Performance of the CLIC detector and the CLD detector of FCC-ee for high-energy running

Philipp Roloff (CERN)

on behalf of the CLICdp collaboration and of the CLD detector study

<u>27/10/2020</u> International workshop on the high energy Circular Electron-Positron Collider (CEPC)

Important processes in e⁺e⁻ collisions

 \rightarrow Wide range of physics opportunities, best explored in several energy stages

- 2-fermion production, e.g. qq
- W-boson pair production (WW)
- Higgsstrahlung (HZ): best at 240 - 380 GeV → "Higgs factory"
- tt threshold: 350 GeV
- tī continuum: ≥ 365 GeV
- Double Higgsstrahlung (HHZ): cross section maximum ≈ 600 GeV
- Single and double Higgs in WW fusion $(Hv_ev_e and HHv_ev_e)$: cross section rises with energy

+ Direct searches for new particles: highest possible energy

Physics motivations detector requirements (1)

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^+\mu^-$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} GeV^{-1}$$

• Jet energy resolution (W/Z/H separation, e.g. σ_{ZH} , H \rightarrow inv.)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\% \text{ for } E \ge 50 \text{ GeV}$$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}$$
, $a \approx 5 \,\mu m$, $b \approx 10 - 15 \,\mu m$

Lepton identification, very forward electron tagging

Philipp Roloff

Physics motivations detector requirements (2)

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^+\mu^-$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} GeV^{-1}$$

• Jet energy resolution (W/Z/H separation, e.g. σ_{ZH} , H \rightarrow inv.)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\% \text{ for } E \ge 50 \text{ GeV}$$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}$$
, $a \approx 5 \,\mu m$, $b \approx 10 - 15 \,\mu m$

Lepton identification, very forward electron tagging

27/10/2020

Physics motivations detector requirements (3)

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^+\mu^-$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} GeV^{-1}$$

• Jet energy resolution (W/Z/H separation, e.g. $\sigma_{_{ZH}}$, H \rightarrow inv.)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\% \text{ for } E \ge 50 \text{ GeV}$$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

For the considered vertex detector designs

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}, a \approx 5 \,\mu \,m, b \approx 10 - 15 \,\mu \,m \rightarrow \sigma_{SP} \approx 3 \,\mu \,m$$

Lepton identification, very forward electron tagging

27/10/2020

Philipp Roloff

CLIC experimental conditions

Parameter	380 GeV	1.5 TeV	3 TeV		C
Luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9		
L above 99% of \sqrt{s} (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0		Drives timing
Repetition frequency (Hz)	50	50	50	~	requirements
Bunch separation (ns)	0.5	0.5	0.5	4	for CLIC detector
Number of bunches per train	352	312	312		
Beam size at IP σ _x /σ _y (nm)	149/2.9	~60/1.5	~40/1	R	Very small heam
Beam size at IP σ _z (μm)	70	44	44	\leftarrow	

Performance of CLICdet and CLD

27/10/2020

Philipp Roloff

FCC-ee experimental conditions

	FCC-ee					
	Z	Higgs	ttbar			
√S [GeV]	91.2	240	365			
Luminosity per IP (10 ³⁴ cm ⁻² sec ⁻¹)	230	8.5	1.7			
no. of bunches / beam	16640	393	48			
Bunch crossing separation (ns)	20	994	3000			
Beam size at IP σ_x/σ_y (µm)						
Bunch length (SR / BS) (mm) Beam size at IP σ_z (mm)	3.5 / 12.1	3.3 / 5.3	2.0 / 2.5			

Example: 3 BX / 10 µs at 365 GeV FCC-ee

 Impact of beam-induced background to be mitigated through MDI and detector design (e⁺e⁻ pairs dominant, γγ → hadrons and synchrotron radiation small in the detectors)
 Tracking detectors need to achieve good resolution without power pulsing

27/10/2020

Philipp Roloff

Particle flow calorimetry

27/10/2020

CLIC detector concept: CLICdet

CLICdp-Note-2017-001 arXiv:1812.07337

Designed for Particle Flow Calorimetry:

• High granularity calorimeters

(ECAL and HCAL) inside solenoid

- Low mass trackers
- \rightarrow reduce interactions / conversions

Basic characteristics:

