	6(铜线)	24Ⅴ开关量
				对撞机	1040	6(铜线)	24Ⅴ开关量
	真空盒、波纹管、光子吸收器	Pt温度传感器(三线制/四	0.5度	直线/阻尼环/输运线	500	2(铜线)	
				增强器	34000	2(铜线)	
				对撞机	68000	2(铜线)	
	离子泵	离子泵电源	5kV	直线/阻尼环/输运线	1430	2(铜线)	RS485
				增强器	8400	2(铜线)	RS485
				对撞机	22300	2(铜线)	RS485


Vacuum Gauge: 7000 Valve: 1598 Ion pump: 32130

Temperature sensor: 102500

Control system and sub-system: Vacuum CS

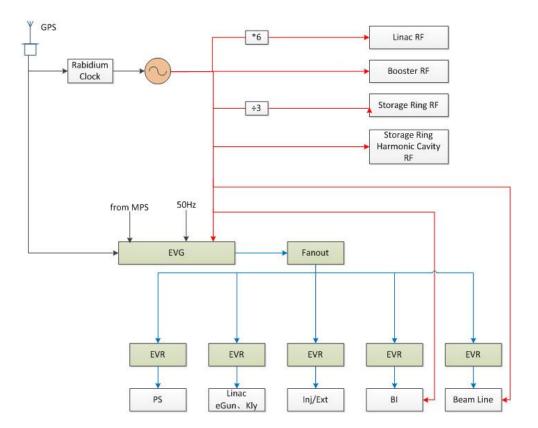
- •TM: Temperature Monitoring
- •Quantity: 100,000+(Vacuum devices)
- •Others:

系统区分	定时信号需求 数量	性能要求	备注	
束测(TTL信号)	10664路	抖动<50ps	BPM、profile、DCCT、工作点测量、 BCM、束流损失	
束测(RF信号)	5030路	抖动<0.5ps, <1ps, <5ps	BPM、profile、DCCT、工作点测量、 BCM、束流损失	
电源	860路	抖动<5ns	Booster、Dipole、Quadrupole、 Sextupole、Corrector等磁铁电源	
直线加速器 阻尼环 输运线	404路	抖动<50ps或者20ps	回旋频率、注入频率、触发信号	
直线和环高频	301路	抖动<20ps	增强器和主环的谐波数有待确认	

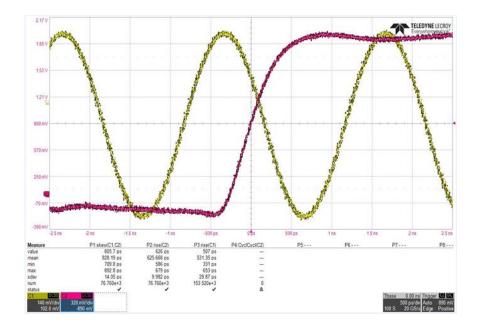
- •An maximum distance of about 50 km (about half ring).
- •Latency change due to temperature variations(compensation)
- •An accuracy of tens of ps
- Precise timestamp will be provided.

Event timing system

•Swiss Light Source (SLS), 1999年, Specially designed for the accelerator

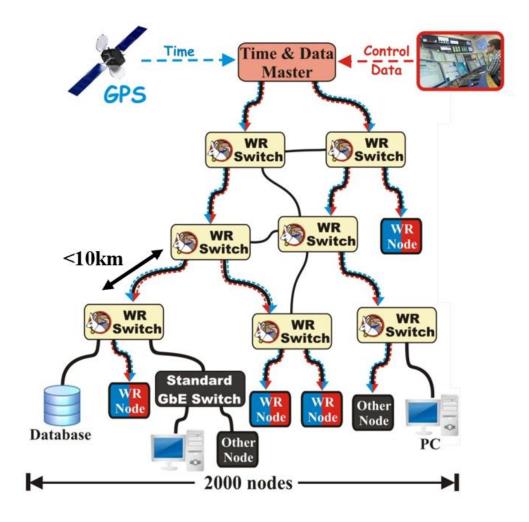

 Commercial products, widely used in many accelerators, such as BEPCII, CSNS and so on

