Physics Requirement for the CEPC detector

Manqi RUAN

Science at CEPC-SPPC

- Tunnel ~ 100 km
- **CEPC (90 250 GeV)**
 - Higgs factory: **1M** Higgs boson
 - Absolute measurements of Higgs boson width and couplings •
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km
 - Precision test of the SM Low Energy Booster(0.4Km)

Booster(50Km

e+ e- Linac (240m)

IP4

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - PC Collider Ring(50Km) Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 20/10/2020

Complementary

IP₂

IP3

Detector & performance

- Performance: Identify & Measure Key Physics objects
 - Identification: to suppress the contamination from the reducible background
 - i.e., identification of isolated lepton is critical to reject the WW→lvqq background from the IIH Signal
 - Accurately measure their Position/Momentum: to reject the irreducible background & measure the differential Xsec
 - i.e., distinguish the ZZ background from ZH, with same final states of Ilqq.
- Objectives (Ideal):
 - Saturation the performance: further improvement on detector performance won't significant improvement in the physics result
 - Reconstruct all the final state particle, and their generation/decay information, especially for particles inside the jet (essential for flavor physics, i.e., b→B*→B→D*→D→...)

Requirements at the CDR

Physics process	Measurands	Detector subsystem	Performance requirement	
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Table 3.3: Physics processes and key observables used as benchmarks for setting the requirements and the optimization of the CEPC detector.

Key Physics Objects

Tracks Photon and pi-0

Leptons: Isolated, Inside jets Pid: Charged Kaon, Proton

Hadronic System: BMR Jets: Energy, Charge & Flavor

VTX Exotic Objects: Long Lived Particles, et. al

DRUID, RunNum = 0, EventNum = 23

Tracks

- Acceptance |cos(theta)| < 0.99 0.995...
- Momentum threshold
 - ~o(0.1 GeV) for Flavor Program (D^{*}→D + pi)
- Efficiency: should ~ 100% within the energy & solid angle acceptance
- Momentum resolution:
 - $\delta(m)/m \sim 0.1\%$ for Higgs with di-muon final state
 - $\delta(m)/m < 0.1\%$ (?) for narrow hadrons in the flavor program
 - Heavy flavor Hadron: D, B, ...
 - Lambda, Ks, Phi...
 - J/psi, Upsilon, ...
- Balance the Material budget (multiple scattering: accuracy & efficiency lose) and accuracy/rate acceptance...

$H \rightarrow \mu \mu$ at CEPC Baseline

Photon & π^0

- Larger acceptance: for ISR photon tagging (Need further quantification) as well as luminosity measurement
- Threshold: ~o(100) MeV;
- Low energy photons < 20 GeV, mostly from π^0 decay
 - Flavor physics: narrow resonances
 - Exotic
- High energy photons: 20 100 GeV
 - $H \rightarrow \gamma \gamma$
 - Measurements with Zγ events (ISR),
 - Neutrino generation measurements
 - Jet calibration, etc
- Good linearity for 3 orders of magnitude (100 MeV 100 GeV)

π⁰: energy range

Fig. 14: The generated π^0 distribution as a function of the energies of di-photons from $\pi^0 \to \gamma\gamma$ in inclusive Higgs (a) and $Z \to \tau\tau$ samples (b). $E_{\gamma 1}$ is the energy of the leading photon. $E_{\gamma 2}$ is the energy of the sub-leading photon. The red line is the function of $E_{\gamma 1} + E_{\gamma 2} = 30$ GeV.

- π^0 energy (rest-mass, 30 GeV 60 GeV): photon threshold ~ o(100) MeV
- At Z pole: be able to separate photons from Pi-0 decay, up to 30 GeV

π^0 : truth level analysis

Yuexin

Impact of EM resolution on π^0 finding

Dependency on π^0 energy

Figure 13: Energy differential maximal $\epsilon \times p$ for $Z \to \tau^+ \tau^-$ (left) and $Z \to q\bar{q}$ (right).