- B-field: 4 T
- Vertex detector with 3 double layers
- Silicon tracking system (1.5 m radius)
- ECAL with 40 layers (22 X₀)
- HCAL with 60 layers $(7.5 \lambda_l)$

Precise timing:

- ≈ 10 ns hit time-stamping in tracking
- 1 ns accuracy for calorimeter hits

Beam-induced background can be efficiently suppressed by applying p_T -dependent timing cuts on individual reconstructed particles (= particle flow objects)

 $e^+e^- \rightarrow t\bar{t}$ at 3 TeV with background from $\gamma\gamma \rightarrow$ hadrons overlaid

27/10/2020 Philipp Roloff

CLD detector concept

27/10/2020

Philipp Roloff

Detector performance studies

Basic detector performance:

- Momentum resolution
- Impact parameter resolution
- Tracking in complex events
- PFA: photon energy resolution
 - PFA: jet energy resolution

High-level physics objects:

- Flavour tagging
- W/Z separation

NB: all results based on full detector simulations and detailed reconstruction

Simulation software used

Philipp Roloff

27/10/2020

Momentum resolution in full simulation

Single muon events:

- Transverse momentum resolution at 100 GeV in the barrel:
- \approx 3 x 10⁻⁵ GeV⁻² for both detector models

Philipp Roloff

Impact parameter resolution

Optimisation example: modifications to the CLICdet and CLD vertex detectors

- Impact parameter resolution with increased material (+50%)
- Worse single point resolution (3 μ m \rightarrow 5/7 μ m)

→ Small effect of increased material budget (needs refinement of flavour tagging algorithm due to increased number of secondary interactions)

 \rightarrow The single point resolution has a large impact on the impact parameter resolution at high p_{_{T}}

Tracking in complex events

Test case: $e^+e^- \rightarrow t\bar{t}$ events at $\sqrt{s} = 3$ TeV

Fake rate = fraction of reconstructed tracks with purity < 75% **Purity** = #hits caused by MC particle / #hits in reconstructed track

 \rightarrow High efficiency over large p_{τ} range with O(1%) level fake rate

→ Impact of beam-induced backgrounds is small

Nucl. Inst. Meth. A 956, 163304 (2020)

27/10/2020

PFA: photon energy resolution

• Fine-grained sampling calorimeters with silicon technology

- Tungsten absorber to minimise Molière radius and separate showers
- Increased number of layers gives better photon energy resolution (at additional cost)
- No impact on jet energy resolution

Optimisation example: ECAL options with different W layer thickness and 22 X₀ overall in CLD

Layer structure	Thickness tungsten alloy	Total thickness per layer	
	[mm]	[mm]	
40 uniform	1.9	5.05	
30 uniform	2.62	5.77	
20 uniform	3.15	7.19	
20 thin + 10 thick	1.9 + 3.8	5.05 + 6.95	

Layer structure	$\frac{\text{JER } [\%]}{\sqrt{s} = 365 \text{ GeV}}$	$JER [\%]$ $\sqrt{s} = 91.2 \text{ GeV}$
40 uniform	3.62 ± 0.05	4.52 ± 0.06
30 uniform	3.72 ± 0.05	4.45 ± 0.06
20 uniform	3.78 ± 0.05	4.82 ± 0.07
20 thin + 10 thick	3.67 ± 0.05	4.56 ± 0.06

 \rightarrow Jet energy resolution almost identical for the 4 ECAL options

27/10/2020

Philipp Roloff

PFA: jet energy resolution

Test case: $e^+e^- \rightarrow q\overline{q}$ (q = u,d,s) events

Jet energy resolution = energy sum of all reconstructed particles **RMS**₉₀ = smallest range of reconstructed energy containing 90% of events

 \rightarrow Jet energy resolution requirement achieved except in the very forward direction)

 \rightarrow Up to 10% improvement from software compensation

EPJ C 77, 698 (2016)

27/10/2020

Philipp Roloff

Beam-induced background: CLICdet

- Jets reconstructed using VLC algorithm (R = 0.7) in exclusive mode with 2 jets
- Beam-induced backgrounds suppressed with p_T-dependent timing cuts

Eur. Phys. J. C78, 144 (2018)