- The MRF Timing system originally developed for the Swiss Light Source (SLS), Paul-Scherrer Institut in 1999
- · First commercially available timing system for particle accelerators
- Current users include
 - SLS, PSI
 - Diamond Light Source Ltd., U.K.
 - SSRF, Shanghai, China
 - Australian Synchrotron
 - ALBA, Spain (Tango)
 - Elettra, Trieste, Italy (Tango)
 - BEPCII, Insitute for High Energy Physics, Beijing, China
 - LCLS, Stanford Linear Accelerator Center, USA
 - KEK, Japan
 - FERMI, Trieste, Italy (Tango)
 - TLS, Taiwan
 - NSLS II, Brookhaven, USA
 - PAL-XFEL, Pohang, South Korea
 - LANSCE upgrade, Los Alamos, USA
 - FRIB, Michigan, USA
 - MAX IV, Sweden
 - SwissFEL, PSI
 - STFC, Daresbury
 - ESS, Sweden
- · Most of the sites listed above are using EPICS


The basic structure of Timing System

- Event timing system and RF transmission system
- Event timing system: Trigger signal and Low frequency clock signal
- RF transmission system: Transmit high stability RF signal

Red line: RF transmission system Blue line: Event Timing System



Fine Step: 5ps Jitter<15ps

Alternative Plan: WhiteRabbit

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation (included in IEEE 1588)
 - Deterministic data transfer
- Initial specs: links $\leq 10 \text{ km } \& \leq 2000 \text{ nodes}$

- EVG/EVR Timing System
 - ≻Trigger
 - ≻RF reference
 - Precise timestamping
- EVG/EVR: Broadcast
- Site: APS, SLS, BEPCII, CSNS, SSRF, etc
- Support

Commercial productsEVG/EVR of SSRF

≻Homemade I/O and delay board

- White Rabbit Timing System
 Precise timestamping
 Trigger
 RF reference
- V.S Master/Slave: Bi-directionality
 - Site: CERN、GSI、ESRF、 Spring-8、SHINE、LHAASO、 German Stock Exchange, etc
 - Support
 - ➢OpenHareware+Commercial products

Routine control and design considerations

Integration of other system control, such as RF, Cryogenic system, etc.

Video monitoring.

To integrated into the control system, the following rules must be observed:

- 1. Consistent with version of EPICS
- 2. Interface to CA/PVA of EPICS
- 3. Reserve Hardware Interface
- 4. Agree with other standards of control system

Cooperation: Different Division of IHEP

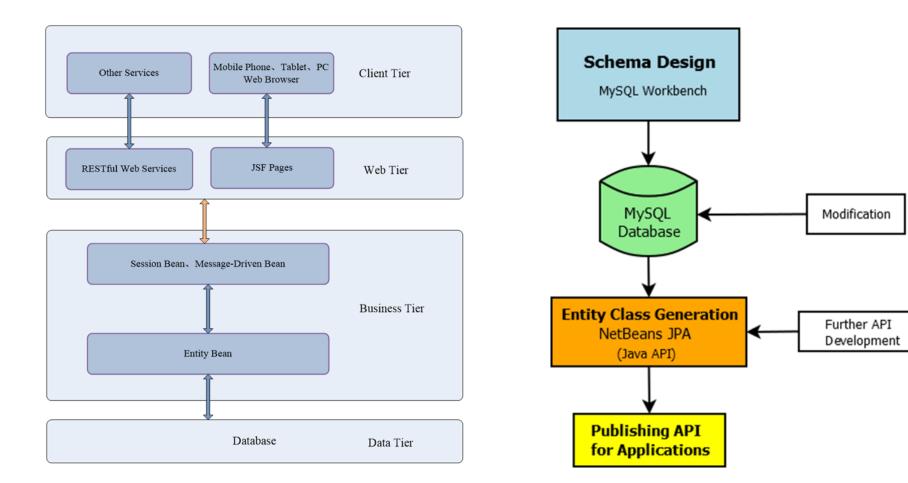
Cooperate with other accelerator complex (CSNS, HEPS, BEPC..)

- Management and design of Database(HEPS)
- Issue information(CSNS)

•Etc

Cooperation: Database

• Database based on the user's requirement


Parameter Database Magnet Database Lattice and Model Database Log and trouble tracking Management of Cable and device Configuration of Security database Etc..