...Surely the low energy pi-0 reconstruction benefit more from a better EM resolution... **CEPC WS** 12

π⁰: energy spectrum decomposition

Figure 13: Energy spectrum of π^0 from different origins in $Z \to c\bar{c}$.

CEPC WS

π^0 reco

- ECAL resolution is critical: improving the ECAL resolution from 15%/sqrt(E) to 5%/sqrt(E) (with 1% constant term) significantly improve the inclusive π⁰ reconstruction efficiency
 - From 85% to 92% at $Z \rightarrow$ tautau
 - From 30% to 50% at $Z \rightarrow qq$
- Low energy π^0 is more sensitive to ECAL energy resolution.
- Further quantification needs physics benchmarks
 - Narrow States $\rightarrow n^*\pi^0$ + X, X are a set of charged Particle. For example Bs $\rightarrow 2\pi^0$

Pid: Identify charged hadrons with energy up to 20 GeV...

Fig. 3 Kinematic distribution of kaons in $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ MC events as a function of log(p) and cos θ (a), p (b), and cos θ (c)

Pid & Objective Hadron finding

CEPC WS

10

 $S_{\pi K}$

10

 $S_{\pi K}$

8

8

6

 $D \rightarrow K + 2pi$

 $D \rightarrow K + pi$

2

2

4

6

Pid & dEdx

Fenfen, Taifan, Zhiyang, etc

MC result of single-particle events with the theoretical prediction by the Bethe equation [16] overlaid. In the right plot the dots are from simulation of $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ events

Fig. 6 The scaled spectra of $(I - I_K)/\sigma_I$ using dE/dx measurements alone for particles with a momentum of 5 GeV/c, assuming a 20% degradation. The relative populations are $N_{\pi} = 4.4N_K$ and $N_K = 2.3N_p$ according to MC simulation. The intersections marked by the arrows are chosen as the cut points

Pid & dEdx

- Preliminary:
 - Energy Spectrum: identify charged hadrons up to 20 GeV...
 - 3σ separation of pi-Kaon, corresponding to 2% of dEdx resolution, is appreciated for the mass hadron reconstruction with kaon/proton in its decay final state
 - Need to have further physics benchmark analysis.
- For objects with kaon and/or proton in its decay product: performance depends on
 - Momentum (fully charged final state)
 - Hadron separation, especially pi-K separation
 - VTX reco. (for heavy flavor hadrons)

Lepton identification

- Typically Lepton id performance:
 - Isolated, high energy one: Eff > 99.5%, Mis-id rate of hadron to lepton $\sim 1\%$.
 - Performance limited by the leptonic decay of low energy hadron, etc.
- Aim at similar performance for all leptons
 - Full energy range (1-100 GeV), full detector acceptance ($|\cos(\theta)| < 0.99$).
 - For all leptons: isolated, and generated in jet (jet lepton), and even secondaries (generated from photon conversion & hadron decay)
 - The jet lepton identification is essential for the flavor physics measurements such as LFU in hadrons, etc.

$$R_{K^{(*)}} \equiv \frac{\mathrm{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \to K^{(*)} e^+ e^-)}$$

Tau

- Identify taus in all physics events
 - Leptonic
 - Semi-leptonic one with isolated taus
 - Tau inside the jet
 - For the latter two, the identification of tau never reaches an eff*purity ~ 1 ;
 - Ideally: aim for eff*purity > 0.5^{1/n}, where n is the number of objective taus (extremely difficult for b→stt analysis...)
- Calorimeter & Tracker:
 - separate the decay products of tau.
 - Identify tau decay modes, especially in $Z \rightarrow \tau \tau$ event
- VTX: provide sufficient separation between tracks from tau-decay and background (may coming from IP, or heavy flavor hadron decays)
 - 1 prong: impact parameter
 - 3 prong: reconstructed tau decay point

VTX

- Essential for jet flavor/charge tagging... and tau finding: need to better quantify these high-level reconstruction performance with the VTX performance (occupancy, resolution, et.al).
- Requirement 1:
 - Reconstruct & separate all displaced vertexes, i.e., reconstruct the 2nd/3rd vertex in physics benchmark of b-jet (b→B*→B→D*→D→...), if each vertex has more than 2 tracks)
- Requirement 2:
 - VTX positions need to be measured with good enough accuracy. Not only for the separation of different vertex, but also for the kinematic constrains such as the 3-prong tau vertex reconstruction in the benchmark of b→stt.