 \rightarrow Beam-induced background mainly affects low-momentum jets and the forward direction

arXiv:1812.07337

27/10/2020

Philipp Roloff

Beam-induced background: CLD

- Jets reconstructed using VLC algorithm (R = 1.1) in exclusive mode with 2 jets
- 400 ns time integration window assumed at both energies

Eur. Phys. J. C78, 144 (2018)

- \rightarrow Generally, the impact of beam-induced background is very small
- \rightarrow Largest impact in the forward direction at 91.2 GeV
- \rightarrow No timing cuts applied

Philipp Roloff

Flavour tagging

Relevant detector parameters:

- Vertex detector single point resolution
- Momentum resolution
- Vertex detector material budget
- Vertex detector geometry

Example: b- and c-tagging performance for $e^+e^- \rightarrow qq$ events with 20° < $\theta(q)$ < 90° in the CLICdet detector at $\sqrt{s} = 500$ GeV

arXiv:1812.07337 Nucl. Inst. Meth. A 808, 109 (2016)

27/10/2020

Philipp Roloff

Optimisation example: smaller beam pipe in CLD

27/10/2020

Philipp Roloff

- Alternative FCC-ee interaction region with smaller beam pipe radius
- Innermost barrel layer moved from 17.5 mm to
- 12.5 mm, outer radius unchanged
- Vertex disks unchanged

Vertex barrel layer	Radius for the default model [mm]	Radius for the new model [mm]
Layer 1	17.5	12.5
Layer 2	18.5	13.5
Layer 3	37	35
Layer 4	38	36
Layer 5	57	57
Layer 6	58	58

- $e^+e^- \rightarrow q\overline{q}$ events with $\theta(q) = 80^\circ$
- "Truth" tracking

→ Visible improvement for charm at both energies and beauty at $E_{jet} = 45$ GeV (most decays before layer 1)

arXiv:1911.12230

W/Z separation: CLICdet

Test case: separation of hadronic W and Z boson decays in WW $\rightarrow qq\mu v_{\mu}$ and ZZ $\rightarrow qq\nu\nu$ events (charged leptons excluded from jet reconstruction)

Background	$E_{\mathrm{W,Z}}$	$\sigma_{m(\mathrm{W})}/m(\mathrm{W})$	$\sigma_{m(\mathrm{Z})}/m(\mathrm{Z})$	ε	Separation
	[GeV]	[%]	[%]	[%]	[σ]
	125	5.5	5.3	88	2.3
no DC	250	5.3	5.4	88	2.3
	500	5.1	4.9	90	2.5
	1000	6.6	6.2	84	2.0
	125	7.8	7.1	80	1.7
3 TeV BG	250	6.9	6.8	82	1.8
	500	6.2	6.1	85	2.0
	1000	7.9	7.2	80	1.7
380 GeV BG	125	6.0	5.5	87	2.2

 \rightarrow Separation of hadronic W and Z decays on 2σ level also with beam-induced backround over a very large energy range

Mass separation = $(m_z - m_w) / \sigma_{av}$ with $\sigma_{av} = (\sigma_z + \sigma_w) / 2$

arXiv:1812.07337

27/10/2020

Philipp Roloff

W/Z separation: CLD

Test case: separation of hadronic W and Z boson decays in WW $\rightarrow qq\mu v_{\mu}$ and ZZ $\rightarrow qq\nu v$ events with $m_{WW/ZZ}$ = 250 GeV (charged leptons excluded from jet reconstruction)

Two methods compared:

• W and Z masses from mean of Gaussian fit

 Mass distribution scaled so that mean of fit is equal to the PDG values of the W and Z masses

background	R	$\sigma_{m(W)}/m(W)$	$\sigma_{m(Z)}/m(Z)$	Separation	Separation (fixed mean)
overlay		[%]	[%]	$[\sigma]$	$[\sigma]$
no BG	0.7	5.94	5.75	2.19	2.16
with BG	0.7	5.95	5.90	2.13	2.13
no BG	0.9	5.26	5.11	2.46	2.43
with BG	0.9	5.18	5.19	2.43	2.43
no BG	1.1	4.99	4.94	2.58	2.54
with BG	1.1	5.36	4.96	2.50	2.45

 \rightarrow Effect of beam-induced background small

 \rightarrow Separation on the level of 2.5 standard deviations possible

arXiv:1911.12230

Summary and conclusions

 Precision physics at future e⁺e⁻ colliders imposes challenging requirements on the detector designs

• Physics-based detector optimisation is crucial, also to provide input to the hardware R&D efforts

• The CLICdet and CLD detector concepts optimised for particle flow analysis fulfil the requirements derived from physics needs

• The reconstruction of physics objects is robust against the expected beam-induced backgrounds at CLIC and FCC-ee

• Interesting possibilities for future improvement exist (optimisation for Z-pole operation, particle identification with timing, very long-lived particles, ...)