Naming Convention Database Equipment Database Management of File Alignment Database Alarm database MPS and interlock database

More and more Database will be designed with the progress of the Project

Cooperation: Database

• The structure of RDB database

Cooperation: Issue information

• Based on Wechat

10:15	••• 0.0K/s 🕏 🔐 🐨	10:13	0.4K/s \$ ⓒ .utl 훇. 39	10:17	20:30 ···· 3.9K/s 彩 句 utl 奈 ⑤	6:22 0.0K/s ≹ ∕ £ ⊙ .util 🗟 🐽
< cs	SNS加速器信息系统 🕅 🛛 🕺 🤱	× Accelerator	Operation Status ····	× CSNS Accelerator Status ····	× CSNS Accelerator Status ····	X Target Beam Power
	MAJOR alarm: 直线参考线供水 温度报警	ION	PBW	VAC Status Linac RCS LR/RT 阀门 分子泵	Accelerator Status Machine Mode Machine Status PPS Area	京流打靶功率24小时历史曲线
<u>Ens</u>	报警提示: MAJOR alarm: 直线高频参考线	离子源	质子束窗	R1CCG01 1.7E-7 R3CCG01 8.7E-8 R1CCG02 1E-7 R3CCG02 8.9E-8 R1CCG03 5.5E-8 R3CCG03 4E-8	TARGET RUNNING ALL Linac Key RCS Key Target Key	功率 60 kW 50 kW ***********************************
	壁温度报警	RRF 环高频	24 耙前24米	R1CCG03 5.3E-8 R3CCG03 4E-5 R1CCG04 8.2E-8 R3CCG04 7E-8 R1CCG05 5.3E-8 R3CCG05 2.1E-7		40 kW
<u>(</u> SNS	报警提示: MAJOR alarm: 直线参考线供水 温度报警	WNS	IP	R1CCG06 1.2E-7 R3CCG06 5.9E-8 R2CCG01 1.4E-7 R4CCG01 1E-7 R2CCG02 1.5E-7 R4CCG02 2.9E-7	Beam Rep-Rate25HzBeam Width250 us	30 kW 20 kW
GNS	报警提示: MAJOR alarm: 直线高频参考线	反角白光	真空商子泵	R2CCG03 1.3E-7 R4CCG03 3.1E-6 R2CCG04 5.1E-8 R4CCG04 8.6E-7 R2CCG05 7E-8 R4CCG05 2.4E-8	Inj Proton Num7.89 E12Ext Proton Num7.74 E12	10 kW 0 kW 6:23 9:59 13:35 17:11 20:47 0:23 3:59 6:22 17:30 17:30 17:30 17:30 17:30 17:31 17:31
	订阅设置	退度监测	IE 注入引出	R2CCG06 2.5E-7 • R4CCG06 3.1E-8 • R2CCG07 1.8E-7 •	RTBT CT03 7.86 E12 Beam Power 50.34 kW	注: 数据采样率为1次/分钟 24小时束流有效打靶时间: 23.936 小时
<u>C</u> sns	订阅查询 Irm: 直线高频参考线			R2CCG08 1.1E-7 ● 表示真空度正常	SU.34 KW	
GNS	报警管理 值班信息 ————————————————————————————————————	UPS		● 表示真空度异常		
	urm: 直线参考线供水 机时计划					
	综合信息 历史曲线 实时状态					

Cooperation: IHEP and Company

Cooperate with company (Cosylab, Geekoo,..) ●Mini workshop of CEPC control system

Control Cooperation Group -

20200603 -

视频会议方式:ZOOM: 731 236 4513。

会议时间: 12:30~14:00。

Convener: - Prof. Jie Gao -

- 1、the Status and Progress of CEPC Prof. Jie Gao
- 2、CEPC-Large Experimental Facilities: Cosylab Experience
- 3、基于 White Rabbit 同步技术的商业化产品介绍 Dr. Kai Zheng(更鼓电子)。
- 4、Discussion

~	:								
Q 查找参会者									
1	IHEP-contro	Se Se							
YL	Jian Ye (主持	• 🧏							
JG	Jie Gao	 ↓ ↓ 	,∕я						
2	22k	Š	,_∕⊅						
LD	Dapeng JIN		Ý	⊡ ∕⊅					
НМ	HUAWEI Ma	Š	,∠∕4						
JL	Jungang Ll		Ý	⊡ ∕⊅					
к	KAI		×	⊠ ∕					
L	LeiGe			×					
RH	rok hrovatin		Š	1					
RŠ	Rok Šabjan		×	1					
TS	Tom Slejko		Ý						
xw	Xueting WU		Ý	┌ ∕₄					
	邀请	解除静音	举手						

Rok Sabjan & Tom Slejko

Summary

More detailed requirements should be further clarified, with the progress of CEPC TDR

• EPICS: Cooperate closely with EPICS community and company

•New technique: IoT/AI/machine learning in control system

Thanks a lot!