VTX: reconstruction accuracy V.S final accuracy: ideal, 1, 2, 5, 10µm resolution

Contamination of D decay that mimics tau 3-prong decay;

20/10/2020

Hadronic system (jet)

- Identify the hadronic system
 - lepton identification & missing energy measurements
- 4-momentum measurement of hadronic system BMR: Invariant Mass Resolution of Hadronic system, benchmarked with vvH, H→gluons process),
- Jet response (Scale/Resolution of jet energy & angular observables)
 - Essential for differential measurements with jet energy/directions
 - Applied to events with more than one color singlet fragment into jets: WW/ZZ/ZH event separation in 4-jet final state
 - ...
 - Jet Clustering & Matching, or beyond?

BMR < 4% required (CDR)

- W, Z, H mass peak separation
- To separate qqH signal from qqX background with recoil mass information

Confirmed with benchmark analyses

- Boson Mass Resolution: relative mass resolution of vvH, H→gg events
 - Free of Jet Clustering
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
$\sigma(vvH,H{\rightarrow}inv)$	0.38%	0.4%	0.5%	0.6%
$\sigma(qqH, H \rightarrow \tau \tau)$	0.85%	0.9%	1.0%	1.1%

Hadronic system: more than 2 jets?

- Matching the final state particles to the colored partons (quarks, gluon, etc) can induce significant uncertainties
- For physics event with multiple color singlets that decay hadronically, how to identify all the final state particles corresponding to one color singlet?
 - i.e., Essential for full hadronic ZH, ZZ, WW events separation
- Conventionally: Jet Clustering & Matching
 - Dominant the performance in physics benchmark of full hadronic WW/ZZ separation at the CEPC baseline detector
 - Goes beyond?

Reconstructed mass of the two di-jet system

Equal mass condition |M12 - M34| < 10 GeV: At the cost of half the statistic, the overlapping ratio can be reduced from 58%/53% to 40%/27% for the Reco/Genjet

Separation of full hadronic WW-ZZ event

The CEPC Baseline could separate efficiently the WW-ZZ with full hadronic final state.

Critical to develop color singlet reconstruction: improve from the naive Jet clustering & pairing.

Quantified by differential overlapping ratio.

Control of ISR photon/neutrinos from heavy flavor jet is important.

20/10/2020

Summary

- The CEPC, a high precision Higgs/Z factory, has very rich physics program and multiple stringent requirements on its detector performance
- Higgs factory:
 - Hadronic system
 - The majority of Higgs events has jet final states; many important EW measurements relies on multi-jet processes.
 - BMR < 4%: to separate qqH signal from qqX background with recoil mass
 - To investigate innovative color singlet identification algorithm (optimize jet clustering-matching or beyond)
 - Relative track momentum resolution ~ 0.1%
 - Isolated Leptons and taus;
 - Isolated leptons: eff*purity > 99% (eff > 0.995%, mis-id < 1%);
 - Isolated Tau finding: eff*purity > 70%.
 - VTX: efficiently separate the b, c, and light jets.
 - eff*purity of c-tagging at H→jj events. Aim for eff*purity >> 10% (i.e. 25%?)