Thank you!

Backup slides

Philipp Roloff

Higgs factory: $e^+e^- \rightarrow ZH$

27/10/2020

Philipp Roloff

Higgs factory: other measurements

Exploration of all possible Higgs decay modes (including non-SM decays)

Philipp Roloff

27/10/2020

Eur. Phys. J. C 77, 475 (2017)

Performance of CLICdet and CLD

27

What about very high energies?

1. The forward detector region is increasingly important

Cross sections for VBF processes (e.g. single or double Higgs production) rise with energy

2. Boosted object reconstruction is crucial

The indirect sensitivity of $2\rightarrow 2$ scattering processes rises very strongly with energy despite falling cross sections:

- $e^+e^- \rightarrow W^+W^-$ and ZH: tagging of boosted W/Z/H bosons arXiv:1911.02523
- $e^+e^- \rightarrow t\bar{t}$: boosted top tagging JHEP 11, 003 (2019)
- $e^+e^- \rightarrow b\overline{b}$: large secondary vertex decay lengths, very collimated decay b- and c-hadron decay products

Higgs polar angle in $e^+e^- \rightarrow Hvv$ events

Higgs polar angle in $e^+e^- \rightarrow HHv\bar{v}$ events

B⁺ meson decay length for different b-jet energies

27/10/2020

12000

10000

8000

6000

4000

2000

0 ^E 0

Philipp Roloff

Key detector parameters

	ILD (IDR_L/IDR_S)	SiD	CLICdet	CLD	IDEA	CEPC baseline
Vertex technology	Silicon	Silicon	Silicon	Silicon	Silicon	Silicon
Vertex inner radius	1.6 cm	1.4 cm	3.1 cm	1.75 cm	1.7 cm	1.6 cm
Tracker technololy	TPC + Silicon	Silicon	Silicon	Silicon	Drift chamber + Si	TPC + Silicon
Tracker outer radius	1.77 m / 1.43 m	1.22 m	1.5 m	2.1 m	2.0 m	1.8 m
Calorimeter	PFA	PFA	PFA	PFA	Dual readout	PFA
(ECAL) inner radius	1.8 m / 1.46 m	1.27 m	1.5 m	2.15 m	2.5 m	1.8 m
ECAL technology	Silicon	Silicon	Silicon	Silicon	-	Silicon
ECAL absorber	W	W	W	W	-	W
ECAL thickness	24 X_0 (30 layers)	26 X _₀ (30 layers)	22 X ₀ (40 layers)	22 X _₀ (40 layers)	-	24 X_0 (30 layers)
HCAL technology	Scintillator	Scintillator	Scintillator	Scintillator	-	RPC
HCAL absorber	Fe	Fe	Fe	Fe	-	Fe
HCAL thickness	5.9 λ _ι (48 layers)	4.5 λ _ι	7.5 λ _ι (60 layers)	5.5 λ _ι (44 layers)	8 λ _ι (2 m)	4.9 λ _ι (40 layers)
(HCAL) outer radius	3.34 m / 3.0 m	2.5 m	3.25 m	3.57 m	≤4.5 m	3.3 m
Solenoid field	3.5 T / 4 T	5 T	4 T	2 T	2 T	3 T
Solenoid length	7.9 m	6.1 m	8.3 m	7.4 m	6.0 m	8.0 m
Sol. inner radius	3.42 m / 3.08 m	2.6 m	3.5 m	3.7 m	2.1 m	3.4 m

Majority of concepts based on PFA calorimetry \rightarrow comparison of different choices can provide additional insight, e.g. IDR_S (TPC) vs. CLICdet (full silicon tracking), but similar magnetic field and tracker radius

Philipp Roloff