Summary

- Z factory: finding objects inside jets...
 - Tracks: energy threshold $\sim o(100)$ MeV, $\delta p/p \ll 0.1\%$;
 - Photon: energy threshold ~o(100) MeV;
 - π^0 reconstruction:
 - separate photons from 30 GeV π^0 , count $\#\pi^0$ in tau decay.
 - EM resolution of ~5%/sqrt(E), for π^0 finding in hadronic events
 - Leptons: eff > 99.5% & mis-id < 1% for all leptons, especially jet leptons
 - 3σ Pi-K separation up to 20 GeV, to identify hadrons decay into kaon & proton
 - VTX: to reconstruct all 2nd vertex (with more than 2 tracks) with sufficient accuracy.
 - Identify & characterize the b-jet ($b \rightarrow B^* \rightarrow B \rightarrow D^* \rightarrow D \rightarrow ...$), c-jet, light jets...
 - Separate 3 prong tau from D background
 - Need to associate those requirements on VTX performance (position, efficiency, occupancy...)
 - Missing energy/momentum measurements
- In general: Z factory has extremely rich physics program, and a better detector always leads to better physics reach. More benchmark study & iterations are needed, to further quantify the Z factory physics potential & corresponding requirements.

Back up

$g(H\tau\tau)$ at qqH: di-jet and VTX information

- TAURUS: di-tau system
- The rest particles are identified as the di-jet: to distinguish the ZZ/ZH background & Improves the accuracy by more than a factor of 2: BMR < 4% (baseline of 3.8%) is crucial
- Isolated tracks are intensionally defined as tau candidate: be distinguished by the VTX
- Relative accuracy of 0.9% at 5.6 ab⁻¹ integrated luminosity, dominate the combined accuracy (0.8%)

Dan Yu's thesis

Physics Requirements

Detector:

To reconstruct all the physics objects with high efficiency, purity & resolution Homogenous & Stable enough to control the systematic

20/10/2020

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z \rightarrow II, vv (30%); H \rightarrow 0 jets (~10%, rr, µµ, γγ, γZ/WW/ZZ \rightarrow Ieptonic)
 - 2 jets (+n with gluon emission...): 32%
 - Z→qq, H→0 jets. 70%*10% = 7%
 - Z→II, vv; H→2 jets. 30%*70% = 21%
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow semi-leptonic. 3.6\%$
 - 4 jets: 55%
 - Z→qq, H→2 jets. 70%*70% = 49%
 - Z→II, vv; H→WW/ZZ→4 jets. 30%*15% = 4.5%
 - 6 jets: 11%
 - Z→qq, H→WW/ZZ→4 jets. 70%*15% = 11%
- 97% of the SM Higgsstrahlung Signal involves Jets
- 66% need color-singlet identification: grouping the hadronic final sate particles into color-singlets (Z, H, W, gamma, ...).

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z→II, vv (30%); H→0 jets
 - 2 jets: 32%
 - $Z \rightarrow 2$ jets, $H \rightarrow 0$ jets. 7%
 - $Z \rightarrow 0$ jets; $H \rightarrow 2$ jets. 21%
 - $Z \rightarrow 0$ jets; $H \rightarrow VV \rightarrow$ semi-leptonic. 3.6%
 - 4 jets: 55%
 - $Z \rightarrow 2$ jets, $H \rightarrow 2$ jets + X. 49%
 - $Z \rightarrow 0$ jets; $H \rightarrow WW/ZZ \rightarrow 4$ jets. 4.5%
 - 6 jets: 11%
 - $Z \rightarrow qq, H \rightarrow WW/ZZ \rightarrow 4 jets. 11\%$

- 1/3 of the Higgsstrahlung events
 - Have access to all SM Higgs decay modes
 - Doesn't need color singlet identification: No hadronic final states, or only 1 color singlet thus naturally identified

- 2/3 of the Higgsstrahlung events
 - Dominate statistic of $H \rightarrow bb$, cc, gg, WW, ZZ, Z γ
 - Color singlet identification potentially a leading systematic, huge impact
- Jet clustering is essential for any measurements concerning jet direction (differential measurements)

